Patterns of Evolutionary Speed: In Search of a Causal Mechanism
Abstract
:1. Introduction
2. Biogeographical Patterns in Rates of Genetic Evolution
3. In Search of a Causal Mechanism
3.1. Body Mass
3.2. Generation Time and Longevity
3.3. Metabolic Rate
3.4. The Red Queen Hypothesis
3.5. UV Radiation
3.6. Population Size
4. Conclusions
Conflicts of Interest
References
- Von Humboldt, A. Ansichten der Natur mit wissenschaftlichen Erlauterungen; (in German). Stuttgart, J.G. Cotta: Tubingen, Germany, 1808. [Google Scholar]
- Rensch, B. Evolution above the Species Level; Methuen: London, UK, 1959. [Google Scholar]
- Rohde, K. Latitudinal gradients in species diversity: The search for the primary cause. Oikos 1992, 65, 514–527. [Google Scholar] [CrossRef]
- Wright, S.D.; Gray, R.D.; Gardner, R.C. Energy and the rate of evolution: Inferences from plant rDNA substitution rates in the western Pacific. Evolution 2003, 57, 2893–2898. [Google Scholar]
- Gillman, L.N.; Wright, S.D. Species richness and evolutionary speed: The influence of temperature, water and area. J. Biogeogr. 2003. [Google Scholar] [CrossRef]
- Allen, A.P.; Gillooly, J.F. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol. Lett. 2006, 9, 947–954. [Google Scholar] [CrossRef]
- Martin, A.P.; Palumbi, S.R. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl. Acad. Sci. USA 1993, 90, 4087–4091. [Google Scholar] [CrossRef]
- Cardillo, M. Latitude and rates of diversification in birds and butterflies. Proc. Biol. Sci. 1999, 266, 1221–1225. [Google Scholar] [CrossRef]
- Stevens, G.C. The latitudinal gradient in geographical range: How so many species coexist in the tropics. Am. Nat. 1989, 133, 240–256. [Google Scholar]
- Nabholz, B.; Glémin, S.; Galtier, N. Strong variations of mitochondrial mutation rate across mammals—the longevity hypothesis. Mol. Biol. Evol. 2008, 25, 120–130. [Google Scholar] [CrossRef]
- Gillman, L.N.; Wright, S.D. Molecular evolution has wheels in the tropics. Biologist 2007, 54, 195–199. [Google Scholar]
- Wright, S.; Keeling, J.; Gillman, L. The road from Santa Rosalia: A faster tempo of evolution in tropical climates. Proc. Natl. Acad. Sci. USA 2006, 103, 7718–7722. [Google Scholar] [CrossRef]
- Bromham, L.; Cardillo, M. Testing the link between the latitudinal gradient in species richness and rates of molecular evolution. J. Evol. Biol. 2003, 16, 200–207. [Google Scholar] [CrossRef]
- Davies, T.; Savolainen, V.; Chase, M.; Moat, J.; Barraclough, T. Environmental energy and evolutionary rates in flowering plants. Proc. Biol. Sci. 2004, 271, 2195–2200. [Google Scholar] [CrossRef]
- Gillman, L.N.; Keeling, D.J.; Gardner, R.C.; Wright, S.D. Faster evolution of highly conserved DNA in tropical plants. J. Evol. Biol. 2010, 23, 1327–1330. [Google Scholar]
- Wright, S.D.; Ross, H.A.; Keeling, D.J.; McBride, P.; Gillman, L.N. Thermal energy and the rate of genetic evolution in marine fishes. Evol. Ecol. 2011, 25, 525–530. [Google Scholar] [CrossRef]
- Wright, S.D.; Gillman, L.N.; Ross, H.A.; Keeling, D.J. Energy and the tempo of evolution in amphibians. Global Ecol. Biogeogr. 2010, 19, 733–740. [Google Scholar]
- Lourenço, J.M.; Glémin, S.; Chiari, Y.; Galtier, N. The determinants of the molecular substitution process in turtles. J. Evol. Biol. 2013, 26, 38–50. [Google Scholar] [CrossRef]
- Allen, A.P.; Gillooly, J.F.; Savage, V.M.; Brown, J.H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl. Acad. Sci. USA 2006, 103, 9130–9135. [Google Scholar] [CrossRef]
- Bleiweiss, R. Slow rate of molecular evolution in high-elevation hummingbirds. Proc. Natl. Acad. Sci. USA 1998, 95, 612–616. [Google Scholar] [CrossRef]
