Prolonged Summer Coccolithophore Blooms in the Northeastern Black Sea: Anomaly or Emerging Trend?
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Scheme and Hydrophysical Parameter Measurements
2.2. Meteorological Data
2.3. Determination of Nutrient Concentrations
2.4. Phytoplankton Analysis
2.5. Statistical Data Processing
3. Results
3.1. Wind and Species Domination
3.2. Dynamics of the Vertical Structure of the Water Column in 2022
3.3. Dynamics of Nutrient Concentrations
3.4. Dynamics of Coccolithophore and Diatom Biomass
4. Discussion
4.1. Phenology of Coccolithophore Bloom
4.2. Influence of Wind on the Dynamics of the Coccolithophores and Large Diatoms
4.3. Physical and Chemical Conditions
4.4. The Dynamics of Coccolithophore and Diatom Biomass
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Volk, T.; Hoffert, M.I. Ocean Carbon Pumps: Analysis of Relative Strengths and Efficiencies in Ocean-Driven Atmospheric CO2 Changes. In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present; Sundquist, E.T., Broecker, W.S., Eds.; American Geophysical Union: Washington, DC, USA, 1985; Volume 32, pp. 99–110. [Google Scholar]
- Sarmiento, J.L.; Gruber, N. Ocean Biogeochemical Dynamics; Princeton University Press: Princeton, NJ, USA, 2006; 526p. [Google Scholar]
- Legendre, L.; Rivkin, R.B.; Weinbauer, M.G.; Guidi, L.; Uitz, J. The Microbial Carbon Pump Concept: Potential Biogeochemical Significance in the Globally Changing Ocean. Prog. Oceanogr. 2015, 134, 432–450. [Google Scholar] [CrossRef]
- Le Moigne, F.A.C. Pathways of Organic Carbon Downward Transport by the Oceanic Biological Carbon Pump. Front. Mar. Sci. 2019, 6, 634. [Google Scholar] [CrossRef]
- Falkowski, P.G.; Barber, R.T.; Smetacek, V. Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science 1998, 281, 200–206. [Google Scholar] [CrossRef]
- Smetacek, V. Diatoms and the Ocean Carbon Cycle. Protist 1999, 150, 25–32. [Google Scholar] [CrossRef]
- Milliman, J.D. Production and Accumulation of Calcium Carbonate in the Ocean: Budget of a Non-Steady State. Glob. Biogeochem. Cycles 1993, 7, 927–957. [Google Scholar] [CrossRef]
- Poulton, A.J.; Adey, T.R.; Balch, W.M.; Holligan, P.M. Relating Coccolithophore Calcification Rates to Phytoplankton Community Dynamics: Regional Differences and Implications for Carbon Export. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 538–557. [Google Scholar] [CrossRef]
- Iglesias-Rodriguez, M.D.; Brown, C.W.; Doney, S.C.; Kleypas, J.; Kolber, D.; Kolber, Z.; Hayes, P.K.; Falkowski, P.G. Representing Key Phytoplankton Functional Groups in Ocean Cycle Models: Coccolithophorids. Glob. Biogeochem. Cycles 2002, 16, 1070. [Google Scholar] [CrossRef]
- Omand, M.M.; D’Asaro, E.A.; Lee, C.M.; Perry, M.J.; Briggs, N.; Cetinić, I.; Mahadevan, A. Eddy-Driven Subduction Exports Particulate Organic Carbon from the Spring Bloom. Science 2015, 348, 222–225. [Google Scholar] [CrossRef]
- Resplandy, L.; Lévy, M.; Mcgillicuddy, D.J. Effects of Eddy-Driven Subduction on Ocean Biological Carbon Pump. Glob. Biogeochem. Cycles 2019, 33, 1071–1084. [Google Scholar] [CrossRef]
