Figure 1.
Vertical accelerometer signals from right shank (RS) and left shank (LS) with segmented turn.
Figure 1.
Vertical accelerometer signals from right shank (RS) and left shank (LS) with segmented turn.
Figure 2.
Section of left and right vertical accelerometer signals. Periodic drops in vertical acceleration magnitude locate turns in the 6MWT.
Figure 2.
Section of left and right vertical accelerometer signals. Periodic drops in vertical acceleration magnitude locate turns in the 6MWT.
Figure 3.
Model performance evaluations.
Figure 3.
Model performance evaluations.
Figure 4.
Overview of data processing and classification process.
Figure 4.
Overview of data processing and classification process.
Figure 5.
Test III procedure for testing most frequently occurring feature subsets.
Figure 5.
Test III procedure for testing most frequently occurring feature subsets.
Figure 6.
Histogram of selected straight-walking feature frequency above 8% (200) of 2500 total selections using the combination of Select False Positive Rate and Select False Discovery Rate methods (SEL) for 2500 random-shuffle-split iterations.
Figure 6.
Histogram of selected straight-walking feature frequency above 8% (200) of 2500 total selections using the combination of Select False Positive Rate and Select False Discovery Rate methods (SEL) for 2500 random-shuffle-split iterations.
Figure 7.
Histogram of selected straight-walking feature frequency above 8% (200) of 2500 total selections using the select-5-best (S5B) method for 2500 random-shuffle-split iterations.
Figure 7.
Histogram of selected straight-walking feature frequency above 8% (200) of 2500 total selections using the select-5-best (S5B) method for 2500 random-shuffle-split iterations.
Figure 8.
Histogram of selected turn-based feature frequency above 8% (200) of 2500 total selections using the combination of Select False Positive Rate and Select False Discovery Rate methods (SEL) for 2500 random-shuffle-split iterations.
Figure 8.
Histogram of selected turn-based feature frequency above 8% (200) of 2500 total selections using the combination of Select False Positive Rate and Select False Discovery Rate methods (SEL) for 2500 random-shuffle-split iterations.
Figure 9.
Histogram of selected turn-based feature frequency above 8% (200) of 2500 total selections using the select-5-best (S5B) method for 2500 random-shuffle-split iterations.
Figure 9.
Histogram of selected turn-based feature frequency above 8% (200) of 2500 total selections using the select-5-best (S5B) method for 2500 random-shuffle-split iterations.
Table 1.
Straight-walking section five-fold cross validation (5FCV) results. PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, S5B: select-5-best, SEL: false positive and discovery rate method, RFE: recursive feature eliminator, RF: random forest, kNN: k-nearest neighbour, SVM: support vector machine, linear: linear kernel, poly: polynomial kernel.
Table 1.
Straight-walking section five-fold cross validation (5FCV) results. PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, S5B: select-5-best, SEL: false positive and discovery rate method, RFE: recursive feature eliminator, RF: random forest, kNN: k-nearest neighbour, SVM: support vector machine, linear: linear kernel, poly: polynomial kernel.
