Accurate Detection of Rifampicin-Resistant Mycobacterium Tuberculosis Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Clinical Samples
2.3. Asymmetric PCR Amplification
2.4. Preparation of 9G DNAChip and Hybridization
2.5. Sequencing Analysis
3. Results
3.1. DST
3.2. 9G DNAChip
3.3. Sequencing Analysis
3.4. Statistical Analysis
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
TB | Mycobacterium tuberculosis |
MDR-TB | drug-resistant Mycobacterium tuberculosis |
MDR-TB-RIF | rifampicin-resistant Mycobacterium tuberculosis |
References
- World Health Organization (WHO). Global Tuberculosis Report 2014; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Gandhi, N.R.; Nunn, P.; Dheda, K.; Schaaf, H.S.; Zignol, M.; Soolingen, D.; Jensen, P.; Bayona, J. Multidrug-resistant and extensively drug-resistant tuberculosis: A threat to global control of tuberculosis. Lancet 2010, 375, 1830–1843. [Google Scholar] [CrossRef]
- Wright, A.; Zignol, M.; Van Deun, A.; Falzon, D.; Gerdes, S.R.; Feldman, K.; Hoffner, S.; Drobniewski, F.; Barrera, L.; van Soolingen, D.; et al. Epidemiology of antituberculosis drug resistance 2002–2007: An updated analysis of the global project on antituberculosis drug resistance surveillance. Lancet 2009, 373, 1861–1873. [Google Scholar] [CrossRef]
- Shenoi, S.; Friedland, G. Extensively Drug-Resistant Tuberculosis: A New Face to an Old Pathogen. Annu. Rev. Med. 2009, 60, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, S.; Ahmed, A.; Asif, S.; Behera, D.; Javaid, M.; Jani, J.; Jyoti, A.; Mahatre, R.; Mahto, D.; Richter, E.; et al. Direct Drug Susceptibility Testing of Mycobacterium tuberculosis for Rapid Detection of Multidrug Resistance Using the Bactec MGIT 960 System: A Multicenter Study. J. Clin. Microbiol. 2012, 50, 435–440. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The End TB Strategy. Global Strategy and Targets for Tuberculosis Prevention, Care and Control after 2015. Available online: http://www.who.int/tb/post2015_TBstrategy.pdf? ua¼12014 (accessed on 25 September 2015).
- World Health Organization. Treatment of Tuberculosis: Guidelines for National Programmes; WHO Publication No. WHO/CDS/TB/2003.313; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Ao, W.; Aldous, S.; Woodruff, E.; Hicke, B.; Rea, L.; Kreiswirth, B.; Jenison, R. Rapid detection of rpoB gene mutations conferring rifampin resistance in Mycobacterium tuberculosis. J. Clin. Microbiol. 2012, 50, 2433–2440. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Gan, X.; Li, N.; Wang, J.; Li, K.; Zhang, H. rpoB gene mutation profile in rifampicin-resistant Mycobacterium tuberculosis clinical isolates from Guizhou, one of the highest incidence rate regions in China. J. Antimicrob. Chemother. 2010, 65, 1299–1301. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.S.G.; Lim, I.H.K.; Tang, L.L.H.; Wong, S.Y. High Frequency of Mutations in the rpoB Gene in Rifampin-Resistant Clinical Isolates of Mycobacterium tuberculosis from Singapore. J. Clin. Microbiol. 2005, 43, 2026–2027. [Google Scholar] [CrossRef] [PubMed]
