A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagents
2.2. ET Instrument
2.3. Conventional Dichromate Method
3. Results and Discussion
3.1. Assay Optimization
3.2. Effect of pH
3.3. Influence of Concentration of NaClO Solution
3.4. Effect of Flow Rate
Flow Rate (mL/min) | ΔV (mV) | RSD (%) | ||
---|---|---|---|---|
0.25 | 0 | 0 | 0 | 0 |
0.5 | 27.4 | 25.8 | 24.6 | 5.417 |
1.0 | 35.1 | 36.1 | 35.3 | 1.491 |
1.5 | 25.6 | 29.4 | 19.2 | 20.842 |
2.0 | 22.0 | 25.1 | 30.3 | 16.256 |
3.5. Detection Limit and Linear Range
3.6. Reproducibility and Operational Stability
3.7. Interference
3.8. Analytical Application
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lee, K.H.; Ishikawa, T.; Sasaki, S.; Arikawa, Y.; Karube, I. Chemical oxygen demand (cod) sensor using a stopped-flow thin layer electrochemical cell. Electroanalysis 1999, 11, 1172–1179. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, D.; Zhang, S.; Catterall, K.; John, R. Development of a direct photoelectrochemical method for determination of chemical oxygen demand. Anal. Chem. 2004, 76, 155–160. [Google Scholar] [CrossRef]
- Loewenthal, R.E.; Bilanovic, D.; Thebe, T.M.; Green, M. Determination of low chemical oxygen demand using potentiometry and a modified gran function. Water SA 1997, 23, 293–299. [Google Scholar]
- Dharmadhikari, D.M.; Vanerkar, A.P.; Barhate, N.M. Chemical oxygen demand using closed microwave digestion system. Environ. Sci. Technol. 2005, 39, 6198–6201. [Google Scholar] [CrossRef] [PubMed]
- Stenger, V.A.; Van Hall, C.E. Rapid method for determination of chemical oxygen demand. Anal. Chem. 1967, 39, 206–211. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Lee, K.-H.; Sasaki, S.; Hashimoto, K.; Ikebukuro, K.; Karube, I. Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode. Anal. Chem. 2000, 72, 3379–3382. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, J.; Zhou, Y.; Wu, K. A nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand. Sens. Actuators B Chem. 2011, 153, 78–82. [Google Scholar] [CrossRef]
- Lee, K.-H.; Ishikawa, T.; McNiven, S.; Nomura, Y.; Hiratsuka, A.; Sasaki, S.; Arikawa, Y.; Karube, I. Evaluation of chemical oxygen demand (cod) based on coulometric determination of electrochemical oxygen demand (eod) using a surface oxidized copper electrode. Anal. Chim. Acta 1999, 398, 161–171. [Google Scholar] [CrossRef]
- Silva, C.R.; Conceição, C.D.; Bonifácio, V.G.; Fatibello, F.O.; Teixeira, M.F. Determination of the chemical oxygen demand (cod) using a copper electrode: A clean alternative method. J. Solid State Electrochem. 2009, 13, 665–669. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Zheng, L.; Xian, Y.; Jin, L. Rh2O3/Ti electrode preparation using laser anneal and its application to the determination of chemical oxygen demand. Meas. Sci. Technol. 2006, 17. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Wu, K.; Cheng, Q.; Zhou, Y. Electrochemical sensing chemical oxygen demand based on the catalytic activity of cobalt oxide film. Anal. Chim. Acta 2012, 736, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Zhang, S.; Zhao, H. Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media. Sens. Actuators B Chem. 2011, 160, 875–890. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Sasaki, S.; Yano, K.; Ikebukuro, K.; Hashimoto, K.; Karube, I. Photocatalytic sensor for the determination of chemical oxygen demand using flow injection analysis. Anal. Chim. Acta 2001, 432, 59–66. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Sasaki, S.; Yano, K.; Ikebukuro, K.; Hashimoto, K.; Karube, I. A flow method with photocatalytic oxidation of dissolved organic matter using a solid-phase (TiO2) reactor followed by amperometric detection of consumed oxygen. Anal. Chem. 2002, 74, 3858–3864. [Google Scholar] [CrossRef] [PubMed]
- Dan, D.; Sandford, R.C.; Worsfold, P.J. Determination of chemical oxygen demand in fresh waters using flow injection with on-line uv-photocatalytic oxidation and spectrophotometric detection. Analyst 2005, 130, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Zhang, S.; Zhao, H. Nanostructured TiO2 photocatalysts for the determination of organic pollutants. J. Hazard. Mater. 2012, 211, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, L.; Zhao, H. A portable photoelectrochemical probe for rapid determination of chemical oxygen demand in wastewaters. Environ. Sci. Technol. 2009, 43, 7810–7815. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Hubble, J.; Lockett, A.; Rathbone, R. A neural network-based approach for reducing the effect of background temperature fluctuations in thermal monitoring systems. Biosens. Bioelectron. 1997, 12, 1107–1112. [Google Scholar] [CrossRef]
- Lerchner, J.; Wolf, A.; Wolf, G.; Baier, V.; Kessler, E.; Nietzsch, M.; Krügel, M. A new micro-fluid chip calorimeter for biochemical applications. Thermochim. Acta 2006, 445, 144–150. [Google Scholar] [CrossRef]
- Zheng, Y.H.; Hua, T.C.; Xu, F. A novel thermal biosensor based on enzyme reaction for pesticides measurement. J. Environ. Sci. 2005, 17, 615–619. [Google Scholar]
- Decristoforo, G.; Danielsson, B. Flow injection analysis with enzyme thermistor detector for automated determination of β-lactams. Anal. Chem. 1984, 56, 263–268. [Google Scholar] [CrossRef]
- Mishra, G.K.; Mishra, R.K.; Bhand, S. Flow injection analysis biosensor for urea analysis in adulterated milk using enzyme thermistor. Biosens. Bioelectron. 2010, 26, 1560–1564. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, K.; Danielsson, B. Principles and applications of thermal biosensors. Biosens. Bioelectron. 2001, 16, 417–423. [Google Scholar] [CrossRef]
- Chen, Q.; Andersson, A.; Mecklenburg, M.; Xie, B. Fast determination of antibiotics in whole blood. Clin. Microbiol. Infect. 2013, 19, 869–874. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, N.; Liu, Z.; Chen, Y.; Zhou, Y.; Xie, B. A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand. Sensors 2015, 15, 20501-20510. https://doi.org/10.3390/s150820501
Yao N, Liu Z, Chen Y, Zhou Y, Xie B. A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand. Sensors. 2015; 15(8):20501-20510. https://doi.org/10.3390/s150820501
Chicago/Turabian StyleYao, Na, Zhuan Liu, Ying Chen, Yikai Zhou, and Bin Xie. 2015. "A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand" Sensors 15, no. 8: 20501-20510. https://doi.org/10.3390/s150820501
APA StyleYao, N., Liu, Z., Chen, Y., Zhou, Y., & Xie, B. (2015). A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand. Sensors, 15(8), 20501-20510. https://doi.org/10.3390/s150820501