Classifier, Feature Selector | Accuracy (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | F1 Score | MCC | Rank Sum |
---|
RF S5B | 62.0 | 46.4 | 72.1 | 52.0 | 67.4 | 0.49 | 0.19 | 24 |
SVM (poly = 3) S5B | 56.3 | 78.6 | 41.9 | 46.8 | 75.0 | 0.59 | 0.21 | 26 |
RF SEL | 57.7 | 46.4 | 65.1 | 46.4 | 65.1 | 0.46 | 0.12 | 36 |
RF RFE | 62.0 | 32.1 | 81.4 | 52.9 | 64.8 | 0.40 | 0.16 | 44 |
SVM (poly = 5) SEL | 54.9 | 57.1 | 53.5 | 44.4 | 65.7 | 0.50 | 0.10 | 46 |
SVM (poly = 3) RFE | 52.1 | 71.4 | 39.5 | 43.5 | 68.0 | 0.54 | 0.11 | 47 |
SVM (poly = 3) SEL | 52.1 | 71.4 | 39.5 | 43.5 | 68.0 | 0.54 | 0.11 | 47 |
kNN (k = 5) SEL | 56.3 | 42.9 | 65.1 | 44.4 | 63.6 | 0.44 | 0.08 | 51 |
kNN (k = 3) S5B | 54.9 | 50.0 | 58.1 | 43.8 | 64.1 | 0.47 | 0.08 | 51 |
kNN (k = 3) SEL | 56.3 | 39.3 | 67.4 | 44.0 | 63.0 | 0.42 | 0.07 | 60 |
SVM (linear) S5B | 53.5 | 50.0 | 55.8 | 42.4 | 63.2 | 0.46 | 0.06 | 63 |
SVM (linear) SEL | 53.5 | 50.0 | 55.8 | 42.4 | 63.2 | 0.46 | 0.06 | 64 |
SVM (poly = 5) RFE | 52.1 | 46.4 | 55.8 | 40.6 | 61.5 | 0.43 | 0.02 | 78 |
SVM (linear) RFE | 52.1 | 39.3 | 60.5 | 39.3 | 60.5 | 0.39 | 0.00 | 85 |
kNN (k = 3) RFE | 50.7 | 35.7 | 60.5 | 37.0 | 59.1 | 0.36 | −0.04 | 97 |
SVM (poly = 5) S5B | 49.3 | 39.3 | 55.8 | 36.7 | 58.5 | 0.38 | −0.05 | 100 |
kNN (k = 5) S5B | 47.9 | 35.7 | 55.8 | 34.5 | 57.1 | 0.35 | −0.08 | 109 |
kNN (k = 5) RFE | 46.5 | 35.7 | 53.5 | 33.3 | 56.1 | 0.34 | −0.11 | 119 |
Table 2.
Turn section five-fold cross validation (5FCV) results. PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, S5B: select-5-best method, SEL: false positive and discovery rate method, RFE: recursive feature eliminator, RF: random forest, kNN: k-nearest neighbour, SVM: support vector machine, linear: linear kernel, poly: polynomial kernel.
Table 2.
Turn section five-fold cross validation (5FCV) results. PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, S5B: select-5-best method, SEL: false positive and discovery rate method, RFE: recursive feature eliminator, RF: random forest, kNN: k-nearest neighbour, SVM: support vector machine, linear: linear kernel, poly: polynomial kernel.
Classifier, Feature Selector | Accuracy (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | F1 Score | MCC | Rank Sum |
---|
RF S5B | 77.5 | 67.9 | 83.7 | 73.1 | 80.0 | 0.70 | 0.52 | 12 |
RF SEL | 77.5 | 64.3 | 86.0 | 75.0 | 78.7 | 0.69 | 0.52 | 14 |
RF RFE | 69.0 | 53.6 | 79.1 | 62.5 | 72.3 | 0.58 | 0.34 | 38 |
