Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Reagents
2.2. Fabrication of Electrochemical Sensors

2.3. Apparatus
3. Results and Discussion
3.1. Electrochemical Sensing of Methylglyoxal, Acetaminophen and Valacyclovir at SWCNTs


| Carbon Based Nanomaterials | Analytes | Methods | Linear Range | Detection Limit | Reference |
|---|---|---|---|---|---|
| SWNT-Nafion-GOx | Glucose | Amperometry | 2 mM to 20 mM | - | 29 |
| SWNT-GOx | Glucose | Amperometry | Up to 40 mM | - | 30 |
| Pt-Nafion-SWCNTs-GOx | Glucose | Amperometry | 0.5 µM to 5 mM | 0.5 µM | 31 |
| SWNT-mineral-oil paste | Lactate | Amperometry | Up to 7.0 mM | 0.3 mM | 32 |
| Nafion-SWNT | Dopamine | DPV | 0.02 µM to 6.0 µM | 5.00 nM | 33 |
| SWNT polymer composite | Dopamine | CV | 16 nM to 600 µM | 8 nM | 34 |
| SWCNTs | Dopamine | DPV | 3 µM to 200 µM | 48 nM | 35 |
| SWCNTs | Rutine | CV | 20 nM to 5 µM | 10 nM | 36 |
| SWCNTs | Human serum albumin | CV | 0.075 nM to 7.5 nM | 75 pM | 37 |
| SWCNTs | DNAs | DPV | 5 µM to 30 µM | 1.43 µM | 38 |
| MWCNTs-Nafion | Epinephrine | CV and DPV | 0.06 mM to 0.24 mM | 0.02 mM | 39 |
| MWNT nanocomposite | Epinephrine | LSV | 50 nM to 10 µM | 10 nM | 40 |
| MWCNTs | Cholesterol | Amperometry | Up to 6.0 mM | 0.2 mM | 41 |
| MWCNTs | Cholesterol | Amperometry | 100 mg/dL to 400 mg/dL | - | 42 |
| MWCNTs | Methimazole | Amperometry | 0.074 µM to 63.5 µM | 0.056 µM | 43 |
| MWCNTs-silver nanoparticles | Sumatriptan | CV | 80 nM to 100 µM | 40 nM | 44 |
| MWCNTs | Paracetamol | ASV | 0.01 µM to 20 µM | 10 nM | 45 |
| SWCNTs | Methylglyoxal | SWV | 0.1 µM to 100 µM | - | 18 |
| SWCNTs | Valacyclovir | DPV | 5 nM to 55 nM | 1.8 nM | 19 |
| SWCNTs | Acetaminophen | DPV | 5 nM to 80 µM | 4.3 nM | This work |
| CuO-graphene | Glucose | Amperometry | 1 µM to 8 mM | 1 µM | 46 |
| CuNPs/graphene | Glucose | Amperometry | 0.5 µM to 4.5 mM | 0.5 µM | 47 |
| Graphene-ppy | Glucose | Amperometry | - | 3 µM | 48 |
| Graphene-Pt | Ascorbic acid | DPV | 0.03 µM to 8.13 µM | 0.03 µM | 49 |
| Graphene | Norepinephrine | Amperometry | 0.04 µM to 100 µM | 0.84 nM | 50 |
| Reduced GO | NADH | Amperometry | 10 µM to 600 µM | 0.33 µM | 51 |
| Graphene-Au nanorod | NADH | Amperometry | 5 µM to 337 µM | 1.5 µM | 52 |
| Au-TiO2/graphene | NADH | Amperometry | 10 µM to 240 µM | 0.2 µM | 53 |
| Graphene-TiO2 | NADH | Amperometry | 10 nM to 2 mM | 3 × 10−9 M | 54 |
| AuNPs-rGO | NADH | Amperometry | 50 nM to 500 µM | 1.13 nM | 25 |
| Nitrogen doped Graphene | Uric acid | DPV | 0.1 µM to 20 µM | 0.045 µM | 55 |
| Graphene | Uric acid | Amperometry | 0.19 µM to 49.68 µM | 0.132 µM | 56 |
| Nafion-AgNPs-rGO | Uric acid | LSV | 10 µM to 800 µM | 8.2 µM | 57 |
| Pt-rGO | Uric acid | DPV | 10 µM to 130 µM | 0.45 µM | 59 |
| ERGO | Serotonin | DPV | 5 µM to 300 µM | 0.11 µM | 59 |
| ERG/Ni2O3-NiO | acetaminophen | DPV | 0.04 µM to 100 µM | 0.02 µM | 60 |
| Graphene-chitosan | Acetaminophen | DPV | 1 µM to 100 µM | 0.3 µM | 61 |
| Graphene | Acetaminophen | SWV | 0.1 µM to 20 µM | 0.032 µM | 62 |
| rGO | Acetaminophen | DPV | 5 nM to 800 µM | 2.13 nM | 26 |
| SWCNTs-GNS | Acetaminophen | DPV | 0.05 µM to 64.5 µM | 0.038 µM | 63 |
| MWCNT-graphene nanosheets | Acetaminophen | DPV | 0.8 µM to 110 µM | 0.1 µM | 64 |
| MWCNT/GO | Acetaminophen | DPV | 0.5 µM to 400 µM | 47 nM | 65 |
| SWCNTs-rGO | Acetaminophen | DPV | 5 nM to 80 µM | 1.4 nM | This work |