- Stukel, M.R.; Ducklow, H.W. Stirring up the biological pump: Vertical mixing and carbon export in the Southern Ocean. Glob. Biogeochem. Cycles 2017, 31, 1420–1434. [Google Scholar] [CrossRef]
- Boyd, P.W.; Claustre, H.; Levy, M.; Siegel, D.A.; Weber, T. Multi-Faceted Particle Pumps Drive Carbon Sequestration in the Ocean. Nature 2019, 568, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Siegel, D.A.; Buesseler, K.O.; Doney, S.C.; Sailley, S.F.; Behrenfeld, M.J.; Boyd, P.W. Global Assessment of Ocean Carbon Export by Combining Satellite Observations and Food-Web Models. Glob. Biogeochem. Cycles 2014, 28, 181–196. [Google Scholar] [CrossRef]
- Steinberg, D.K.; Landry, M.R. Zooplankton and the Ocean Carbon Cycle. Ann. Rev. Mar. Sci. 2017, 9, 413–444. [Google Scholar] [CrossRef]
- Pinti, J.P.A.; Kiørboe, T.; Thygesen, U.H.; Visser, A. Trophic Interactions Drive the Emergence of Diel Vertical Migration Patterns: A Game-Theoretic Model of Copepod Communities. Proc. R. Soc. B Biol. Sci. 2019, 286, 20191645. [Google Scholar] [CrossRef]
- Nowicki, M.; DeVries, T.; Siegel, D.A. Quantifying the Carbon Export and Sequestration Pathways of the Ocean’s Biological Carbon Pump. Glob. Biogeochem. Cycles 2022, 36, e2021GB007083. [Google Scholar] [CrossRef]
- Henson, S.A.; Laufkötter, C.; Leung, S.; Giering, S.L.C.; Palevsky, H.I.; Cavan, E.L. Uncertain Response of Ocean Biological Carbon Export in a Changing World. Nat. Geosci. 2022, 15, 248–254. [Google Scholar] [CrossRef]
- Serra-Pompei, C.; Ward, B.A.; Pinti, J.; Visser, A.W.; Kiørboe, T.; Andersen, K.H. Linking Plankton Size Spectra and Community Composition to Carbon Export and Its Efficiency. Glob. Biogeochem. Cycles 2022, 36, e2021GB007275. [Google Scholar] [CrossRef]
- Stukel, M.R.; Décima, M.; Kelly, T.B.; Landry, M.R.; Nodder, S.D.; Ohman, M.D.; Selph, K.E.; Yingling, N. Relationships between Plankton Size Spectra, Net Primary Production, and the Biological Carbon Pump. Glob. Biogeochem. Cycles 2024, 38, e2023GB007994. [Google Scholar] [CrossRef]
- Barton, A.D.; Finkel, Z.V.; Ward, B.A.; Selph, K.E.; Yingling, N. On the Roles of Cell Size and Trophic Strategy in North Atlantic Diatom and Dinoflagellate Communities. Limnol. Oceanogr. 2013, 58, 254–266. [Google Scholar] [CrossRef]
- Lindemann, C.; St. John, M.A. A Seasonal Diary of Phytoplankton in the North Atlantic. Front. Mar. Sci. 2015, 1, 37. [Google Scholar] [CrossRef]
- Siegel, D.A.; Doney, S.C.; Yoder, J.A. The North Atlantic Spring Phytoplankton Bloom and Sverdrup’s Critical Depth Hypothesis. Science 2002, 296, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Holligan, P.; Fernandez, E.; Aiken, J.; Balch, W.M.; Boyd, P.; Burkill, P.H.; Finch, M.; Groom, S.B.; Malin, G.; Muller, K.; et al. A Biogeochemical Study of the Coccolithophore, Emiliania huxleyi, in the North Atlantic. Glob. Biogeochem. Cycles 1993, 7, 879. [Google Scholar] [CrossRef]