kNN (k = 5) SEL | 69.0 | 50.0 | 81.4 | 63.6 | 71.4 | 0.56 | 0.33 | 45 |
kNN (k = 5) S5B | 71.8 | 42.9 | 90.7 | 75.0 | 70.9 | 0.55 | 0.39 | 46 |
SVM (linear) S5B | 67.6 | 53.6 | 76.7 | 60.0 | 71.7 | 0.57 | 0.31 | 50 |
SVM (linear) SEL | 66.2 | 57.1 | 72.1 | 57.1 | 72.1 | 0.57 | 0.29 | 55 |
kNN (k = 3) S5B | 67.6 | 50.0 | 79.1 | 60.9 | 70.8 | 0.55 | 0.30 | 57 |
SVM (poly = 3) RFE | 62.0 | 67.9 | 58.1 | 51.4 | 73.5 | 0.58 | 0.25 | 58 |
kNN (k = 3) SEL | 66.2 | 50.0 | 76.7 | 58.3 | 70.2 | 0.54 | 0.28 | 70 |
SVM (poly = 3) SEL | 60.6 | 64.3 | 58.1 | 50.0 | 71.4 | 0.56 | 0.22 | 73 |
SVM (poly = 5) SEL | 54.9 | 78.6 | 39.5 | 45.8 | 73.9 | 0.58 | 0.19 | 76 |
SVM (poly = 5) S5B | 60.6 | 60.7 | 60.5 | 50.0 | 70.3 | 0.55 | 0.21 | 81 |
kNN (k = 5) RFE | 63.4 | 35.7 | 81.4 | 55.6 | 66.0 | 0.43 | 0.19 | 89 |
SVM (linear) RFE | 60.6 | 50.0 | 67.4 | 50.0 | 67.4 | 0.50 | 0.17 | 94 |
SVM (poly = 3) S5B | 59.2 | 57.1 | 60.5 | 48.5 | 68.4 | 0.52 | 0.17 | 97 |
kNN (k = 3) RFE | 62.0 | 39.3 | 76.7 | 52.4 | 66.0 | 0.45 | 0.17 | 98 |
SVM (poly = 5) RFE | 57.7 | 46.4 | 65.1 | 46.4 | 65.1 | 0.46 | 0.12 | 114 |
Table 3.
Straight-walking section results for 2500-iteration random-shuffle-split cross validation (2500-RSS), ordered by ranked performance. PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, S5B: select-5-best method, SEL: false positive and discovery rate method, RFE: recursive feature eliminator, RF: random forest, kNN: k-nearest neighbour, SVM: support vector machine, linear: linear kernel, poly: polynomial kernel, : mean, SD: standard deviation, CI: 95% confidence interval.
Table 3.
Straight-walking section results for 2500-iteration random-shuffle-split cross validation (2500-RSS), ordered by ranked performance. PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, S5B: select-5-best method, SEL: false positive and discovery rate method, RFE: recursive feature eliminator, RF: random forest, kNN: k-nearest neighbour, SVM: support vector machine, linear: linear kernel, poly: polynomial kernel, : mean, SD: standard deviation, CI: 95% confidence interval.
Classifier, Feature Selection | Accuracy (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | F1 | MCC |
---|
| SD | CI | | SD | CI | | SD | CI | | SD | CI | | SD | CI | | SD | CI | | SD | CI |
---|
kNN (k = 3) S5B | 55.5 | 12.0 | 0.47 | 46.1 | 21.2 | 0.83 | 61.8 | 16.2 | 0.64 | 44.6 | 16.9 | 0.66 | 63.2 | 11.5 | 0.45 | 0.45 | 0.17 | 0.007 | 0.08 | 0.26 | 0.010 |