| MWCNT/GO | Dopamine | DPV | 0.2 µM to 400 µM | 22 nM | 65 |
| MWCNT/GONR | Dopamine | DPV | 0.15 µM to 12.15 µM | 0.08 µM | 66 |
| Buckypaper-SWCNTs | Glucose | Amperometry | 0 mM to 10 mM | 0.022 mM | 70 |
| Buckypaper-GOx-HRP | Glucose | Amperometry | Up to 9 mM | 0.01 mM | 28 |
3.2. Electrochemical Sensing of Acetaminophen and NADH at rGO and Au Nanoparticle-rGO Nanocomposites



3.3. Electrochemical Sensing of Acetaminophen and Valacyclovir at SWCNTs-rGO Nanocomposites

3.4. Electrochemical Sensing of Glucose at Buckypaper

3.5. Electrocatalytic Performance of SWCNTs, rGO and SWCNTs-rGO for Acetaminophen and Valacyclovir: Comparative Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflict of Interest
References
- Kirsch, J.; Siltanen, C.; Zhou, Q.; Revzin, A.; Simonian, A. Biosensor technology: Recent advances in threat agent detection and medicine. Chem. Soc. Rev. 2013, 42, 8733–8768. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.X.; Yu, X.Y.; Gao, C.; Liu, J.H.; Compton, R.G.; Huang, X.J. Enhancing selectivity in stripping voltammetry by different adsorption behaviors: The use of nanostructured Mg-Al-layered double hydroxides to detect Cd (II). Analyst 2013, 138, 1812–1818. [Google Scholar] [CrossRef] [PubMed]
- Govindhan, M.; Lafleur, T.; Adhikari, B.-R.; Chen, A. Electrochemical sensor based on carbon nanotubes for the simultaneous detection of phenolic pollutants. Electroanalysis 2015, 27, 902–909. [Google Scholar] [CrossRef]
- Hung, V.W.-S.; Kerman, K. Gold electrodeposition on carbon nanotubes for the enhanced electrochemical detection of homocysteine. Electrochem. Commun. 2011, 13, 328–330. [Google Scholar] [CrossRef]
- Govindhan, M.; Adhikari, B.-R.; Chen, A. Nanomaterials-based electrochemical detection of chemical contaminants. RSC Adv. 2014, 4, 63741–63760. [Google Scholar] [CrossRef]
- Pandey, P.; Datta, M.; Malhotra, B.D. Prospects of nanomaterials in biosensors. Anal. Lett. 2008, 41, 159–209. [Google Scholar] [CrossRef]
- Chen, A.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 2013, 42, 5425–5438. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo-Filho, L.C.S.; Brownson, D.A.C.; Fatibello-Filho, O.; Banks, C.E. Exploring the origins of the apparent “electrocatalytic” oxidation of kojic acid at graphene modified electrodes. Analyst 2013, 138, 4436–4442. [Google Scholar] [CrossRef] [PubMed]
- Ahmadalinezhad, A.; Wu, G.; Keeler, W.; Chen, A. Fabrication and electrochemical study of carbon modified TiO2 nanowires. Electrochem. Commun. 2014, 49, 25–29. [Google Scholar] [CrossRef]
- Goyal, R.N.; Chatterjee, S.; Rana, A.R.S. The effect of modifying an edge-plane pyrolytic graphite electrode with single-wall carbon nanotubes on its use for sensing diclofenac. Carbon 2010, 48, 4136–4144. [Google Scholar] [CrossRef]
- Revin, S.B.; John, S.A. Electrochemical sensor for neurotransmitters at physiological pH using a heterocyclic conducting polymer modified electrode. Analyst 2012, 137, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Ahammad, A.; Lee, J.; Rahman, M. Electrochemical Sensors Based on Carbon Nanotubes. Sensors 2009, 9, 2289–2319. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Chen, A. Functionalization of carbon buckypaper for the sensitive determination of hydrogen peroxide in human urine. Biosens. Bioelectron. 