- Yagui, M.; Perales, M.T.; Asencios, L.; Vergara, L.; Suarez, C.; Yale, G.; Salazar, C.; Saavedra, M.; Shin, S.; Ferrousier, O.; et al. Timely diagnosis of MDR-TB under program conditions: Is rapid drug susceptibility testing sufficient? Int. J. Tuberc. Lung Dis. 2006, 10, 838–843. [Google Scholar] [PubMed]
- Caminero, J.A.; Sotgiu, G.; Zumla, A.; Migliori, G.B. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect. Dis. 2010, 10, 621–629. [Google Scholar] [CrossRef]
- Boehme, C.C.; Saacks, S.; O’Brienet, R.J. The changing landscape of diagnostic services for tuberculosis. Semin. Respir. Crit. Care Med. 2013, 34, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Horne, D.J.; Pinto, L.M.; Arentz, M.; Lin, S.-Y.G.; Desmond, E.; Flores, L.L.; Steingart, K.R.; Minion, J. Diagnostic Accuracy and Reproducibility of WHO-Endorsed Phenotypic Drug Susceptibility Testing Methods for First-Line and Second-Line Antituberculosis Drugs. J. Clin. Microbiol. 2013, 51, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.S.; Richardson, J.; Moodley, P.; Moodley, S.; Babaria, P.; Ramtahal, M.; Heysell, S.K.; Li, X.; Moll, A.P.; Friedland, G.; et al. Increasing Drug Resistance in Extensively Drug-Resistant Tuberculosis, South Africa. Emerg. Infect. Dis. 2011, 17, 510–513. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Onoguchi, M.; Sato, Y.; Hosokawa, K.; Maeda, M. Non-cross-linking gold nanoparticle aggregation for sensitive detection of single-nucleotide polymorphisms: Optimization of the particle diameter. Anal. Biochem. 2006, 350, 162–164. [Google Scholar] [CrossRef] [PubMed]
- Veigas, B.; Machado, D.; Perdigão, J.; Portugal, I.; Couto, I.; Viveiros, M.; Baptista, P.V. Au-nanoprobes for detection of SNPs associated with antibiotic resistance in Mycobacterium tuberculosis. Nanotechnology 2010, 21. [Google Scholar] [CrossRef] [PubMed]
- Lawn, S.D.; Mwaba, P.; Bates, M.; Piatek, A.; Alexander, H.; Marais, B.J.; Cuevas, L.E.; McHugh, T.D.; Zijenah, L.; Kapata, N.; et al. Advances in tuberculosis diagnostics: The Xpert MTB/RIF assay and future prospects for a point-of-care test. Lancet Infect. Dis. 2013, 13, 349–361. [Google Scholar] [CrossRef]
- Zeka, A.N.; Tasbakan, S.; Cavusoglu, C. Evaluation of the GeneXpert MTB/RIF assay for rapid diagnosis of tuberculosis and detection of rifampin resistance in pulmonary and extrapulmonary specimens. J. Clin. Microbiol. 2011, 49, 4138–4141. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.D.; Jung, W.; Nam, J.; Choi, H.; Park, C. Detection of HPV genotypes in cervical lesions by the HPV DNA Chip and sequencing. Gynecol. Oncol. 2005, 98, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, Y.; Quirke, P.; Zhou, D. Ultrasensitive single-nucleotide polymorphism detection using target-recycled ligation, strand displacement and enzymatic amplification. Nanoscale 2013, 5, 5027–5035. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Nimse, S.B.; Kim, J.; Kim, J.; Nguyen, V.; Ta, V.; Kim, T. 9G DNAChip: Microarray based on the multiple interactions of 9 consecutive guanines. Chem. Commun. 2011, 47, 7101–7103. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Nimse, S.B.; Kim, J.; Sayyed, D.R.; Kim, T. A new platform for a convenient genotyping system. Chem. Commun. 2013, 49, 2661–2663. [Google Scholar] [CrossRef] [PubMed]