RF S5B | 56.2 | 11.4 | 0.45 | 39.8 | 20.3 | 0.80 | 67.2 | 15.9 | 0.62 | 44.7 | 19.6 | 0.77 | 62.6 | 9.9 | 0.39 | 0.42 | 0.18 | 0.007 | 0.07 | 0.26 | 0.010 |
RF SEL | 56.9 | 11.2 | 0.44 | 34.5 | 20.3 | 0.79 | 71.9 | 18.3 | 0.72 | 45.0 | 25.2 | 0.99 | 62.2 | 8.7 | 0.34 | 0.39 | 0.18 | 0.007 | 0.07 | 0.30 | 0.012 |
SVM (poly = 3) SEL | 51.7 | 11.1 | 0.43 | 59.7 | 33.6 | 1.32 | 46.4 | 30.3 | 1.19 | 42.6 | 18.8 | 0.74 | 63.3 | 25.6 | 1.00 | 0.50 | 0.20 | 0.008 | 0.06 | 0.39 | 0.015 |
kNN (k = 5) S5B | 55.0 | 11.8 | 0.46 | 43.6 | 21.8 | 0.85 | 62.7 | 17.0 | 0.67 | 43.8 | 18.3 | 0.72 | 62.5 | 11.2 | 0.44 | 0.44 | 0.18 | 0.007 | 0.06 | 0.26 | 0.010 |
SVM (linear) SEL | 53.4 | 12.1 | 0.48 | 50.3 | 23.7 | 0.93 | 55.5 | 23.7 | 0.93 | 43.0 | 17.3 | 0.68 | 62.6 | 15.9 | 0.62 | 0.46 | 0.16 | 0.006 | 0.06 | 0.30 | 0.012 |
SVM (linear) S5B | 50.9 | 11.9 | 0.47 | 53.6 | 25.4 | 0.99 | 49.1 | 19.3 | 0.76 | 41.3 | 15.0 | 0.59 | 61.4 | 16.4 | 0.64 | 0.47 | 0.17 | 0.007 | 0.03 | 0.27 | 0.011 |
kNN (k = 3) SEL | 54.0 | 11.4 | 0.45 | 37.5 | 19.9 | 0.78 | 65.1 | 17.3 | 0.68 | 41.7 | 19.6 | 0.77 | 61.0 | 9.7 | 0.38 | 0.39 | 0.17 | 0.007 | 0.03 | 0.25 | 0.010 |
SVM (poly = 3) S5B | 48.7 | 10.4 | 0.41 | 61.6 | 33.6 | 1.32 | 40.1 | 26.2 | 1.03 | 40.7 | 16.1 | 0.63 | 61.0 | 26.4 | 1.03 | 0.49 | 0.20 | 0.008 | 0.02 | 0.35 | 0.014 |
kNN (k = 5) SEL | 53.8 | 10.8 | 0.42 | 34.6 | 19.9 | 0.78 | 66.6 | 17.7 | 0.69 | 40.8 | 20.5 | 0.80 | 60.4 | 9.2 | 0.36 | 0.37 | 0.17 | 0.007 | 0.01 | 0.26 | 0.010 |
Table 4.
Turn section results for 2500-iteration random-shuffle-split cross validation (2500-RSS), ordered by ranked performance. PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, S5B: select-5-best method, SEL: false positive and discovery rate method, RFE: recursive feature eliminator, RF: random forest, kNN: k-nearest neighbour, SVM: support vector machine, linear: linear kernel, poly: polynomial kernel, : mean, SD: standard deviation, CI: 95% confidence interval.
Table 4.
Turn section results for 2500-iteration random-shuffle-split cross validation (2500-RSS), ordered by ranked performance. PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, S5B: select-5-best method, SEL: false positive and discovery rate method, RFE: recursive feature eliminator, RF: random forest, kNN: k-nearest neighbour, SVM: support vector machine, linear: linear kernel, poly: polynomial kernel, : mean, SD: standard deviation, CI: 95% confidence interval.