2012, 35, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Chen, A. Voltammetric detection of the dicarbonyl compound: Methylglyoxal as a flavoring agent in wine and beer. Anal. Chim. Acta 2012, 751, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Wanekaya, A.K. Applications of nanoscale carbon-based materials in heavy metal sensing and detection. Analyst 2011, 136, 4383–4391. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.; Diao, S.; Antaris, A.L.; Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Nakayama, K.; Nakayama, M.; Mori, T.; Matsushima, M.; Okamura, M.; Senda, M.; Nako, K.; Miyata, T.; Ito, S. Methylglyoxal is a predictor in type 2 diabetic patients of intima-media thickening and elevation of blood pressure. Hypertension 2010, 56, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Wen, J.; Chen, A. Electrochemical determination of methylglyoxal as a biomarker in humanplasma. Biosens. Bioelectron. 2013, 42, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.; Lafleur, T.; Chen, A. Carbon nanotube based electrochemical sensor for the sensitive detection of valacyclovir. Faraday Discuss. 2013, 164, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Chen, Q.; Lai, C.; Zhang, Y.; Deng, J.; Li, H.; Yao, S. A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized Fe3O4@Au nanoparticles with graphene sheet. Biosens. Bioelectron. 2013, 48, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Vedala, H.; Sorescu, D.C.; Kotchey, G.P.; Star, A. Chemical sensitivity of graphene edges decorated with metal nanoparticles. Nano Lett. 2011, 11, 2342–2347. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Xiang, G.; Yuan, R.; Chen, X.; Luo, F.; Jiang, D.; Huang, S.; Li, Y.; Pu, X. Procalcitonin sensitive detection based on grapheneGÇôgold nanocomposite film sensor platform and single-walled carbon nanohorns/hollow Pt chains complex as signal tags. Biosens. Bioelectron. 2014, 60, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Khan, T.; Omanovic, S. Direct electrochemical regeneration of the cofactor NADH on bare Ti, Ni, Co and Cd electrodes: The influence of electrode potential and electrode material. J. Mol. Catal. A Chem. 2014, 387, 86–91. [Google Scholar] [CrossRef]
- James, L.P.; Mayeux, P.R.; Hinson, J.A. Acetaminophen-induced hepatotoxicity. Drug Metabol. Dispos. 2003, 31, 1499–1506. [Google Scholar] [CrossRef] [PubMed]
- Govindhan, M.; Amiri, M.; Chen, A. Au nanoparticle/graphene nanocomposite as a platform for the sensitive detection of NADH in human urine. Biosens. Bioelectron. 2015, 66, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.R.; Govindhan, M.; Chen, A. Sensitive detection of acetaminophen with graphene-based electrochemical sensor. Electrochim. Acta 2015, 162, 198–204. [Google Scholar] [CrossRef]
- Endo, M.; Muramatsu, H.; Hayashi, T.; Kim, Y.A.; Terrones, M.; Dresselhaus, M.S. Nanotechnology: Buckypaper from coaxial nanotubes. Nature 2005, 433. [Google Scholar] [CrossRef] [PubMed]
- Ahmadalinezhad, A.; Wu, G.; Chen, A. Mediator-free electrochemical biosensor based on buckypaper with enhanced stability and sensitivity for glucose detection. Biosens. Bioelectron. 2011, 30, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Musameh, M.; Lin, Y. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc. 2003, 125, 2408–2409. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Musameh, M. Enzyme-dispersed carbon-nanotube electrodes: A needle microsensor for monitoring glucose. Analyst 2003, 128, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Hrapovic, S.; Liu, Y.; Male, K.B.; Luong, J.H. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. 2004, 76, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Rubianes, M.A.D.; Rivas, G.A. Enzymatic biosensors based on carbon nanotubes paste electrodes. Electroanalysis 2005, 17, 73–78. [Google Scholar] [CrossRef]
