A Photoactivated Gas Detector for Toluene Sensing at Room Temperature Based on New Coral-Like ZnO Nanostructure Arrays
Abstract
:1. Introduction
2. Materials and Methods
Characterization
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.C.; Huang, Y.S.; Huang, J.W.; Chang, C.K.; Wu, S.P. A macroporous TiO2 oxygen sensor fabricated using anodic aluminium oxide as an etching mask. Sensors 2010, 10, 670–683. [Google Scholar] [CrossRef] [PubMed]
- Khun, K.K.; Mahajan, A.; Bedi, R.K. SnO2 thick films for room temperature gas sensing applications. J. Appl. Phys. 2009, 106, 1–5. [Google Scholar]
- Tian, W.C.; Ho, Y.H.; Chen, C.H.; Kuo, C.Y. Sensing performance of precisely ordered TiO2 nanowire gas sensors fabricated by electronbeam lithography. Sensors 2013, 13, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Konvalina, G.; Haick, H. Sensors for breath testing: From nanomaterials to com-prehensive disease detection. Acc. Chem. Res. 2013, 47, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.L.; Xie, C.S.; Wang, W.Y.; Huang, K.J.; Hua, J.H. Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2. Mater. Lett. 2004, 5, 624–629. [Google Scholar] [CrossRef]
- Liang, X.; Lu, G.; Zhong, T.; Liu, F.; Quan, B. New type of ammonia/toluene sensor combining NASICON with a couple of oxide electrodes. Sens. Actuators B Chem. 2010, 1, 355–359. [Google Scholar] [CrossRef]
- Bai, Z.; Xie, C.; Zhang, S.; Xua, W.; Xua, J. Microwave sintering of ZnO nanopowders and characterization for gas sensing. Mater. Sci. Eng. B 2011, 2, 181–186. [Google Scholar] [CrossRef]
- Song, X.; Zhang, D.; Fan, M. A novel toluene sensor based on ZnO–SnO2 nanofiber web. Appl. Surf. Sci. 2009, 16, 7343–7347. [Google Scholar] [CrossRef]
- Huang, J.; Ren, H.; Sun, P.; Gua, C.; Sun, Y.; Liu, J. Facile synthesis of porous ZnO nanowires consisting of ordered nanocrystallites and their enhanced gas-sensing property. Sens. Actuators B Chem. 2013, 188, 249–256. [Google Scholar] [CrossRef]
- Tien, L.C.; Sadik, P.W.; Norton, D.P.; Voss, L.F.; Pearton, S.J. Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Appl. Phys. Lett. 2005, 87, 1–3. [Google Scholar] [CrossRef]
- Wang, L.; Wang, S.; Xu, M.; Hu, X.; Zhang, Z.; Wang, Y. A Au-functionalized ZnO nanowire gas sensor for detection of benzene and toluene. Phys. Chem. Chem. Phys. 2013, 15, 17179–17186. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Baek, W.H.; Kim, J.M.; Yoon, T.S.; Lee, H.H.; Kang, C.J. A nanopore structured high performance toluene gas sensor made by nanoimprinting method. Sensors 2010, 10, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Zhang, T.; Wang, L.; Kang, M.; Fan, H.; Wang, R. Enhanced toluene sensing characteristics of TiO2-doped flowerlike ZnO nanostructures. Sens. Actuators B Chem. 2009, 140, 73–78. [Google Scholar] [CrossRef]
- Ma, H.; Xu, Y.; Rong, Z.; Cheng, X.; Gao, S.; Zhang, X. Highly toluene sensing performance based on monodispersed Cr2O3 porous microspheres. Sens. Actuators B Chem. 2012, 174, 325–333. [Google Scholar] [CrossRef]
- Arnold, S.P.; Prokes, S.M.; Perkins, K.; Zaghloul, M.E. Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor. Appl. Phys. Lett. 2009, 95, 1–3. [Google Scholar] [CrossRef]
- Choi, Y.J.; Hwang, I.S.; Park, J.G.; Choi, K.J.; Park, J.H.; Lee, J.H. Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 2008, 19, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Anothainart, K.; Burgmair, M.; Karthigeyan, A.; Zimmer, M.; Eisele, I. Light enhanced NO2 gas sensing with tin oxide at room temperature: Conductance and work function measurements. Sens. Actuators B Chem. 2003, 93, 580–584. [Google Scholar] [CrossRef]
- Comini, E.; Cristalli, A.; Faglia, G.; Sberveglieri, G. Light enhanced gas sensing properties of indium oxide and tin oxide sensors. Sens. Actuators B Chem. 2000, 65, 260–263. [Google Scholar] [CrossRef]
- Yin, M.; Liu, S. Preparation of ZnO hollow spheres with different surface rough-ness and their enhanced gas sensing property. Sens. Actuators B Chem. 2014, 197, 58–65. [Google Scholar] [CrossRef]
- Nguyen, H.; Quy, C.T.; Hoa, N.D.; Lam, N.T.; Duy, N.V.; Quang, V.V. Controllable growth of ZnO nanowires grown on discrete islands of Au catalyst for realization of planar-type micro gas sensors. Sens. Actuators B Chem. 2013, 193, 888–894. [Google Scholar] [CrossRef]
- Mortezaali, A.; Moradi, R. The correlation between the substrate temperature and morphological ZnO nanostructures for H2S gas sensors. Sens. Actuators A Phys. 2014, 206, 30–34. [Google Scholar] [CrossRef]
- Kilinc, N.; Cakmak, O.; Kosemen, A.; Ermek, E.; Ozturk, S.; Yerli, Y. Fabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application. Sens. Actuators B Chem. 2014, 202, 357–364. [Google Scholar] [CrossRef]
- Jia, Q.; Ji, H.; Zhang, Y.; Chen, Y.; Sun, X.; Jin, Z. Rapid and selective detection of ace-tone using hierarchical ZnO gas sensor for hazardous odor markers application. J. Hazard. Mater. 2014, 276, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Chen, L.; Chen, S.; Luo, R.; Li, D.; Chen, A. Reverse microemulsion in situ crystallizing growth of ZnO nanorods and application for NO2 sensor. Sens. Actuators B Chem. 2014, 190, 760–767. [Google Scholar] [CrossRef]
- Chaaya, A.A.; Bechelany, M.; Balmea, S.; Mielea, P. ZnO 1D nanostructures designed by combining atomic layer deposition and electrospinning for UV sensor applications. J. Mater. Chem. A 2014, 2, 20650–20658. [Google Scholar] [CrossRef]
- Parmar, M.; Balamurugan, C.; Lee, D.W. PANI and graphene/PANI nanocomposite films—Comparative toluene gas sensing behavior. Sensors 2013, 13, 16611–16624. [Google Scholar] [CrossRef] [PubMed]
- Lower and Upper Explosive Limits for Flammable Gases and Vapors (LEL/UEL). Available online: https://www.mathesongas.com/pdfs/products/Lower-(LEL)-&-Upper-(UEL)-Explosive-Limits-.pdf (accessed on 26 October 2016).