Classifier, Feature Selector | Accuracy (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | F1 | MCC |
---|
| SD | CI | | SD | CI | | SD | CI | | SD | CI | | SD | CI | | SD | CI | | SD | CI |
---|
RF S5B | 73.4 | 10.6 | 0.42 | 60.5 | 20.5 | 0.81 | 82.0 | 12.8 | 0.50 | 69.1 | 18.2 | 0.71 | 75.7 | 10.2 | 0.40 | 0.65 | 0.17 | 0.007 | 0.44 | 0.24 | 0.009 |
RF SEL | 71.6 | 10.9 | 0.43 | 58.3 | 20.7 | 0.81 | 80.4 | 13.3 | 0.52 | 66.5 | 18.5 | 0.72 | 74.3 | 10.3 | 0.41 | 0.62 | 0.17 | 0.007 | 0.40 | 0.24 | 0.010 |
kNN (k = 5) S5B | 69.2 | 11.2 | 0.44 | 49.0 | 21.4 | 0.84 | 82.7 | 13.3 | 0.52 | 65.3 | 22.5 | 0.88 | 70.8 | 9.7 | 0.38 | 0.56 | 0.19 | 0.008 | 0.34 | 0.27 | 0.011 |
kNN (k = 3) S5B | 68.0 | 11.2 | 0.44 | 50.8 | 20.7 | 0.81 | 79.6 | 13.9 | 0.55 | 62.4 | 20.9 | 0.82 | 70.8 | 9.8 | 0.39 | 0.56 | 0.18 | 0.007 | 0.32 | 0.26 | 0.010 |
SVM (linear) S5B | 66.7 | 11.7 | 0.46 | 57.6 | 20.8 | 0.82 | 72.8 | 16.0 | 0.63 | 58.5 | 17.7 | 0.69 | 72.0 | 11.7 | 0.46 | 0.58 | 0.16 | 0.006 | 0.30 | 0.25 | 0.010 |
SVM (linear) SEL | 64.7 | 13.0 | 0.51 | 57.6 | 24.2 | 0.95 | 69.5 | 17.9 | 0.70 | 55.7 | 19.3 | 0.76 | 71.1 | 14.4 | 0.56 | 0.57 | 0.19 | 0.007 | 0.27 | 0.31 | 0.012 |
kNN (k = 5) SEL | 67.2 | 12.5 | 0.49 | 48.7 | 21.6 | 0.85 | 79.5 | 14.9 | 0.58 | 61.3 | 23.2 | 0.91 | 69.9 | 10.5 | 0.41 | 0.54 | 0.20 | 0.008 | 0.30 | 0.29 | 0.012 |
kNN (k = 3) SEL | 66.8 | 12.7 | 0.50 | 50.0 | 21.3 | 0.83 | 78.0 | 15.2 | 0.60 | 60.3 | 22.2 | 0.87 | 70.1 | 10.8 | 0.42 | 0.55 | 0.19 | 0.008 | 0.29 | 0.29 | 0.011 |
SVM (poly = 3) SEL | 61.8 | 13.1 | 0.51 | 50.7 | 25.3 | 0.99 | 69.2 | 24.8 | 0.97 | 52.3 | 25.1 | 0.98 | 67.8 | 15.4 | 0.61 | 0.51 | 0.18 | 0.007 | 0.20 | 0.33 | 0.013 |
SVM (poly = 3) S5B | 60.7 | 13.8 | 0.54 | 55.7 | 23.6 | 0.93 | 64.1 | 22.3 | 0.87 | 50.8 | 20.0 | 0.78 | 68.4 | 15.8 | 0.62 | 0.53 | 0.17 | 0.007 | 0.20 | 0.30 | 0.012 |
Table 5.
Most frequently occurring (MFO) feature subsets for straight-walking section results and 3NN classifier using 2500-iteration random-shuffle-split cross validation (2500-RSS), ordered by ranked performance. PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, : mean, SD: standard deviation, CI: 95% confidence interval.
Table 5.
Most frequently occurring (MFO) feature subsets for straight-walking section results and 3NN classifier using 2500-iteration random-shuffle-split cross validation (2500-RSS), ordered by ranked performance. PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, : mean, SD: standard deviation, CI: 95% confidence interval.