- Wang, H.S.; Li, T.H.; Jia, W.L.; Xu, H.Y. Highly selective and sensitive determination of dopamine using a nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. Biosens. Bioelectron. 2006, 22, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cai, Y.; Su, S. Determination of dopamine in the presence of ascorbic acid by poly (styrene sulfonic acid) sodium salt/single-wall carbon nanotube film modified glassy carbon electrode. Anal. Biochem. 2006, 350, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Habibi, B.; Jahanbakhshi, M.; Pournaghi-Azar, M.H. Simultaneous determination of acetaminophen and dopamine using SWCNT modified carbonGÇôceramic electrode by differential pulse voltammetry. Electrochim. Acta 2011, 56, 2888–2894. [Google Scholar] [CrossRef]
- Zeng, B.; Wei, S.; Xiao, F.; Zhao, F. Voltammetric behavior and determination of rutin at a single-walled carbon nanotubes modified gold electrode. Sens. Actuators B Chem. 2006, 115, 240–246. [Google Scholar] [CrossRef]
- Yu, X.; Kim, S.N.; Papadimitrakopoulos, F.; Rusling, J.F. Protein immunosensor using single-wall carbon nanotube forests with electrochemical detection of enzyme labels. Mol. Biosyst. 2005, 1, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Y.; Yang, T.; Zhang, H.; Yang, Y.; Xiao, P. DNA biosensor by self-assembly of carbon nanotubes and DNA to detect riboflavin. Mater. Sci. Eng. C 2009, 29, 2360–2364. [Google Scholar] [CrossRef]
- Yogeswaran, U.; Thiagarajan, S.; Chen, S.M. Nanocomposite of functionalized multiwall carbon nanotubes with nafion, nano platinum, and nano gold biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid. Anal. Biochem. 2007, 365, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Zheng, D.; Hu, C.; Hu, S. Functionalized multiwalled carbon nanotubes through in situ electropolymerization of brilliant cresyl blue for determination of epinephrine. Electroanalysis 2008, 20, 1143–1146. [Google Scholar] [CrossRef]
- Guo, M.; Chen, J.; Li, J.; Nie, L.; Yao, S. Carbon nanotubes-based amperometric cholesterol biosensor fabricated through layer-by-layer technique. Electroanalysis 2004, 16, 1992–1998. [Google Scholar] [CrossRef]
- Li, G.; Liao, J.M.; Hu, G.Q.; Ma, N.Z.; Wu, P.J. Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood. Biosens. Bioelectron. 2005, 20, 2140–2144. [Google Scholar] [CrossRef] [PubMed]
- Martinez, N.A.; Messina, G.A.; Bertolino, F.A.; Salinas, E.; Raba, J. Screen-printed enzymatic biosensor modified with carbon nanotube for the methimazole determination in pharmaceuticals formulations. Sens. Actuators B Chem. 2008, 133, 256–262. [Google Scholar] [CrossRef]
- Ghalkhani, M.; Shahrokhian, S.; Ghorbani-Bidkorbeh, F. Voltammetric studies of sumatriptan on the surface of pyrolytic graphite electrode modified with multi-walled carbon nanotubes decorated with silver nanoparticles. Talanta 2009, 80, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Kachoosangi, R.T.; Wildgoose, G.G.; Compton, R.G. Sensitive adsorptive stripping voltammetric determination of paracetamol at multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode. Anal. Chim. Acta 2008, 618, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.W.; Hsu, T.K.; Sun, C.L.; Nien, Y.T.; Pu, N.W.; Ger, M.D. Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications. Electrochim. Acta 2012, 82, 152–157. [Google Scholar] [CrossRef]
