Study on Impact Acoustic—Visual Sensor-Based Sorting of ELV Plastic Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. ASR Plastic Materials Used for This Research
2.2. Acoustic Emissions during Impact Process
2.3. Impact Acoustic Emission (AE) Response of Flake Structure Scraps
2.4. Determination of the Flake Equivalent Diameter by Fine Screening
2.5. Determination of the Flake Thickness by Using 3D Laser Triangulation
3. Experimental Setup
3.1. Implemented Acoustic and Visual Sensor
3.2. Acquisition Facility of Impact Acoustic Emissions
3.3. Setups of Impact AE Acquisition
3.4. Installation of the Whole System
4. Results and Discussion
4.1. Impact AE Signal Pre-Processing and Filtration
4.2. Determination of Impact Frequency Response Coefficient kC
- For PP, the fitted value of kC1 was 240.75 m/s with a fitting coefficient R2(PP) = 0.9238;
- For PP/EPDM, the fitted value of kC2 was 220.83 m/s with a fitting coefficient R2(PP/EPDM) = 0.9079;
- For ABS, the fitted value of kC3 was 551.4 m/s with a fitting coefficient R2(ABS) = 0.8612;
- For ABS/PC, the fitted value of kC4 was 682.2 m/s with a fitting coefficient R2(ABS/PC) = 0.8287.
4.3. Recognition and Sorting Test Based on the Determination of Impact Frequency Response Coefficient kC
4.4. Characteristic of Impact AE Frequency Response Coefficient and Sound Velocity in Solid Material
5. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Xue, M.Q.; Li, J.; Xu, Z.M. Environmental Friendly Crush-Magnetic Separation Technology for Recycling Metal-Plated Plastics from End-of-Life Vehicles. Environ. Sci. Technol. 2012, 46, 2661–2667. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Bian, Z.F.; Lei, S.G. Feasibility Study of Sensor Aided Impact Acoustic Sorting of Plastic Materials from End-of-Life Vehicles (ELVs). Appl. Sci. 2015, 5, 1699–1714. [Google Scholar] [CrossRef]
- Vermeulen, I.; Van, C.J.; Blocka, C.; Baeyensc, J.; Vandecasteele, C. Automotive shredder residue (ASR): Reviewing of its production from end-of-life vehicles (ELVs) and its recycling energy or chemical’s valorization. J. Harzard. Mater. 2011, 190, 8–27. [Google Scholar] [CrossRef] [PubMed]
- Nakanischi, H.; Black, J. Social Sustainability Issues and Older Adults’ Dependence on Automobiles in Low-Density Environments. Sustainability 2015, 7, 7289–7309. [Google Scholar] [CrossRef]
- Hu, S.; Kurasaka, H. Projection of end-of-life vehicle (ELV) population at provincial level of China and analysis on the gap between the future requirements and the current situation of ELV treatment in China. J. Mater. Cycles Waste Manag. 2013, 15, 154–170. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Dai, G.H.; Tan, H.M. Review of Dismantling and Recycling Technology for End-of-Life Vehicle. J. Changshu Inst. Technol. 2011, 25, 107–111. [Google Scholar]
- Pan, Y.X.; Li, H.T. Sustainability evaluation of end-of-life vehicle recycling based on emergy analysis: A case study of an end-of-life vehicle recycling enterprise in China. J. Clean. Prod. 2016, 131, 219–227. [Google Scholar] [CrossRef]
- Hu, S.; Wen, Z. Why does the informal sector of end-of-life vehicle treatment thrive? A case study of China and lessons for developing countries in motorization process. Resour. Conserv. Recycl. 2015, 95, 91–99. [Google Scholar] [CrossRef]
- Huang, J. Feasibility Research on Sorting of Black and Dark Dyed Waste Plastics Using Impact Acoustic Emission; Shaker Verlag: Aachen, Germany, 2014. [Google Scholar]
- Weill, D.; Klink, G.; Besland, L.; Rouilloux, G. Plastic, the Future for Automakers and Chemical Companies; Research report of the A.T. Kearney Inc.; A.T. Kearney Inc.: Chicago, IL, USA, 2011. [Google Scholar]
- Huang, Z.J. Status Quo of application of plastic in automobile and development trend. Automob. Tech. Mater. 2008, 61–71. Available online: http://www.cnki.com.cn/Article/CJFDTOTAL-QCGY200801022.htm (accessed on 7 June 2017). (In Chinese).