# Features | Accuracy (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | F1 | MCC |
---|
| SD | CI | | SD | CI | | SD | CI | | SD | CI | | SD | CI | | SD | CI | | SD | CI |
---|
5 | 64.1 | 10.8 | 0.42 | 59.9 | 19.2 | 0.75 | 66.9 | 14.5 | 0.57 | 54.7 | 14.3 | 0.56 | 71.4 | 11.0 | 0.43 | 0.57 | 0.14 | 0.006 | 0.26 | 0.23 | 0.009 |
3 | 63.1 | 11.3 | 0.44 | 61.2 | 20.0 | 0.78 | 64.4 | 14.9 | 0.59 | 53.4 | 14.0 | 0.55 | 71.3 | 11.9 | 0.47 | 0.57 | 0.15 | 0.006 | 0.25 | 0.24 | 0.009 |
4 | 62.2 | 10.8 | 0.42 | 57.7 | 18.9 | 0.74 | 65.2 | 15.0 | 0.59 | 52.5 | 14.6 | 0.57 | 69.8 | 10.7 | 0.42 | 0.55 | 0.14 | 0.006 | 0.23 | 0.23 | 0.009 |
9 | 61.5 | 10.4 | 0.41 | 42.1 | 18.8 | 0.74 | 74.5 | 14.0 | 0.55 | 52.4 | 20.0 | 0.79 | 65.9 | 8.5 | 0.33 | 0.47 | 0.17 | 0.007 | 0.17 | 0.24 | 0.009 |
10 | 60.7 | 11.1 | 0.43 | 44.7 | 19.9 | 0.78 | 71.4 | 14.6 | 0.57 | 51.1 | 19.1 | 0.75 | 66.0 | 9.5 | 0.37 | 0.48 | 0.17 | 0.007 | 0.17 | 0.25 | 0.010 |
6 | 60.6 | 12.3 | 0.48 | 56.1 | 20.1 | 0.79 | 63.6 | 16.7 | 0.66 | 50.7 | 16.0 | 0.63 | 68.5 | 12.2 | 0.48 | 0.53 | 0.16 | 0.006 | 0.20 | 0.26 | 0.010 |
2 | 60.0 | 11.5 | 0.45 | 57.2 | 19.3 | 0.76 | 61.8 | 15.9 | 0.62 | 50.0 | 14.5 | 0.57 | 68.4 | 11.7 | 0.46 | 0.53 | 0.15 | 0.006 | 0.19 | 0.24 | 0.009 |
8 | 60.6 | 10.3 | 0.40 | 38.5 | 18.7 | 0.73 | 75.4 | 13.8 | 0.54 | 51.1 | 21.6 | 0.85 | 64.8 | 8.2 | 0.32 | 0.44 | 0.17 | 0.007 | 0.15 | 0.25 | 0.010 |
11 | 59.6 | 11.1 | 0.43 | 41.9 | 19.4 | 0.76 | 71.4 | 14.9 | 0.59 | 49.4 | 19.7 | 0.77 | 64.8 | 9.3 | 0.37 | 0.45 | 0.17 | 0.007 | 0.14 | 0.25 | 0.010 |
7 | 59.2 | 11.2 | 0.44 | 44.0 | 18.8 | 0.74 | 69.3 | 15.1 | 0.59 | 48.9 | 18.6 | 0.73 | 65.0 | 9.4 | 0.37 | 0.46 | 0.16 | 0.006 | 0.14 | 0.24 | 0.010 |
1 | 57.0 | 11.0 | 0.43 | 50.2 | 20.1 | 0.79 | 61.5 | 15.7 | 0.62 | 46.5 | 14.8 | 0.58 | 64.9 | 10.9 | 0.43 | 0.48 | 0.15 | 0.006 | 0.12 | 0.24 | 0.009 |
13 | 57.8 | 10.9 | 0.43 | 37.4 | 19.1 | 0.75 | 71.4 | 14.5 | 0.57 | 46.6 | 20.4 | 0.80 | 63.1 | 8.9 | 0.35 | 0.41 | 0.17 | 0.007 | 0.09 | 0.25 | 0.010 |
14 | 57.6 | 10.5 | 0.41 | 37.6 | 18.9 | 0.74 | 70.9 | 14.5 | 0.57 | 46.3 | 19.7 | 0.77 | 63.0 | 8.5 | 0.33 | 0.42 | 0.17 | 0.007 | 0.09 | 0.24 | 0.010 |
12 | 57.0 | 10.5 | 0.41 | 36.5 | 19.1 | 0.75 | 70.6 | 14.0 | 0.55 | 45.3 | 20.2 | 0.79 | 62.5 | 8.5 | 0.33 | 0.40 | 0.17 | 0.007 | 0.07 | 0.25 | 0.010 |
Table 6.
