Spray Droplet Characterization from a Single Nozzle by High Speed Image Analysis Using an In-Focus Droplet Criterion
Abstract
:1. Introduction
2. Experimental Section
2.1. Image Acquisition System and Measuring Set-Up
Nozzle Orifice Size (μm) | Settings in Continuous Mode A (V)/f (kHz) | Actual Droplet Diameter (μm) ± Standard Deviation |
---|---|---|
40 | 5.0/8.0 | 119.3 ± 2.6 |
50 | 5.0/8.0 | 164.6 ± 1.9 |
65 | 2.0/8.0 | 192.6 ± 1.3 |
65 | 5.0/8.0 | 222.9 ± 1.6 |
123 | 5.0/8.0 | 384.3 ± 0.8 |
261 | 5.0/8.0 | 489.7 ± 1.9 |
261 | 7.0/8.0 | 497.1 ± 2.0 |
2.2. Image Acquisition for Setting Up the In-Focus Droplet Criterion
2.3. Image Analysis for Developing the In-Focus Droplet Criterion
2.3.1. Image Pre-Processing
2.3.2. Image Segmentation
2.3.3. Droplet Sizing, Calculation of (Critical) In-Focus Parameter and In-Focus Droplet Criterion
- (a)
- Droplet sizing and calculation of the in-focus parameters
- (b)
- Calculation of critical in-focus parameters and the in-focus droplet criterion
Actual Droplet Diameter (μm) | Infc (-) | FDZ (mm) |
---|---|---|
119.3 | 3.95 | 2.1 |
164.6 | 4.62 | 2.6 |
192.6 | 5.50 | 3.2 |
222.9 | 6.05 | 3.7 |
384.3 | 8.55 | 4.1 |
489.7 | 10.30 | 5.0 |
497.1 | 10.30 | 5.0 |
3. Results and Discussion
3.1. Spray Droplet Characterization Using the In-Focus Droplet Criterion
Nozzle Type | Nozzle | Pressure (kPa) | Spray Angle (°) | Nominal Flow Rate (L·min−1) |
---|---|---|---|---|
Hollow cone | Albuz a ATR orange | 600 | 80 | 1.08 |
Hollow cone | Albuz a ATR red | 800 | 80 | 1.73 |
Standard flat fan | TeeJet b XR 110 01 | 400 | 110 | 0.45 |
Standard flat fan | TeeJet b XR 110 04 | 400 | 110 | 1.82 |
Air inclusion flat fan | TeeJet b AI 110 04 | 400 | 110 | 1.82 |
3.2. Spray Quality Parameters
3.3. Spray Droplet Size Distribution
3.4. Spray Droplet Velocity Distribution
3.5. Comparison between Imaging and PDPA Measuring Technique
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
Nomenclature Abbreviation | Description |
A | Amplitude |
d | Droplet diameter |
DOF | Depth-of-field |
f | Frequency |
FOV | Field of view |
FDZ | Focused droplet zone |
gradedge | Gray level gradient at the edge |
HS | High speed |
Iback | Gray level of the image background |
Idroplet | Droplet gray level |
Infc | Critical in-focus parameter |
Inf | In-focus parameter |
NMD | Number median droplet |
NMV | Number median velocity |
PDPA | Phase Doppler Particle Analyzer |
PSF | Point spread function |
References
- Azimi, A.H.; Carpenter, T.G.; Reichard, D.L. Nozzle spray distribution for pesticide application. Trans. ASAE 1985, 28, 1410–1414. [Google Scholar] [CrossRef]
- Zhu, H.; Rowland, D.L.; Dorner, R.C.; Sorensen, R.B. Influence of plant structure, orifice size and nozzle inclination on spray penetration into peanut canopy. Trans. ASAE 2002, 45, 1285–1301. [Google Scholar]
- Foqué, D.; Nuyttens, D. Effects of nozzle type and spray angle on spray deposition in ivy pot plants. Pest Manag. Sci. 2011, 67, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, M.J. Introduction to Particle Technology, 2nd ed.; John Wilery and Sons Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Nuyttens, D. Drift from Field Crop Sprayers: The Influence of Spray Application Technology Determined Using Indirect and Direct Drift Assessment Means. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2007. [Google Scholar]
