Correction published on 22 June 2011,
see
Sensors 2011, 11(6), 6493.
Optical Microcavity: Sensing down to Single Molecules and Atoms
Electrical and Computer Engineering, Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
*
Author to whom correspondence should be addressed.
Sensors 2011, 11(2), 1972-1991; https://doi.org/10.3390/s110201972
Received: 16 December 2010 / Revised: 13 January 2011 / Accepted: 27 January 2011 / Published: 7 February 2011
(This article belongs to the Special Issue Optical Resonant Microsensors)
This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q) factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments), microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED) would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.
View Full-Text
Keywords:
microcavity; index sensing; absorption sensing; quality factor; photonic crystal; whispering gallery mode; surface Bloch mode; single molecule; single atom; cavity QED
▼
Show Figures
This is an open access article distributed under the Creative Commons Attribution License
- Correction
Correction (PDF, 29 KiB)
https://www.mdpi.com/1424-8220/11/6/6493/
MDPI and ACS Style
Yoshie, T.; Tang, L.; Su, S.-Y. Optical Microcavity: Sensing down to Single Molecules and Atoms. Sensors 2011, 11, 1972-1991.
AMA Style
Yoshie T, Tang L, Su S-Y. Optical Microcavity: Sensing down to Single Molecules and Atoms. Sensors. 2011; 11(2):1972-1991.
Chicago/Turabian StyleYoshie, Tomoyuki; Tang, Lingling; Su, Shu-Yu. 2011. "Optical Microcavity: Sensing down to Single Molecules and Atoms" Sensors 11, no. 2: 1972-1991.
Find Other Styles
Search more from Scilit