Most frequently occurring (MFO) feature subsets for turn section results and random forest classifier using 2500-iteration random-shuffle-split cross validation (2500-RSS), ordered by ranked performance. PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, : mean, SD: standard deviation, CI: 95% confidence interval.
Table 6.
Most frequently occurring (MFO) feature subsets for turn section results and random forest classifier using 2500-iteration random-shuffle-split cross validation (2500-RSS), ordered by ranked performance. PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, : mean, SD: standard deviation, CI: 95% confidence interval.
# Features | Accuracy (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | F1 | MCC |
---|
| SD | CI | | SD | CI | | SD | CI | | SD | CI | | SD | CI | | SD | CI | | SD | CI |
---|
5 | 77.3 | 9.1 | 0.36 | 66.1 | 19.6 | 0.77 | 84.7 | 11.4 | 0.45 | 74.3 | 15.5 | 0.61 | 79.0 | 9.7 | 0.38 | 0.70 | 0.15 | 0.006 | 0.52 | 0.20 | 0.008 |
6 | 77.1 | 9.4 | 0.37 | 66.2 | 19.5 | 0.76 | 84.4 | 11.7 | 0.46 | 73.9 | 15.9 | 0.62 | 78.9 | 9.7 | 0.38 | 0.70 | 0.15 | 0.006 | 0.52 | 0.21 | 0.008 |
3 | 77.0 | 9.6 | 0.38 | 67.7 | 18.9 | 0.74 | 83.2 | 12.2 | 0.48 | 72.9 | 15.7 | 0.62 | 79.5 | 9.7 | 0.38 | 0.70 | 0.14 | 0.006 | 0.52 | 0.21 | 0.008 |
9 | 76.3 | 9.6 | 0.38 | 63.3 | 19.8 | 0.78 | 84.9 | 11.6 | 0.46 | 73.6 | 16.7 | 0.66 | 77.6 | 9.6 | 0.38 | 0.68 | 0.15 | 0.006 | 0.50 | 0.22 | 0.009 |
2 | 76.4 | 9.4 | 0.37 | 65.9 | 18.9 | 0.74 | 83.4 | 12.0 | 0.47 | 72.6 | 15.8 | 0.62 | 78.6 | 9.6 | 0.38 | 0.69 | 0.14 | 0.006 | 0.50 | 0.20 | 0.008 |
7 | 75.8 | 9.6 | 0.38 | 62.4 | 19.5 | 0.76 | 84.7 | 12.0 | 0.47 | 73.2 | 16.7 | 0.66 | 77.2 | 9.5 | 0.37 | 0.67 | 0.15 | 0.006 | 0.49 | 0.21 | 0.008 |
8 | 75.7 | 9.7 | 0.38 | 62.4 | 19.7 | 0.77 | 84.5 | 12.0 | 0.47 | 72.9 | 16.9 | 0.66 | 77.1 | 9.6 | 0.38 | 0.67 | 0.15 | 0.006 | 0.48 | 0.22 | 0.009 |
4 | 75.5 | 9.5 | 0.37 | 63.3 | 19.5 | 0.76 | 83.7 | 11.9 | 0.47 | 72.2 | 16.5 | 0.65 | 77.4 | 9.6 | 0.38 | 0.67 | 0.15 | 0.006 | 0.48 | 0.21 | 0.008 |
1 | 75.3 | 9.4 | 0.37 | 61.5 | 19.5 | 0.76 | 84.6 | 11.7 | 0.46 | 72.7 | 16.8 | 0.66 | 76.7 | 9.3 | 0.36 | 0.67 | 0.15 | 0.006 | 0.48 | 0.21 | 0.008 |
Table 7.