- D’Horta, F.M.; Cuervo, A.M.; Ribas, C.C.; Brumfield, R.T.; Miyaki, C.Y. Phylogeny and comparative phylogeography of Sclerurus (Aves: Furnariidae) reveal constant and cryptic diversification in an old radiation of rain forest understorey specialists. J. Biogeogr. 2013, 40, 37–49. [Google Scholar]
- Gillman, L.N.; McCowan, L.S.C.; Wright, S.D. The tempo of genetic evolution in birds: Body mass, population size and climate effects. J. Biogeogr. 2012, 39, 1567–1572. [Google Scholar] [CrossRef]
- Gillman, L.N.; McBride, P.; Keeling, D.J.; Ross, H.A.; Wright, S.D. Are rates of molecular evolution in mammals substantially accelerated in warmer environments? Reply. Proc. Biol. Sci. 2011, 278, 1294–1297. [Google Scholar] [CrossRef]
- Gillman, L.N.; Ross, H.A.; Keeling, J.D.; Wright, S.D. Latitude, elevation and the tempo of molecular evolution in mammals. Proc. Biol. Sci. 2009, 276, 3353–3359. [Google Scholar] [CrossRef]
- Adams, R.I.; Hadly, E.A. Genetic diversity within vertebrate species is greater at lower latitudes. Evol. Ecol. 2013, 27, 133–143. [Google Scholar] [CrossRef]
- Chek, A.A.; Austin, J.D.; Lougheed, S.C. Why is there a tropical–temperate disparity in the genetic diversity and taxonomy of species? Evol. Ecol. Res. 2003, 5, 69–77. [Google Scholar]
- Eo, S.H.; Wares, J.P.; Carroll, J.P. Population divergence in plant species reflects latitudinal biodiversity gradients. Biol. Lett. 2008, 4, 382–384. [Google Scholar] [CrossRef]
- Martin, P.R.; Tewksbury, J.J. Latitudinal variation in subspecific diversification of birds. Evolution 2008, 62, 2775–2788. [Google Scholar] [CrossRef]
- Goldie, X.; Gillman, L.N.; Crisp, M.; Wright, S.D. Evolutionary speed limited by water in arid Australia. Proc. Biol. Sci. 2010, 277, 2645–2653. [Google Scholar]
- Gillman, L.N.; Wright, S.D. The influence of productivity on the species richness of plants: A critical assessment. Ecology 2006, 87, 1234–1243. [Google Scholar] [CrossRef]
- Gillman, L.N.; Wright, S.D. Mega mistakes in meta-analyses: Devil in the detail. Ecology 2010, 91, 2550–2552. [Google Scholar] [CrossRef]
- Mazinani, P.; Gillman, L.N.; Wright, S.D. The relationship between Amazonian Soils and Rates of Genetic Evolution, University of Auckland: Auckland, New Zealand, 2013; unpublished work.
- Wu, C.I.; Li, W.H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. USA 1985, 82, 1741–1745. [Google Scholar]
- Bromham, L.; Rambaut, A.; Harvey, P.H. Determinants of rate variation in mammalian DNA sequence evolution. J. Mol. Evol. 1996, 43, 610–621. [Google Scholar]
- Bleiweiss, R. Relative-rate tests and biological causes of molecular evolution in hummingbirds. Mol. Biol. Evol. 1998, 15, 481–491. [Google Scholar] [CrossRef]
- Nunn, G.B.; Stanley, S.E. Body size effects and rates of cytochrome b evolution in tube-nosed seabirds. Mol. Biol. Evol. 1998, 15, 1360–1371. [Google Scholar] [CrossRef]
- Bromham, L. Molecular clocks in reptiles: Life history influences rate of molecular evolution. Mol. Biol. Evol. 2002, 19, 302–309. [Google Scholar] [CrossRef]
- Gillooly, J.F.; Allen, A.P.; West, G.B.; Brown, J.H. The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proc. Natl. Acad. Sci. USA 2005, 102, 140–145. [Google Scholar] [CrossRef]
- Fontanillas, E.; Welch, J.J.; Thomas, J.A.; Bromham, L. The influence of body size and net diversification rate on molecular evolution during the radiation of animal phyla. BMC Evol. Biol. 2007. [Google Scholar] [CrossRef]
- Ashton, K.G.; Tracy, M.C.; de Queiroz, A. Is Bergmann’s rule valid for mammals. Am. Nat. 2000, 156, 390–415. [Google Scholar] [CrossRef]
