Microcantilever Displacement Measurement Using a Mechanically Modulated Optical Feedback Interferometer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanically-Modulated Optical Feedback Interferometry
2.2. Materials
2.2.1. Scanning and Signal Acquisition
2.2.2. Signal Processing
3. Results
3.1. Simulation
3.2. Experimental Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Binning, G.; Quate, C.F.; Gerber, C. Atomic Force Microscope. Phys. Rev. Lett. 1986, 56, 930–934. [Google Scholar] [CrossRef] [PubMed]
- Boudaoud, M.; Haddab, Y.; Gorrec, Y.L.; Lutz, P. Noise characterization in millimeter sized micromanipulation systems. J. Mech. 2011, 21, 1087–1097. [Google Scholar] [CrossRef] [Green Version]
- Pai, P.; Chen, L.; Tabib-Azar, M. Fiber Optic Magnetometer with Sub-Pico Tesla Sensitivity for Magneto-Encephalography. In Proceedings of the 2014 IEEE SENSORS, Valencia, Spain, 2–5 November 2014; pp. 722–725.
- Cherry, A.; Abadie, J.; Piat, E. Microforce sensor for microbiological applications based on a floating magnetic principle. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 1504–1509.
- Giessib, F.J. Advances in atomic force microscopy. Rev. Mod. Phys. 2003, 75, 949–983. [Google Scholar] [CrossRef]
- Lee, J.; Ju, S.; Kim, I.T.; Jung, S.H.; Min, S.J.; Kim, C.; Sim, S.J.; Kim, S.K. Evaluation of Chemical Interactions between Small Molecules in the Gas Phase Using Chemical Force Microscopy. Sensors 2015, 15, 30683–30692. [Google Scholar] [CrossRef] [PubMed]
- Kasas, S.; Thomson, N.H.; Smith, B.L.; Hansma, P.K.; Miklossy, J.; Hansma, H.G. Biological Applications of the AFM: From Single Molecules to Organs. Int. J. Imaging Syst. Technol. 1997, 8, 151–161. [Google Scholar] [CrossRef]
- Martinez, V.; Behr, P.; Drechsler, U.; Polesel-Maris, J.; Potthoff, E.; Böros, J.; Zambelli, T. SU-8 hollow cantilevers for AFM cell adhesion studies. J. Micromech. Microeng. 2016, 26, 1–10. [Google Scholar] [CrossRef]
- Zhu, X.; Siamantouras, E.; Liu, K.K.; Liu, X. Determination of work of adhesion of biological cell under AFM bead indentation. J. Mech. Behav. Biomed. 2016, 56, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.A.; Wiehn, J.S. Sensitivity of flexural and torsional vibration modes of atomic force miscroscope cantilevers to surface stiffness variations. Nanotechnology 2001, 12, 322–330. [Google Scholar] [CrossRef]
- Hsu, J.C.; Lee, H.L.; Chang, W.J. Flexural vibration frequency of atomic force microscope cantilevers using the Timoshenko beam model. Nanotechnoly 2007, 18, 285503. [Google Scholar] [CrossRef]
- Sader, J.E.; Chon, J.W.M.; Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 1999, 70, 3967–3969. [Google Scholar] [CrossRef] [Green Version]
- Burnham, N.A.; Chen, X.; Hodges, C.S.; Matei, G.A.; Thoreson, E.J.; Roberts, C.J.; Davies, M.C.; Tendler, S.J.B. Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 2003, 14, 1–6. [Google Scholar] [CrossRef]
- Green, C.P.; Lioe, H.; Cleveland, J.P.; Proksch, R.; Mulvaney, P.; Sader, J.E. Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 2004, 75, 1988–1996. [Google Scholar] [CrossRef]
- Raiteri, R.; Grattarola, M.; Butt, H.J.; Skládal, P. Micromechanical cantilever-based biosensors. Sens. Actuators B Chem. 2001, 79, 115–126. [Google Scholar] [CrossRef]