- Nuyttens, D.; De Schampheleire, M.; Verboven, P.; Brusselman, E.; Dekeyser, D. Droplet Size and Velocity Characteristics of Agricultural Sprays. Trans. ASAE 2009, 52, 1471–1480. [Google Scholar] [CrossRef]
- Stainier, C.; Destain, M.F.; Schiffers, B.; Lebeau, F. Droplet size spectra and drift effect of two phenmedipham formulations and four adjuvants mixtures. Crop Prot. 2006, 25, 1238–1243. [Google Scholar] [CrossRef]
- Teske, M.E.; Thistle, H.W.; Hewitt, A.J.; Kirk, I.W. Conversion of droplet size distributions from PMS Optical Array Probe to Malvern Laser Diffraction. At. Sprays 2002, 12, 267–281. [Google Scholar] [CrossRef]
- Hijazi, B.; Decourselle, T.; Vulgarakis Minov, S.; Nuyttens, D.; Cointault, F.; Pieters, J.G.; Vangeyte, J. The Use of High-Speed Imaging System for Applications in Precision Agriculture. In New Technologies: Trends, Innovations and Research; Constantin, V., Ed.; Intech: England, UK, 2012. [Google Scholar]
- Lecuona, A.; Sosa, P.A.; Rodriguez, P.A.; Zequeira, R.I. Volumetric characterization of dispersed two-phase flows by digital image analysis. Meas. Sci. Technol. 2000, 11, 1152–1161. [Google Scholar] [CrossRef]
- Graßmann, A.; Peters, F. Size measurement of very small spherical particles by Mie Scattering Imaging (MSI). Part. Part. Syst. Charact. 2004, 21, 379–389. [Google Scholar] [CrossRef]
- Bachalo, D.W. Dual beam light-scatter interferometry. Appl. Opt. 1980, 19, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Kannaiyan, K.; Sadr, R. Effect of fuel properties on spray characteristics of alternative jet fuels using global sizing velocimetry. At. Sprays 2014, 24, 575–597. [Google Scholar] [CrossRef]
- Ju, D.; Shrimpton, J.S.; Hearn, A. A Multi-Thresholding Algorithm for Sizing out of Focus Particles. Part. Part. Syst. Charact. 2012, 29, 78–92. [Google Scholar] [CrossRef]
- Berg, T.; Deppe, J.; Michaelis, D.; Voges, H.; Wissel, S. Comparison of Particle Size and Velocity Investigations in Sprays Carried out by Means of Different Measurement Techniques; ICLASS: Kyoto, Japan, 2006. [Google Scholar]
- Chigier, N. Optical Imaging of Sprays. Prog. Energy Combust. Sci. 1991, 17, 211–262. [Google Scholar] [CrossRef]
- Kashdan, J.T.; Shrimpton, J.S.; Whybrew, A. A digital image analysis technique for quantitative characterisation of high-speed sprays. Opt. Lasers Eng. 2007, 45, 106–115. [Google Scholar] [CrossRef]
- Kim, K.S.; Kim, S.S. Drop sizing and depth-of-field correction in TV imaging. At. Sprays 1994, 4, 65–78. [Google Scholar] [CrossRef]
- Malot, H.; Blaisot, J.B. Droplet size distribution and sphericity measurements of low-density sprays through image analysis. Part. Part. Syst. Charact. 2000, 17, 146–158. [Google Scholar] [CrossRef]
- Vulgarakis Minov, S.; Cointault, F.; Vangeyte, J.; Pieters, J.G.; Nuyttens, D. Development of High-Speed Image Acquisition Systems for Spray Characterization Based on Single-Droplet Experiments. Trans. ASABE 2015, 58, 27–37. [Google Scholar]
- Vulgarakis Minov, S. Integration of Imaging Techniques for the Quantitative Characterization of Pesticide Sprays. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2015. [Google Scholar]
- Vulgarakis Minov, S.; Cointault, F.; Vangeyte, J.; Pieters, J.G.; Nuyttens, D. Droplet generation and characterization using piezoelectric droplet generator and high speed imaging techniques. Crop Prot. 2015, 69, 18–27. [Google Scholar] [CrossRef]