- Luo, J.; Jiang, S.; Zhang, H.; Jiang, J.; Liu, X. A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal. Chim. Acta 2012, 709, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Alwarappan, S.; Liu, C.; Kumar, A.; Li, C.Z. Enzyme-doped graphene nanosheets for enhanced glucose biosensing. J. Phys. Chem. C 2010, 114, 12920–12924. [Google Scholar] [CrossRef]
- Sun, C.L.; Lee, H.H.; Yang, J.M.; Wu, C.C. The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens. Bioelectron. 2011, 26, 3450–3455. [Google Scholar] [CrossRef] [PubMed]
- Raj, M.A.; John, S.A. Graphene layer modified glassy carbon electrode for the determination of norepinephrine and theophylline in pharmaceutical formulations. Anal. Methods 2014, 6, 2181–2188. [Google Scholar]
- Tabrizi, M.A.; Azar, S.A.; Varkani, J.N. Eco-synthesis of graphene and its use in dihydronicotinamide adenine dinucleotide sensing. Anal. Biochem. 2014, 460, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lu, H.; Deng, L. A sensitive NADH and ethanol biosensor based on graphene-Au nanorods nanocomposites. Talanta 2013, 113, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Yang, X.; Yang, C.; Liu, J. Au-TiO2/Graphene nanocomposite film for electrochemical sensing of hydrogen peroxide and NADH. Electroanalysis 2012, 24, 1334–1339. [Google Scholar] [CrossRef]
- Wang, K.; Wu, J.; Liu, Q.; Jin, Y.; Yan, J.; Cai, J. Ultrasensitive photoelectrochemical sensing of nicotinamide adenine dinucleotide based on graphene-TiO2 nanohybrids under visible irradiation. Anal. Chim. Acta 2012, 745, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.H.; Zheng, X.Q.; Xu, J.Y.; Bao, W.J.; Wang, F.B.; Xia, X.H. Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 2012, 34, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Yue, R.; Yao, Z.; Jiang, F.; Du, Y.; Yang, P.; Wang, C. Nonenzymatic uric acid electrochemical sensor based on graphene-modified carbon fiber electrode. Colloids Surf. A 2013, 419, 94–99. [Google Scholar] [CrossRef]
- Kaur, B.; Pandiyan, T.; Satpati, B.; Srivastava, R. Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode. Colloids Surf. B 2013, 111, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.Q.; Zhang, Q.L.; Zheng, J.N.; Lv, Z.Y.; Wei, J.; Wang, A.J.; Feng, J.J. Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide. Electrochim. Acta 2014, 115, 109–115. [Google Scholar] [CrossRef]
- Raj, M.A.; John, S.A. Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode. Anal. Chim. Acta 2013, 771, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.T.; Chen, H.F.; Lin, G.M.; Ye, P.; Wang, X.P.; Jiao, Y.Z.; Guo, X.Y.; Wen, Y.; Yang, H.F. One-step electrodeposition of graphene loaded nickel oxides nanoparticles for acetaminophen detection. Biosens. Bioelectron. 2014, 56, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Gao, F.; Wang, Q.; Cai, X.; Jiang, S.; Huang, L.; Gao, F. Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene-chitosan composite. Mater. Sci. Eng. C 2013, 33, 1514–1520. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 2010, 81, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhu, J.; Xi, Q.; Yang, W. A high performance electrochemical sensor for acetaminophen based on single-walled carbon nanotube-graphene nanosheet hybrid films. Sens. Actuators B Chem. 2012, 161, 648–654. [Google Scholar] [CrossRef]