- Nimse, S.B.; Song, K.; Kim, J.; Kim, H.; Nguyen, V.; Eoum, W.; Jung, C.; Ta, V.; Kim, T. Aminocalix[4]arene: The effect of pH on the dynamics of gate and portals on the hydrophobic cavity. Tetrahedron Lett. 2010, 51, 6156–6160. [Google Scholar] [CrossRef]
- Bai, G.; Kim, S.; Chang, C.L. Members of National and Regional Tuberculosis Reference Laboratories. Proficiency Analysis of Drug Susceptibility Testing by National-Level Tuberculosis Reference Laboratories from 1995 to 2003. J. Clin. Microbiol. 2007, 45, 3626–3630. [Google Scholar] [CrossRef] [PubMed]
- Warren, R.; de Kock, M.; Engelke, E.; Myburgh, R.; van Pittius, N.G.; Victor, T.; van Helden, P. Safe Mycobacterium tuberculosis DNA extraction method that does not compromise integrity. J. Clin. Microbiol. 2006, 44, 254–256. [Google Scholar] [CrossRef] [PubMed]
- Sayyed, D.R.; Nimse, S.B.; Song, K.; Sung, N.; Kim, T. MTB-DR-RIF 9G membrane: A platform for multiplex SNP detection of multidrug-resistant TB. Anal. Bioanal. Chem. 2015, 407, 5739–5745. [Google Scholar] [CrossRef] [PubMed]
- Nimse, S.B.; Song, K.; Kim, J.; Ta, V.; Nguyen, V.; Kim, T. A generalized probe selection method for DNA chips. Chem. Commun. 2011, 47, 12444–12446. [Google Scholar] [CrossRef] [PubMed]
- Sayyed, D.R.; Nimse, S.B.; Song, K.; Sung, N.; Kim, T. Multiplex SNP detection in multiple codons for accurate drug therapy. Chem. Commun. 2014, 50, 14585–14588. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Song, K.; Nimse, S.B.; Kim, J.; Nguyen, V.; Ta, V.; Sayyed, D.R.; Kim, T. HPV 9G DNA Chip: 100% clinical sensitivity and specificity. J. Clin. Microbiol. 2012, 20, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, P.; Papaventsis, D.; Karabela, S.; Nikolaou, S.; Panagi, M.; Raftopoulou, E.; Konstantinidou, E.; Marinou, I.; Kanavaki, S. Cepheid GeneXpert MTB/RIF assay for Mycobacterium tuberculosis detection and rifampin resistance identification in patients with substantial clinical indications of tuberculosis and smear-negative microscopy results. J. Clin. Microbiol. 2011, 49, 3068–3070. [Google Scholar] [CrossRef] [PubMed]
- Vadwai, V.; Shetty, A.; Rodrigues, C. Multiplex allele specific PCR for rapid detection of extensively drug resistant tuberculosis. Tuberculosis 2012, 92, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Metzker, M.L. Sequencing technologies—The next generation. Nat. Rev. Genet. 2010, 11, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Drobniewski, F.; Nikolayevskyy, V.; Maxeiner, H.; Balabanova, Y.; Casali, N.; Kontsevaya, I.; Ignatyeva, O. Rapid diagnostics of tuberculosis and drug resistance in the industrialized world: Clinical and public health benefits and barriers to implementation. BMC Med. 2013, 11. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, J.; Marttila, H.J.; Marjamäki, M.; Viljanen, M.K.; Soini, H. Comparison of Two Commercially Available DNA Line Probe Assays for Detection of Multidrug-Resistant Mycobacterium tuberculosis. J. Clin. Microbiol. 2006, 44, 350–352. [Google Scholar] [CrossRef] [PubMed]
