Direction-Of-Arrival Estimation and Tracking Based on a Sequential Implementation of C-SPICE with an Off-Grid Model
Abstract
:1. Introduction
2. Problem Formulation
2.1. Signal Model
2.2. The C-SPICE Algorithm
- The noise is spatially and temporally white Gaussian with covariance ;
- the noise is uncorrelated with the signals;
- the signals are uncorrelated with each other.
3. A Sequential Implementation of C-SPICE
3.1. Sequential Implementation of C-SPICE
Algorithm 1 A Sequential Implementation of C-SPICE (SIC-SPICE) |
|
3.2. A Moving-Average Initialization Technique
3.3. SIC-SPICE for ULAs
4. Simulations
- Case-1: The first two sources move from to and from to , respectively, over 100 snapshots. The third one moves following the function –.
- Case-2: The trajectories of the first two sources are the same as those in Case-1. The third one moves according to .
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Skolnik, M. Radar Handbook, 2nd ed.; McGraaw-Hill Book Company: New York, NY, USA, 1990. [Google Scholar]
- Zhao, J.; Gao, F.; Jia, W.; Zhang, S.; Jin, S.; Lin, H. Angle Domain Hybrid Precoding and Channel Tracking for mmWave Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2017, 16, 6868–6880. [Google Scholar] [CrossRef]
- Xin, J.; Sano, A. Efficient subspace-based algorithm for adaptive bearing estimation and tracking. IEEE Trans. Signal Process. 2005, 53, 4485–4505. [Google Scholar]
- Yan, H.; Fan, H.H. Signal-Selective DOA Tracking for Wideband Cyclostationary Sources. IEEE Trans. Signal Process. 2007, 55, 2007–2015. [Google Scholar] [CrossRef]
- Wang, G.; Xin, J.; Wang, J.; Zheng, N.; Sano, A. Subspace-based two-dimensional direction estimation and tracking of multiple targets. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1386–1402. [Google Scholar] [CrossRef]
- Fortmann, T.; Bar-Shalom, Y.; Scheffe, M. Sonar tracking of multiple targets using joint probabilistic data association. IEEE J. Ocean. Eng. 1983, 8, 173–184. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Li, X.R. Tracking and Data Association; Academic: New York, NY, USA, 1988. [Google Scholar]
- Musicki, D.; Evans, R. Joint integrated probabilistic data association: JIPDA. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 1093–1099. [Google Scholar] [CrossRef]
- Li, X.; Luo, Z.Q.; Wong, K.M.; Bosse, E. An interior point linear programming approach to two-scan data association. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 474–490. [Google Scholar]
- Lerro, D.; Bar-Shalom, Y. Interacting Multiple Model Tracking with Target Amplitude Feature. IEEE Trans. Aerosp. Electron. Syst. 1993, 29, 494–509. [Google Scholar] [CrossRef]
- Cai, S.; Wang, G.; Zhang, J.; Wong, K.K.; Zhu, H. Efficient direction of arrival estimation based on sparse covariance fitting criterion with modeling mismatch. Signal Process. 2017, 137, 264–273. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, W.; Juwono, F.H. Joint Smoothed l0-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar. Sensors 2017, 17, 1068. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, W.; Li, X.; Liu, J. Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar. Sensors 2015, 15, 28271–28286. [Google Scholar] [CrossRef] [PubMed]
- Stoica, P.; Babu, P.; Li, J. Spice: A sparse covariance-based estimation method for array processing. IEEE Trans. Signal Process. 2011, 59, 629–638. [Google Scholar] [CrossRef]
- Zheng, J. Sparse Spectrum Fitting in Array Processing. Ph.D. Thesis, University Minnesota, Minneapolis, MN, USA, 2013. [Google Scholar]
- Lin, B.; Liu, J.; Xie, M.; Zhu, J. Direction-of-Arrival Tracking via Low-Rank Plus Sparse Matrix Decomposition. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1302–1305. [Google Scholar] [CrossRef]
- Das, A. A Bayesian Sparse-Plus-Low-Rank Matrix Decomposition Method for Direction-of-Arrival Tracking. IEEE Sens. J. 2017, 17, 4894–4902. [Google Scholar] [CrossRef]
- Zhu, H.; Leus, G.; Giannakis, G.B. Sparsity-Cognizant Total Least-Squares for Perturbed Compressive Sampling. IEEE Trans. Signal Process. 2011, 59, 2002–2016. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L.; Zhang, C. Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference. IEEE Trans. Signal Process. 2013, 61, 38–43. [Google Scholar] [CrossRef]
- Jaffer, A.G. Maximum likelihood direction finding of stochastic sources: A separable solution. In Proceedings of the ICASSP-88 International Conference on Acoustics, Speech, and Signal Processing, New York, NY, USA, 11–14 April 1988; Volume 5, pp. 2893–2896. [Google Scholar]
- Schmidt, R. A Signal Subspace Approach to Multiple Emitter Location Spectral Estimation. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1981. [Google Scholar]
- Lobo, M.S.; Vandenberghe, L.; Boyd, S.; Lebret, H. Applications of second-order cone programming. Linear Algebra Appl. 1998, 284, 193–228. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, S.; Shi, X.; Zhu, H. Direction-Of-Arrival Estimation and Tracking Based on a Sequential Implementation of C-SPICE with an Off-Grid Model. Sensors 2017, 17, 2718. https://doi.org/10.3390/s17122718
Cai S, Shi X, Zhu H. Direction-Of-Arrival Estimation and Tracking Based on a Sequential Implementation of C-SPICE with an Off-Grid Model. Sensors. 2017; 17(12):2718. https://doi.org/10.3390/s17122718
Chicago/Turabian StyleCai, Shu, Xiaoye Shi, and Hongbo Zhu. 2017. "Direction-Of-Arrival Estimation and Tracking Based on a Sequential Implementation of C-SPICE with an Off-Grid Model" Sensors 17, no. 12: 2718. https://doi.org/10.3390/s17122718
APA StyleCai, S., Shi, X., & Zhu, H. (2017). Direction-Of-Arrival Estimation and Tracking Based on a Sequential Implementation of C-SPICE with an Off-Grid Model. Sensors, 17(12), 2718. https://doi.org/10.3390/s17122718