Combined straight and turn-walking feature results for 2500-iteration random-shuffle-split cross validation (2500-RSS), ordered by ranked performance. PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, S5B: select-5-best method, SEL: false positive and discovery rate method, RFE: recursive feature eliminator, RF: random forest, kNN: k-nearest neighbour, SVM: support vector machine, linear: linear kernel, : mean, SD: standard deviation, CI: 95% confidence interval.
Table 7.
Combined straight and turn-walking feature results for 2500-iteration random-shuffle-split cross validation (2500-RSS), ordered by ranked performance. PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, S5B: select-5-best method, SEL: false positive and discovery rate method, RFE: recursive feature eliminator, RF: random forest, kNN: k-nearest neighbour, SVM: support vector machine, linear: linear kernel, : mean, SD: standard deviation, CI: 95% confidence interval.
Classifier, Feature Selection | Accuracy (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | F1 | MCC |
---|
| SD | CI | | SD | CI | | SD | CI | | SD | CI | | SD | CI | | SD | CI | | SD | CI |
---|
RF S5B | 71.6 | 10.8 | 0.42 | 57.5 | 20.8 | 0.82 | 81.1 | 13.2 | 0.52 | 66.9 | 18.9 | 0.74 | 74.1 | 10.2 | 0.40 | 0.62 | 0.17 | 0.007 | 0.40 | 0.25 | 0.010 |
RF SEL | 69.5 | 11.7 | 0.46 | 54.3 | 21.1 | 0.83 | 79.7 | 14.5 | 0.57 | 64.1 | 20.7 | 0.81 | 72.3 | 10.4 | 0.41 | 0.59 | 0.18 | 0.007 | 0.35 | 0.27 | 0.010 |
kNN (k = 5) S5B | 67.4 | 11.2 | 0.44 | 48.6 | 21.3 | 0.84 | 80.0 | 13.9 | 0.55 | 61.8 | 21.6 | 0.85 | 70.0 | 9.9 | 0.39 | 0.54 | 0.19 | 0.007 | 0.30 | 0.27 | 0.011 |
SVM (linear) S5B | 65.7 | 11.6 | 0.45 | 56.1 | 21.0 | 0.83 | 72.1 | 15.9 | 0.62 | 57.3 | 17.7 | 0.70 | 71.1 | 11.5 | 0.45 | 0.57 | 0.16 | 0.006 | 0.28 | 0.25 | 0.010 |
kNN (k = 3) S5B | 65.9 | 11.4 | 0.45 | 49.3 | 20.6 | 0.81 | 77.0 | 14.4 | 0.56 | 58.8 | 20.6 | 0.81 | 69.5 | 10.0 | 0.39 | 0.54 | 0.18 | 0.007 | 0.27 | 0.26 | 0.010 |
SVM (linear) SEL | 63.7 | 12.5 | 0.49 | 54.9 | 23.8 | 0.94 | 69.6 | 17.9 | 0.70 | 54.6 | 19.9 | 0.78 | 69.8 | 13.5 | 0.53 | 0.55 | 0.19 | 0.007 | 0.24 | 0.30 | 0.012 |
kNN (k = 3) SEL | 65.3 | 12.7 | 0.50 | 49.0 | 21.1 | 0.83 | 76.2 | 15.3 | 0.60 | 57.9 | 21.8 | 0.85 | 69.2 | 10.8 | 0.42 | 0.53 | 0.19 | 0.007 | 0.26 | 0.29 | 0.011 |
kNN (k = 5) SEL | 65.4 | 12.5 | 0.49 | 47.2 | 22.0 | 0.86 | 77.5 | 15.1 | 0.59 | 58.3 | 23.3 | 0.91 | 68.8 | 10.7 | 0.42 | 0.52 | 0.20 | 0.008 | 0.26 | 0.29 | 0.012 |