- Granata, G.; Moscardini, E.; Furlani, G.; Pagnanelli, F.; Toro, L. Characterization of automobile shredder residue. Chem. Eng. Trans. 2009, 17, 427–432. [Google Scholar]
- Morselli, L.; Santini, A.; Passarini, F.; Vassura, I. Automobile shredder residues (ASR) characterization from valuable management. Waste Manag. 2010, 30, 2228–2234. [Google Scholar] [CrossRef] [PubMed]
- Pretz, T.; Wotruba, H.; Nienhaus, K. Application of Sensor-Based Sorting in Raw Material Industry; Shaker Publishing House Co., Ltd.: Aachen, Germany, 2011. [Google Scholar]
- Simic, V. Fuzzy risk explicit interval linear programming model for end-of-life vehicle recycling planning in the EU. Waste Manag. 2015, 35, 265–282. [Google Scholar] [CrossRef] [PubMed]
- Santinia, A.; Herrmannb, C.; Passarinia, F.; Vassuraa, I.; Lugerb, T.; Morsellia, L. Assessment of Ecodesign potential in reaching new recycling targets. Resour. Conserv. Recycl. 2010, 54, 1128–1134. [Google Scholar] [CrossRef]
- Ohno, H.; Matsubae, K.; Nakajima; Kondo, Y.; Nakamura, S. Toward the efficient recycling of alloying elements from end of life vehicle. Resour. Conserv. Recycl. 2015, 100, 11–20. [Google Scholar] [CrossRef]
- Gundupalli, S.P.; Hait, S.; Thakur, A. A review on automated sorting of source-separated municipal solid waste for recycling. Waste Manag. 2016. [Google Scholar] [CrossRef] [PubMed]
- Hiratsuka, J.; Sato, N.; Yoshida, H. Current status and future perspectives in end-of-life vehicle recycling in Japan. J. Mater. Cycles Waste Manag. 2014, 16, 21–30. [Google Scholar] [CrossRef]
- Sakai, SI.; Yoshida, H.; Hiratsuka, J.; Vandecasteele, C.; Kohlmeyer, R. An international comparative study of end-of-life vehicle (ELV) recycling systems. J. Mater. Cycles Waste Manag. 2014, 16, 1–20. [Google Scholar] [CrossRef]
- Tian, J.; Chen, M. Sustainable design for automotive products: Dismantling and recycling of end-of-life vehicles. Waste Manag. 2014, 34, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Chi-Hyeon, L.; Nguyen, T.T.T.; Byeong-Kyu, L. Yoshiharu Mitomab and Srinivasa Reddy Mallampat. Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent. J. Harzard. Mater. 2015, 296, 239–247. [Google Scholar]
- Zolezzi, M.; Nicolella, C.; Ferrara, S.; Iacobucci, C.; Rovatti, M. Conventional and fast pyrolysis of automobile shredder residues (ASR). Waste Manag. 2004, 24, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Lee, B.K. Environmental availability and ecological risk of heavy metals in automobile shredder residues. Ecol. Eng. 2015, 81, 76–81. [Google Scholar] [CrossRef]
- Gonzalez-Fernandez, O.; Hidalgo, M.; Margui, E.; Carvalho, ML.; Queralt, I. Heavy metals’ content of automotive shredder residues (ASR): Evaluation of environmental risk. Environ. Pollut. 2008, 153, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, C.; Masoni, P.; Salvati, F.; Tolve, P. Life cycle assessment of innovative technology for energy production from automotive shredder residue. Integr. Environ. Assess. Manag. 2015, 11, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Ciacci, L.; Morselli, L.; Passarini, F.; Santini, A.; Vassura, I. A comparison among different automotive shredder residue treatment processes. Int. J. Life Cycle Assess. 2010, 15, 896–906. [Google Scholar] [CrossRef]