- Marlowe, E.M.; Novak-Weekley, S.M.; Cumpio, J.; Sharp, S.E.; Momeny, M.A.; Babst, A.; Carlson, J.S.; Kawamura, M.; Pandori, M. Evaluation of the Cepheid Xpert MTB/RIF assay for direct detection of Mycobacterium tuberculosis complex in respiratory specimens. J. Clin. Microbiol. 2011, 49, 1621–1623. [Google Scholar] [CrossRef] [PubMed]
- Boehme, C.C.; Nabeta, P.; Hillemann, D.; Nicol, M.P.; Shenai, S.; Krapp, F.; Allen, J.; Tahirli, R.; Blakemore, R.; Rustomjee, R.; et al. Rapid molecular detection of tuberculosis and rifampin resistance. N. Engl. J. Med. 2010, 363, 1006–1015. [Google Scholar] [CrossRef] [PubMed]
- Song, K.S.; Nimse, S.B.; Cho, N.H.; Sung, N.; Kim, H.; Yang, J.; Kim, T. MTB-DR-RIF 9G test: Detection and discrimination of tuberculosis and multi-drug resistant tuberculosis strains. Tuberculosis 2015, 95, 780–785. [Google Scholar] [CrossRef] [PubMed]
DST | Sequencing Analysis/9G DNAChip | ||
---|---|---|---|
Susceptible | Resistant | ||
Susceptible | 10 | 15 | 0 |
Resistant | 103 | 0 | 98 |
Mutation Codons | Number of Samples (%) | |
---|---|---|
Sequencing Analysis | 9G DNAChip | |
c511 | 4 (3.9%) | 4 (3.9%) |
c516 | 29 (28.2%) | 29 (28.2%) |
c522 | 2 (1.9%) | 2 (1.9%) |
c526 | 24 (23.3%) | 24 (23.3%) |
c531 | 32 (31.1%) | 32 (31.1%) |
c516/c526 | 5 (4.9%) | 5 (4.9%) |
c531/c526 | 2 (1.9%) | 2 (1.9%) |
Negative * | 5 (4.9%) | 5 (4.9%) |
Codons | Samples | Original | Mutation (Number of Samples) |
---|---|---|---|
c511 | 4 | CTG | CCG (3) |
c516 | 29 | GAC | GTC (10), TAC (15), GGC (2) |
c522 | 2 | TCG | TTG (1), CAG (1) |
c526 | 24 | CAC | TAC (7), AAC (1), GAC (5), TGC (1), CGC (3), CTC (4) |
c531 | 32 | TCG | TGG (1), TTG (29) |
c516/c526 | 5 | GAC/CAC | TAC/TAC (1), TAC/CGC (1), GTC/CAA (1), GTC/AAC (1), AAC/ AAC (1) |
c526/c531 | 2 | CAC/TCG | GGC/GCG (1), CTC/TTG (1) |
Test | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) |
---|---|---|---|---|
Sequencing Analysis | 95.4 (89.5–98.5) | 100 (69.2–100) | 100 (85.0–95.9) | 66.7 (38.4–88.18) |
9G DNACHIP | 95.4 (89.5–98.5) | 100 (69.2–100) | 100 (85.0–95.9) | 66.7 (38.4–88.18) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.-S.; Nimse, S.B.; Kim, H.J.; Yang, J.; Kim, T. Accurate Detection of Rifampicin-Resistant Mycobacterium Tuberculosis Strains. Sensors 2016, 16, 376. https://doi.org/10.3390/s16030376
Song K-S, Nimse SB, Kim HJ, Yang J, Kim T. Accurate Detection of Rifampicin-Resistant Mycobacterium Tuberculosis Strains. Sensors. 2016; 16(3):376. https://doi.org/10.3390/s16030376
Chicago/Turabian StyleSong, Keum-Soo, Satish Balasaheb Nimse, Hee Jin Kim, Jeongseong Yang, and Taisun Kim. 2016. "Accurate Detection of Rifampicin-Resistant Mycobacterium Tuberculosis Strains" Sensors 16, no. 3: 376. https://doi.org/10.3390/s16030376
APA StyleSong, K.-S., Nimse, S. B., Kim, H. J., Yang, J., & Kim, T. (2016). Accurate Detection of Rifampicin-Resistant Mycobacterium Tuberculosis Strains. Sensors, 16(3), 376. https://doi.org/10.3390/s16030376