- White, E.P.; Ernest, S.K.M.; Kerkhoff, A.J.; Enquist, B.J. Relationships between body size and abundance in ecology. Trends Ecol. Evol. 2007, 22, 323–330. [Google Scholar]
- Wright, S.D.; Gillman, L.N.; Ross, H.A.; Keeling, J.D. Slower tempo of microevolution in island birds: Implications for conservation biology. Evolution 2009, 63, 2276–2287. [Google Scholar]
- Korall, P.; Schuettpelz, E.; Pryer, K.M. Abrupt deceleration of molecular evolution linked to the origin of arborescence in ferns. Evolution 2010, 64, 2786–2792. [Google Scholar] [CrossRef]
- Smith, S.A.; Donoghue, M.J. Rates of molecular evolution are linked to life history in flowering plants. Science 2008, 322, 86–89. [Google Scholar] [CrossRef]
- Lanfear, R.; Ho, S.Y.W.; Davies, T.J.; Moles, A.T.; Aarssen, L.; Swenson, N.G.; Warman, L.; Zanne, A.E.; Allen, A.P. Taller plants have lower rates of molecular evolution. Nat. Commun. 2013, 4. Article 1879. [Google Scholar]
- Spradling, T.A.; Hafner, M.S.; Demastes, J.W. Differences in rate of cytochrome-b evolution among species of rodents. J. Mammal. 2001, 82, 65–80. [Google Scholar] [CrossRef]
- Thomas, J.A.; Welch, J.J.; Woolfit, M.; Bromham, L. There is no universal molecular clock for invertebrates, but rate variation does not scale with body size. Proc. Natl. Acad. Sci. USA 2006, 103, 7366–7371. [Google Scholar] [CrossRef]
- Santos, J.C. Fast molecular evolution associated with high active metabolic rates in poison frogs. Mol. Biol. Evol. 2012, 29, 2001–2018. [Google Scholar] [CrossRef]
- Cooper, N.; Purvis, A. What factors shape rates of phenotypic evolution? A comparative study of cranial morphology of four mammalian clades. J. Evol. Biol. 2009, 22, 1024–1035. [Google Scholar] [CrossRef]
- Simpson, G.G. The Major Features of Evolution; Columbia University Press: New York, NY, USA, 1953. [Google Scholar]
- Thomas, J.A.; Welch, J.J.; Lanfear, R.; Bromham, L. A generation time effect on the rate of molecular evolution in invertebrates. Mol. Biol. Evol. 2010, 27, 1173–1180. [Google Scholar] [CrossRef]
- Andreasen, K.; Baldwin, B.G. Unequal evolutionary rates between annual and perennial lineages of checker mallows (Sidalcea, Malvaceae): Evidence from 18S–26S rDNA internal and external transcribed spacers. Mol. Biol. Evol. 2001, 18, 936–944. [Google Scholar] [CrossRef]
- Nikolaev, S.I.; Montoya-Burgos, J.I.; Popadin, K.; Parand, L.; Margulies, E.H.; National Institutes of Health Intramural Sequencing Center Comparative Sequencing Program; Antonarakis, S.E. Life-history traits drive the evolutionary rates of mammalian coding and noncoding genomic elements. Proc. Natl. Acad. Sci. USA 2007, 104, 20443–20448. [Google Scholar] [CrossRef]
- Welch, J.; Bininda-Emonds, O.; Bromham, L. Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evol. Biol. 2008. [Google Scholar] [CrossRef]
- Tsantes, C.; Steiper, M.E. Age at first reproduction explains rate variation in the strepsirrhine molecular clock. Proc. Natl. Acad. Sci. USA 2009, 106, 18165–18170. [Google Scholar] [CrossRef]
- Lanfear, R.; Thomas, J.A.; Welch, J.J.; Brey, T.; Bromham, L. Metabolic rate does not calibrate the molecular clock. Proc. Natl. Acad. Sci. USA 2007, 104, 15388–15393. [Google Scholar] [CrossRef] [Green Version]
- April, J.; Hanner, R.H.; Mayden, R.L.; Bernatchez, L. Metabolic rate and climatic fluctuations shape continental wide pattern of genetic divergence and biodiversity in fishes. PLoS One 2013, 8, e70296. [Google Scholar]
- Estabrook, G.F.; Smith, G.R.; Dowling, T.E. Body mass and temperature influence rates of mitochondrial DNA evolution in North American cyprinid fish. Evolution 2007, 61, 1176–1187. [Google Scholar] [CrossRef]