- Acharyya, D.; Banerjee, N.; Bhattacharyyal, P. A comparative study on methanol sensing performance of ZnO nanoflower and nanorod based resistive devices. In Proceedings of the IEEE SENSORS 2014, Valancia, Spain, 2–5 November 2014.
- Tzeng, T.H.; Kuo, C.Y.; Wang, S.Y.; Huang, P.K.; Huang, Y.M.; Hsieh, W.C.; Huang, Y.J.; Kuo, P.H.; Yu, S.A.; Lee, S.C.; et al. A portable micro gas chromatography system for lung cancer associated volatile organic compound detection. IEEE J. Solid-State Circuits 2016, 51, 259–272. [Google Scholar]
- Cho, S.; Jeong, H.; Park, D.H.; Jung, S.H.; Kim, H.J.; Lee, K.H. The effects of vitamin C on ZnO crystal formation. CrystEngComm 2010, 12, 968–976. [Google Scholar] [CrossRef]
- Yeh, L.K.; Lai, K.Y.; Lin, G.J.; Fu, P.H.; Chang, H.C.; Lin, C.A.; He, J.H. Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays. Adv. Energy Mater. 2011, 1, 506–511. [Google Scholar] [CrossRef]
- Tian, W.C.; Ho, Y.H.; Chou, C.H. Photoactivated TiO2 gas chromatograph detector for diverse chemical compounds sensing at room temperature. IEEE Sens. J. 2013, 13, 1725–1729. [Google Scholar] [CrossRef]
- Adair, R.; Chase, L.L.; Stephen, A. Nonlinear refractive index of optical crystals. Phys. Rev. B 1989, 39, 3337. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-ray Diffraction; Addison-Wesley Publishing Company, Inc.: Salt Lake City, UT, USA, 1978. [Google Scholar]
- Chen, R.S.; Wang, S.W.; Lan, Z.H.; Tsai, T.H.; Wu, C.T.; Chen, L.C.; Chen, K.H.; Huang, Y.S.; Chen, C.C. On-chip fabrication of well-aligned and contact-barrier-free GaN nanobridge devices with ultrahigh photocurrent responsivity. Small 2008, 4, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Islam, M.S.; Kim, S. Direct formation of catalyst-free ZnO nanobridge devices on an etched Si substrate using a thermal evaporation method. Nano Lett. 2006, 6, 1487–1490. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, L.-K.; Luo, J.-C.; Chen, M.-C.; Wu, C.-H.; Chen, J.-Z.; Cheng, I.-C.; Hsu, C.-C.; Tian, W.-C. A Photoactivated Gas Detector for Toluene Sensing at Room Temperature Based on New Coral-Like ZnO Nanostructure Arrays. Sensors 2016, 16, 1820. https://doi.org/10.3390/s16111820
Yeh L-K, Luo J-C, Chen M-C, Wu C-H, Chen J-Z, Cheng I-C, Hsu C-C, Tian W-C. A Photoactivated Gas Detector for Toluene Sensing at Room Temperature Based on New Coral-Like ZnO Nanostructure Arrays. Sensors. 2016; 16(11):1820. https://doi.org/10.3390/s16111820
Chicago/Turabian StyleYeh, Li-Ko, Jie-Chun Luo, Min-Chun Chen, Chih-Hung Wu, Jian-Zhang Chen, I-Chun Cheng, Cheng-Che Hsu, and Wei-Cheng Tian. 2016. "A Photoactivated Gas Detector for Toluene Sensing at Room Temperature Based on New Coral-Like ZnO Nanostructure Arrays" Sensors 16, no. 11: 1820. https://doi.org/10.3390/s16111820
APA StyleYeh, L. -K., Luo, J. -C., Chen, M. -C., Wu, C. -H., Chen, J. -Z., Cheng, I. -C., Hsu, C. -C., & Tian, W. -C. (2016). A Photoactivated Gas Detector for Toluene Sensing at Room Temperature Based on New Coral-Like ZnO Nanostructure Arrays. Sensors, 16(11), 1820. https://doi.org/10.3390/s16111820