- Arvand, M.; Gholizadeh, T.M. Simultaneous voltammetric determination of tyrosine and paracetamol using a carbon nanotube-graphene nanosheet nanocomposite modified electrode in human blood serum and pharmaceuticals. Colloids Surf. B 2013, 103, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Cheemalapati, S.; Palanisamy, S.; Mani, V.; Chen, S.M. Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode. Talanta 2013, 117, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.L.; Chang, C.T.; Lee, H.H.; Zhou, J.; Wang, J.; Sham, T.K.; Pong, W.F. Microwave-assisted synthesis of a core shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid. ACS Nano 2011, 5, 7788–7795. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, M.; Zhao, F.; Xu, Z.; Dong, S. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens. Bioelectron. 2005, 21, 984–988. [Google Scholar] [CrossRef] [PubMed]
- Reilly, C.A.; Aust, S.D. Peroxidase substrates stimulate the oxidation of hydralazine to metabolites which cause single-strand breaks in DNA. Chem. Res. Toxicol. 1997, 10, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lopez, J.N.; Lowe, D.J.; Hernaíndez-Ruiz, J.; Hiner, A.N.P.; Garcia-Caínovas, F.; Thorneley, R.N.F. Mechanism of reaction of hydrogen peroxide with horseradish peroxidase: Identification of intermediates in the catalytic cycle. J. Am. Chem. Soc. 2001, 123, 11838–11847. [Google Scholar] [CrossRef] [PubMed]
- Papa, H.; Gaillard, M.; Gonzalez, L.; Chatterjee, J. Fabrication of functionalized carbon nanotube buckypaper electrodes for application in glucose biosensors. Biosensors 2014, 4, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Tourani, S.; Rashidi, A.; Safekordi, A.; Aghabozorg, H.R.; Khorasheh, F. Synthesis of reduced graphene oxide—Carbon nanotubes (rGO-CNT) composite and its use as a novel catalyst support for hydro-purification of crude terephtalic acid. Ind. Eng. Chem. Res. 2015, 54, 7591–7603. [Google Scholar] [CrossRef]
- Zhang, C.; Ren, L.; Wang, X.; Liu, T. Graphene oxide-assisted dispersion of pristine multiwalled carbon nanotubes in aqueous media. J. Phys. Chem. C 2010, 114, 11435–11440. [Google Scholar] [CrossRef]
- Stoner, R.B.; Glass, T.J. Carbon nanostructes: A morphological classification for charge density optimization. Diam. Relat. Mater. 2012, 23, 130–134. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhikari, B.-R.; Govindhan, M.; Chen, A. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds. Sensors 2015, 15, 22490-22508. https://doi.org/10.3390/s150922490
Adhikari B-R, Govindhan M, Chen A. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds. Sensors. 2015; 15(9):22490-22508. https://doi.org/10.3390/s150922490
Chicago/Turabian StyleAdhikari, Bal-Ram, Maduraiveeran Govindhan, and Aicheng Chen. 2015. "Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds" Sensors 15, no. 9: 22490-22508. https://doi.org/10.3390/s150922490
APA StyleAdhikari, B.-R., Govindhan, M., & Chen, A. (2015). Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds. Sensors, 15(9), 22490-22508. https://doi.org/10.3390/s150922490