- Putman, C.A.J.; Grooth, B.G.D.; Hulst, N.F.V.; Greve, J. A detailed analysis of the optical beam deflection technique for use in atomic force microscopy. J. Appl. Phys. 1992, 72, 6–12. [Google Scholar] [CrossRef]
- Thundat, T.; Warmack, R.J.; Chen, G.Y.; Allison, D.P. Thermal and ambient-induced deflections of scanning force microscope cantilevers. Appl. Phys. Lett. 1994, 64, 2894. [Google Scholar] [CrossRef]
- Ramos, D.; Mertens, J.; Calleja, M.; Tamayo, J. Study of the Origin of Bending Induced by Bimetallic Effect on Microcantilever. J. Sens. 2007, 7, 1757–1765. [Google Scholar] [CrossRef]
- Rugar, D.; Mamin, H.J.; Guethner, P. Improved fiber-optic interferometer for atomic force microscopy. Appl. Phys. Lett. 1989, 55, 2588–2590. [Google Scholar] [CrossRef]
- Wang, W.M.; Grattan, K.T.V.; Palmer, A.W.; Boyle, W.J.O. Self-mixing interference inside a single-mode diode laser for optical sensing applications. J. Lightwave Technol. 1994, 12, 1577–1587. [Google Scholar] [CrossRef]
- Bosch, T.; Servagent, N.; Donati, S. Optical feedback interferometry for sensing application. Opt. Eng. 2001, 40, 20–27. [Google Scholar] [CrossRef]
- Taimre, T.; Nicolić, M.; Bertling, K.; Lim, Y.L.; Bosch, T.; Rakić, A.D. Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing. Adv. Opt. Photonics 2015, 7, 570–631. [Google Scholar] [CrossRef]
- Ovryn, B.; Andrews, J.H. Measurement of changes in optical path length and reflectivity with phase-shifting laser feedback interferometry. Appl. Opt. 1999, 38, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.; Greve, A.; Hvam, J.M.; Boisen, A.; Yvind, K. Self-mixing interferometry in vertical-cavity surface-emitting lasers for nanomechanical cantilever sensing. Appl. Phys. Lett. 2009, 94, 091103-1–091103-3. [Google Scholar] [CrossRef] [Green Version]
- Azcona, F.J.; Atashkhooei, R.; Royo, S.; Mendez-Astudillo, J. A nanometric displacement measurement system using differential optical feedback interferometry. IEEE Photonics Technol. Lett. 2013, 25, 2074–2077. [Google Scholar] [CrossRef]
- Zabit, U.; Bony, F.; Bosch, T.; Racik, A.D. A Self-Mixing Displacement Sensor With Fringe-Loss Compensation for Harmonic Vibrations. IEEE Photonics Technol. Lett. 2010, 22, 410–412. [Google Scholar] [CrossRef]
- Norgia, M.; Giuliani, G.; Donati, S. Absolute Distance Measurement with Improved Accuracy Using Laser Diode Self-Mixing Interferometry in a Closed Loop. IEEE Trans. Instrum. Meas. 2007, 56, 1894–1900. [Google Scholar] [CrossRef]
- Scalise, L.; Yu, Y.; Giuliani, G.; Plantier, G.; Bosch, T. Self-Mixing Laser Diode Velocimetry: Application to Vibration and Velocity Measurement. IEEE Trans. Instrum. Meas. 2004, 53, 223–232. [Google Scholar] [CrossRef]
- Arasanz, A.; Azcona, F.J.; Royo, S.; Jha, A.; Pladellorens, J. A new method for the acquisition of arterial pulse wave using self-mixing interferometry. Opt. Laser Technol. 2014, 63, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Donati, S. Responsivity and Noise of Self-Mixing Photodetection Schemes. IEEE J. Quantum Electron. 2011, 47, 1428–1433. [Google Scholar] [CrossRef]
- Lang, R.; Kobayashi, K. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum. Electron. 1980, 16, 347–355. [Google Scholar] [CrossRef]