- Castanet, G.; Dunand, P.; Caballina, O.; Lemoine, F. High-speed shadow imagery to characterize the size and velocity of the secondary droplets produced by drop impacts onto a heated surface. Exp. Fluids 2013, 54, 1489–1506. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using Matlab; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Dong, X.; Zhu, H.; Yang, X. Three-Dimensional Imaging system for Analyses of Dynamic Droplet Impaction and Deposit Formation on Leaves. Trans. ASABE 2013, 56, 1641–1651. [Google Scholar]
- Canny, J.A. Computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1983, 8, 679–698. [Google Scholar]
- Yule, A.J. Large-Scale Structure in the mixing layer of a round jet. J. Fluid Mech. 1978, 89, 413–432. [Google Scholar] [CrossRef]
- Lee, S.; Kim, Y. Sizing of spray particles using image processing technique. KSME Int. J. 2004, 18, 879–894. [Google Scholar]
- Lee, C.; Wu, C.H.; Hoopes, J.A. Simultaneous particle size and concentration measurements using a back-lighted particle imaging system. Flow Meas. Instrum. 2009, 20, 189–199. [Google Scholar] [CrossRef]
- Huang, K.Y.; Ye, Y.T. A Novel Machine Vision System on the Inspection of Micro-Spray Nozzle. Sensors 2015, 15, 15326–15338. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.J.; Lee, S.J. A new two-frame particle tracking algorithm using match probability. Exp. Fluids 1996, 22, 23–32. [Google Scholar] [CrossRef]
- Hislop, E.C. Can we achieve optimum pesticide deposits? Asp. Appl. Biol. 1987, 14, 153–172. [Google Scholar]
- Cawood, P.N.; Robinson, T.H.; Whittaker, S. An Investigation of Alternative Application Techniques for the Control of Black-Grass. Brighton Crop Prot. Conf. Weeds 1995, 2, 521–528. [Google Scholar]
- Nuyttens, D.; De Schampheleire, M.; Baetens, K.; Brusselman, E.; Dekeyser, D.; Verboven, P. Drift from field crop sprayers using an integrated approach: Results from a five-year study. Trans. ASABE 2011, 54, 403–408. [Google Scholar] [CrossRef]
- Butler Ellis, M.C.; Tuck, C.R.; Miller, P.C.H. The effect of some adjuvants on sprays produced by agricultural flat fan nozzles. Crop Prot. 1997, 16, 41–50. [Google Scholar] [CrossRef]
- Nuyttens, D.; Baetens, K.; De Schampheleire, M.; Sonck, B. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst. Eng. 2007, 97, 333–345. [Google Scholar] [CrossRef]
- Dekeyser, D.; Duga, A.T.; Verboven, P.; Hendrickx, N.; Nuyttens, D. Assessment of orchard sprayers using laboratory experiments and CFD modelling. Biosyst. Eng. 2013, 114, 157–169. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minov, S.V.; Cointault, F.; Vangeyte, J.; Pieters, J.G.; Nuyttens, D. Spray Droplet Characterization from a Single Nozzle by High Speed Image Analysis Using an In-Focus Droplet Criterion. Sensors 2016, 16, 218. https://doi.org/10.3390/s16020218
Minov SV, Cointault F, Vangeyte J, Pieters JG, Nuyttens D. Spray Droplet Characterization from a Single Nozzle by High Speed Image Analysis Using an In-Focus Droplet Criterion. Sensors. 2016; 16(2):218. https://doi.org/10.3390/s16020218
Chicago/Turabian StyleMinov, Sofija Vulgarakis, Frédéric Cointault, Jürgen Vangeyte, Jan G Pieters, and David Nuyttens. 2016. "Spray Droplet Characterization from a Single Nozzle by High Speed Image Analysis Using an In-Focus Droplet Criterion" Sensors 16, no. 2: 218. https://doi.org/10.3390/s16020218
APA StyleMinov, S. V., Cointault, F., Vangeyte, J., Pieters, J. G., & Nuyttens, D. (2016). Spray Droplet Characterization from a Single Nozzle by High Speed Image Analysis Using an In-Focus Droplet Criterion. Sensors, 16(2), 218. https://doi.org/10.3390/s16020218