Detection of Organic Compounds in Water by an Optical Absorbance Method
Abstract
:1. Introduction
2. Experimental Section
2.1. Working Principles
2.2. System Configuration and Measurement
3. Results and Discussion
Model | 1 | 2 | 3 | 4 |
---|---|---|---|---|
0.916 | 0.957 | 0.962 | 0.964 |
−1.476 | 207.534 | −236.472 | 199.004 | 112.074 |
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Gustavsson, L.; Engwall, M. Treatment of sludge containing nitro-aromatic compounds in reed-bed mesocosms—Water, BOD, carbon and nutrient removal. Waste Manag. 2012, 32, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Vaillant, S.; Pouet, M.F.; Thomas, O. Basic handling of UV spectra for urban water quality monitoring. Urban Water 2002, 4, 273–281. [Google Scholar] [CrossRef]
- Wang, M.; Liu, X.; Pan, B.; Zhang, S. Photodegradation of Acid Orange 7 in a UV/acetylacetone process. Chemosphere 2013, 93, 2877–2882. [Google Scholar] [CrossRef] [PubMed]
- Chevakidagarn, P. BOD5 estimation by using UV absorption and COD for rapid industrial effluent monitoring. Environ. Monit. Assess. 2006, 131, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, L.R.; Irwin, C.N.; Craddock, J.N. Evaluation of InSpectra UV Analyzer for measuring conventional water and wastewater parameters. Adv. Environ. Res. 2002, 6, 369–375. [Google Scholar] [CrossRef]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef] [PubMed]
- Tipping, E.; Corbishley, H.T.; Koprivnjak, J.F.; Lapworth, D.J.; Miller, M.P.; Vincent, C.D.; Hamilton-Taylor, J. Quantification of natural DOM from UV absorption at two wavelengths. Environ. Chem. 2009, 6, 472–476. [Google Scholar] [CrossRef]
- Zhuang, H.; Han, H.; Jia, S.; Hou, B.; Zhao, Q. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous catalytic ozonation and biological process. Bioresour. Technol. 2014, 166, 592–595. [Google Scholar] [CrossRef] [PubMed]
- Li, C.W.; Benjamin, M.M.; Korshin, G.V. Use of UV spectroscopy to characterize the reaction between NOM and free chlorine. Environ. Sci. Technol. 2000, 34, 2570–2575. [Google Scholar] [CrossRef]
- Matthews, R.W. Photocatalytic oxidation of organic contaminants in water: An aid to environmental preservation. Pure Appl. Chem. 1992, 64, 1285–1290. [Google Scholar] [CrossRef]
- Sousa, S.I.V.; Martins, F.G.; Alvim-Ferraz, M.C.M.; Pereira, M.C. Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environ. Model. Softw. 2007, 22, 97–103. [Google Scholar] [CrossRef]
- Thomas, O.; El Khorassani, H.; Touraud, E.; Bitar, H. TOC versus UV spectrophotometry for wastewater quality monitoring. Talanta 1999, 50, 743–749. [Google Scholar] [CrossRef]
- Bhandare, P.; Mendelson, Y.; Peura, R.A.; Janatsch, G.; Kruse-Jarres, J.D.; Marbach, R.; Heise, H.M. Multivariate determination of glucose in whole blood using partial least-squares and artificial neural networks based on mid-infrared spectroscopy. Appl. Spectrosc. 1993, 47, 1214–1221. [Google Scholar] [CrossRef]
- Chen, Y.; Bond, T.C. Light absorption by organic carbon from wood combustion. Atmos. Chem. Phys. 2010, 10, 1773–1787. [Google Scholar] [CrossRef]
- Karpov, O.V.; Ukolov, A.A.; Garafutdinov, A.R. Measurement methods and problems in the reproduction of mass concentrations of total and free chlorine in natural and industrial water media. Meas. Tech. 2012, 54, 1291–1297. [Google Scholar] [CrossRef]
- Rheims, J.; Köser, J.; Wriedt, T. Refractive-index measurements in the near-IR using an Abbe refractometer. Meas. Sci. Technol. 1997, 8, 601–605. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Kumar, M.A.; Maharaja, P.; Partheeban, T.; Sridevi, J.; Sekaran, G. Process optimization for the treatment of pharmaceutical wastewater catalyzed by poly sulpha sponge. J. Taiwan Inst. Chem. Eng. 2014, 45, 1739–1747. [Google Scholar] [CrossRef]
- Balcarczyk, K.L.; Jones, J.B., Jr.; Jaffé, R.; Maie, N. Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost. Biogeochemistry 2009, 94, 255–270. [Google Scholar] [CrossRef]
- Langergraber, G.; Fleischmann, N.; Hofstaedter, F. A multivariate calibration procedure for UV/VIS spectrometric quantification of organic matter and nitrate in wastewater. Water Sci. Technol. 2003, 47, 63–71. [Google Scholar] [PubMed]
- Thacker, S.A.; Tipping, E.; Gondar, D.; Baker, A. Functional properties of DOM in a stream draining blanket peat. Sci. Total Environ. 2008, 407, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Knapik, H.G.; Fernandes, C.V.S.; de Azevedo, J.C.R.; do Amaral Porto, M.F. Applicability of fluorescence and absorbance spectroscopy to estimate organic pollution in rivers. Environ. Eng. Sci. 2014, 31, 653–663. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.; Eom, J.B.; Jung, S.; Ji, T. Detection of Organic Compounds in Water by an Optical Absorbance Method. Sensors 2016, 16, 61. https://doi.org/10.3390/s16010061
Kim C, Eom JB, Jung S, Ji T. Detection of Organic Compounds in Water by an Optical Absorbance Method. Sensors. 2016; 16(1):61. https://doi.org/10.3390/s16010061
Chicago/Turabian StyleKim, Chihoon, Joo Beom Eom, Soyoun Jung, and Taeksoo Ji. 2016. "Detection of Organic Compounds in Water by an Optical Absorbance Method" Sensors 16, no. 1: 61. https://doi.org/10.3390/s16010061
APA StyleKim, C., Eom, J. B., Jung, S., & Ji, T. (2016). Detection of Organic Compounds in Water by an Optical Absorbance Method. Sensors, 16(1), 61. https://doi.org/10.3390/s16010061