- Anderson, K.J.; Jetz, W. The broad-scale ecology of energy expenditure of endotherms. Ecol. Lett. 2005, 8, 310–318. [Google Scholar] [CrossRef]
- Clarke, A.; Rothery, P.; Isaac, N.J.B. Scaling of basal metabolic rate with body mass and temperature in mammals. J. Anim. Ecol. 2010, 79, 610–619. [Google Scholar] [CrossRef]
- McKechnie, A.E.; Lovegrove, B.G. Avian facultative hypothermic responses: A review. Condor 2002, 104, 705–724. [Google Scholar] [CrossRef]
- Munro, D.; Thomas, D.W.; Humphries, M.M. Torpor patterns of hibernating eastern chipmunks Tamias striatus vary in response to the size and fatty acid composition of food hoards. J. Anim. Ecol. 2005, 74, 692–700. [Google Scholar] [CrossRef]
- Van Valen, L.M. A new evolutionary law. Evol. Theory 1973, 1, 1–30. [Google Scholar]
- Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 2004, 163, 192–211. [Google Scholar] [CrossRef] [Green Version]
- Ohta, T. Population size and the rate of evolution. J. Mol. Evol. 1972, 1, 305–314. [Google Scholar] [CrossRef]
- Ohta, T. The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Systemat. 1992, 23, 263–286. [Google Scholar]
- Ohta, T.; Gillespie, J.H. Development of neutral and nearly neutral theories. Theor. Popul. Biol. 1996, 49, 128–142. [Google Scholar] [CrossRef]
- Woolfit, M.; Bromham, L. Population size and molecular evolution on islands. Proc. Biol. Sci. 2005, 272, 2277–2282. [Google Scholar] [CrossRef]
- Bromham, L.; Leys, R. Sociality and the rate of molecular evolution. Mol. Biol. Evol. 2005, 22, 1393–1402. [Google Scholar] [CrossRef]
- Woolfit, M.; Bromham, L. Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population size. Mol. Biol. Evol. 2003, 20, 1545–1555. [Google Scholar] [CrossRef]
- Hawks, J.; Wang, E.T.; Cochran, G.M.; Harpending, H.C.; Moyzis, R.K. Recent acceleration of human adaptive evolution. Proc. Natl. Acad. Sci. USA 2007, 104, 20753–20758. [Google Scholar] [CrossRef]
- McBride, P.; Wright, S.D.; Gillman, L.N. The effect of population size on rates and patterns of molecular evolution in New World passerines. Auckland University of Technology: Auckland, New Zealand, Unpublished work. 2013. [Google Scholar]
- Bazin, E.; Glemin, S.; Galtier, N. Population size does not influence mitochondrial genetic diversity in animals. Science 2006, 312, 570–572. [Google Scholar] [CrossRef]
- Hughes, A.L. Reduced microsatellite heterozygosity in island endemics supports the role of long-term effective population size in avian microsatellite diversity. Genetica 2010, 138, 1271–1276. [Google Scholar] [CrossRef]
- Stevens, M.H.H.; Sanchez, M.; Lee, J.; Finkel, S.E. Diversification rates increase with population size and resource concentration in an unstructured habitat. Genetics 2007, 177, 2243–2250. [Google Scholar] [CrossRef]
- Gossmann, T.I.; Keightley, P.D.; Eyre-Walker, A. The effect of variation in the effective population size on the rate of adaptive molecular evolution in eukaryotes. Genome Biol. Evol. 2012, 4, 658–667. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gillman, L.N.; Wright, S.D. Patterns of Evolutionary Speed: In Search of a Causal Mechanism. Diversity 2013, 5, 811-823. https://doi.org/10.3390/d5040811
Gillman LN, Wright SD. Patterns of Evolutionary Speed: In Search of a Causal Mechanism. Diversity. 2013; 5(4):811-823. https://doi.org/10.3390/d5040811
Chicago/Turabian StyleGillman, Len N., and Shane D. Wright. 2013. "Patterns of Evolutionary Speed: In Search of a Causal Mechanism" Diversity 5, no. 4: 811-823. https://doi.org/10.3390/d5040811
APA StyleGillman, L. N., & Wright, S. D. (2013). Patterns of Evolutionary Speed: In Search of a Causal Mechanism. Diversity, 5(4), 811-823. https://doi.org/10.3390/d5040811