- Tong, F.; Tso, S.K.; Xu, X.M. Tile-wall bonding integrity inspection based on time domain features of impact acoustics. Sens. Actuators A Phys. 2006, 132, 557–566. [Google Scholar] [CrossRef]
- Person, T.C.; Cetin, A.E.; Tewfik, A.H.; Haff, R.P. Feasibility of impact acoustic emission for detection of damaged wheat kernels. Digit. Signal. Process. 2007, 17, 617–633. [Google Scholar] [CrossRef]
- Tong, F.; Xu, X.M.; Luk, B.L.; Liu, K.P. Evaluation of tile-wall bonding integrity based on impact acoustics and support vector machine. Sens. Actuators A Phys. 2008, 144, 97–104. [Google Scholar] [CrossRef]
- Glowacz, A. Fault diagnostics of acoustic signals of loaded synchronous motor using smofs-25-expanded and selected classifiers. Tehnicki Vjesnik-Technical Gazette 2016, 23, 1365–1372. [Google Scholar] [CrossRef]
- Glowacz, A.; Glowacz, Z. Diagnosis of stator faults of the single-phase induction motor using acoustic signals. Appl. Acoust. 2017, 117, 20–27. [Google Scholar] [CrossRef]
- Glowacz, A. Diagnostics of Rotor Damages of Three-Phase Induction Motors Using Acoustic Signals and SMOFS-20-EXPANDED. Arch. Acoust. 2016, 41, 507–515. [Google Scholar] [CrossRef]
- Glowacz, A. Fault diagnostics of DC motor using acoustic signals and MSAF-RATIO30-EXPANDED. Arch. Electr. Eng. 2016, 65, 733–744. [Google Scholar] [CrossRef]
- Su, J.; Xu, B.G. Fabric winkel evaluation using triangulation and neutral network classifier. Opt. Eng. 1999, 38, 1688–1693. [Google Scholar] [CrossRef]
- Pretz, T.; Killmann, D.; Schokert, Y.; Huang, J. Sensor Based Sorting Technology. In Recycling und Rohstoffe Band 2; Thomé-Kozmiensky, K.J., Goldmann, D., Eds.; TK-Vlg: Nietwerder, Germany, 2009; pp. 425–437. [Google Scholar]
- Jähne, B. Digital Image Processing; Springer: New York, NY, USA; Heidelberg, Berlin, Germany, 2005. [Google Scholar]
- Killmann, D.; Scharrenbach, T.; Pretz, T. Perspectives of sensor based sorting for processing of solid waste material. In Proceeding of II International Symposium MBT 2007; Kühle-Weidemeier, M., Ed.; Cuvillier Verlag: Göttingen, Germany, 2007; pp. 296–307. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Tian, C.; Ren, J.; Bian, Z. Study on Impact Acoustic—Visual Sensor-Based Sorting of ELV Plastic Materials. Sensors 2017, 17, 1325. https://doi.org/10.3390/s17061325
Huang J, Tian C, Ren J, Bian Z. Study on Impact Acoustic—Visual Sensor-Based Sorting of ELV Plastic Materials. Sensors. 2017; 17(6):1325. https://doi.org/10.3390/s17061325
Chicago/Turabian StyleHuang, Jiu, Chuyuan Tian, Jingwei Ren, and Zhengfu Bian. 2017. "Study on Impact Acoustic—Visual Sensor-Based Sorting of ELV Plastic Materials" Sensors 17, no. 6: 1325. https://doi.org/10.3390/s17061325
APA StyleHuang, J., Tian, C., Ren, J., & Bian, Z. (2017). Study on Impact Acoustic—Visual Sensor-Based Sorting of ELV Plastic Materials. Sensors, 17(6), 1325. https://doi.org/10.3390/s17061325