- Acket, A.; Leenstra, D.; Boef, A.J.D.; Verbeek, B.H. The influence of feedback intensity on longitudinal mode properties and optical noise in index guided semiconductor lasers. IEEE J. Quantum. Electron. 1984, 20, 1163–1169. [Google Scholar] [CrossRef]
- Kliese, R.; Taimre, T.; Bakar, A.A.A.; Lim, Y.L.; Bertling, K.; Nikolić, M.; Perchoux, J.; Bosch, T.; Rakić, A.D. Solving self-mixing equations for arbitrary feedback levels: A concise algorithm. Appl. Opt. 2014, 53, 3723–3736. [Google Scholar] [CrossRef] [PubMed]
- Wang, M. Fourier transform method for self-mixing interference signal analysis. Opt. Laser Technol. 2001, 33, 409–416. [Google Scholar] [CrossRef]
- Bernal, O.D.; Zabit, U.; Bosch, T. Study of a laser feedback phase under self-mixing leading to improved phase unwrapping for vibration sensing. IEEE Sens. J. 2013, 13, 4962–4971. [Google Scholar] [CrossRef]
- Dean, P.; Valavnis, A.; Keeley, J.; Bertling, K.; Lim, Y.L.; Alhathool, R.; Chowdry, S.; Taimre, T.; Li, L.H.; Indjin, D.; et al. Coherent three-dimensional terahertz imaging through self-mixing in a quantum cascade laser. Appl. Phys. Lett. 2013, 103, 181112-1–181112-4. [Google Scholar] [CrossRef]
- Giuliani, G.; Bozzi-Pietra, S.; Donati, S. Self-mixing laser diode vibrometer. Meas. Sci. Technol. 2003, 14, 24–32. [Google Scholar] [CrossRef]
- Atashkhooei, R.; Royo, S.; Azcona, F.J. Adaptive autofocus technique for speckle control in optical feedback interferometry. Sens. Actuators A Phys. 2014, 216, 243–248. [Google Scholar] [CrossRef]
- Jha, A.; Azcona, F.J.; Royo, S. Frequency modulated optical feedback interferometry for nanometric scale vibrometry. IEEE Photonics Technol. Lett. 2016, 28, 1217–1219. [Google Scholar] [CrossRef]
Parameter | Value | Units |
---|---|---|
Wavelength (λ) | nm | |
Reference velocity () | m/s | |
Feedback attenuation (ϵ) | ||
Feedback factor (C) | ||
Distance to cantilever (D) | mm | |
Cantilever displacement () | nm | |
Cantilever frequency (f) | Hz | |
Cantilever reflectance () | ||
Distance sample to cantilever 1 () | nm | |
Distance sample to cantilever 2 () | nm | |
Cantilever stiffness ( | N/m | |
Cantilever quality factor ( | ||
Cantilever resonance frequency ( | kHz |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azcona, F.J.; Jha, A.; Yáñez, C.; Atashkhooei, R.; Royo, S. Microcantilever Displacement Measurement Using a Mechanically Modulated Optical Feedback Interferometer. Sensors 2016, 16, 997. https://doi.org/10.3390/s16070997
Azcona FJ, Jha A, Yáñez C, Atashkhooei R, Royo S. Microcantilever Displacement Measurement Using a Mechanically Modulated Optical Feedback Interferometer. Sensors. 2016; 16(7):997. https://doi.org/10.3390/s16070997
Chicago/Turabian StyleAzcona, Francisco J., Ajit Jha, Carlos Yáñez, Reza Atashkhooei, and Santiago Royo. 2016. "Microcantilever Displacement Measurement Using a Mechanically Modulated Optical Feedback Interferometer" Sensors 16, no. 7: 997. https://doi.org/10.3390/s16070997
APA StyleAzcona, F. J., Jha, A., Yáñez, C., Atashkhooei, R., & Royo, S. (2016). Microcantilever Displacement Measurement Using a Mechanically Modulated Optical Feedback Interferometer. Sensors, 16(7), 997. https://doi.org/10.3390/s16070997