- Silkin, V.A.; Pautova, L.A.; Giordano, M.; Chasovnikov, V.K.; Vostokov, S.V.; Podymov, O.I.; Pakhomova, S.V.; Moskalenko, L.V. Drivers of Phytoplankton Blooms in the Northeastern Black Sea. Mar. Pollut. Bull. 2019, 138, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Mikaelyan, A.S. Winter Bloom of Diatom Nitzschia delicatula in the Open Waters of the Black Sea. Mar. Ecol. Prog. Ser. 1995, 129, 241–251. [Google Scholar] [CrossRef]
- Cokacar, T.; Kubilay, N.; Oguz, T. Structure of Emiliania huxleyi Blooms in the Black Sea Surface Waters as Detected by SeaWIFS Imagery. Geophys. Res. Lett. 2001, 28, 4607–4610. [Google Scholar] [CrossRef]
- Kideys, A.E. Fall and Rise of the Black Sea Ecosystem. Science 2002, 297, 1482–1484. [Google Scholar] [CrossRef]
- Kopelevich, O.V.; Burenkov, V.I.; Sheberstov, S.V.; Vazyulya, S.; Kravchishina, M.; Pautova, L.; Silkin, V.; Artemiev, V.; Grigoriev, A. Satellite Monitoring of Coccolithophore Blooms in the Black Sea from Ocean Color Data. Remote Sens. Environ. 2014, 146, 113–123. [Google Scholar] [CrossRef]
- Silkin, V.A.; Mikaelyan, A.S.; Pautova, L.A.; Fedorov, A.V. Annual Dynamics of Phytoplankton in the Black Sea in Relation to Wind Exposure. J. Mar. Sci. Eng. 2021, 9, 1435. [Google Scholar] [CrossRef]
- Thomson, R.; Fine, I. Estimating Mixed Layer Depth from Oceanic Profile Data. J. Atmos. Ocean. Tech. 2003, 20, 319–339. [Google Scholar] [CrossRef]
- Bordovsky, O.K.; Chernyakova, A.M. Sovremennye Metody Gidrokhimicheskikh Issledovanij Okeana [Modern Methods of Hydrochemical Ocean Research]; IO RAN: Moscow, Russia, 1992; 200p. (In Russian) [Google Scholar]
- Grasshoff, K.; Kremling, K.; Ehrhardt, M. (Eds.) Methods of Seawater Analysis, 3rd ed.; Wiley-VCH: Weinheim, Germany, 1999; 632p. [Google Scholar]
- Tomas, C.R. (Ed.) Identifying Marine Phytoplankton; Academic Press: San Diego, CA, USA, 1997; 858p. [Google Scholar]
- Throndsen, J.; Hasle, G.R.; Tangen, K. Norsk Kystplanktonflora; Almater Forlag: Oslo, Norway, 2003; 341p. [Google Scholar]
- WoRMS Editorial Board. World Register of Marine Species. 2025. Available online: https://www.marinespecies.org (accessed on 29 October 2025).
- Kiselev, I.A. Plankton of Seas and Continental Basins; Nauka: Leningrad, Russia, 1969; Volume 1, p. 657. (In Russian) [Google Scholar]
- Hillebrand, H.; Dürselen, C.-D.; Kirschtel, D.; Pollingher, U.; Zohary, T. Biovolume Calculation for Pelagic and Benthic Microalgae. J. Phycol. 1999, 35, 403–424. [Google Scholar] [CrossRef]
- Moncheva, S.; Parr, B. Manual for Phytoplankton Sampling and Analysis in the Black Sea; Black Sea Commission: Istanbul, Turkey, 2010; Available online: http://www.blacksea-commission.org (accessed on 15 July 2025).
- Tyrrell, T.; Merico, A. Emiliania huxleyi: Bloom Observations and the Conditions That Induce Them. In Coccolithophores: From Molecular Processes to Global Impact; Thierstein, H.R., Young, J.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 75–97. [Google Scholar]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed.; Cambridge University Press: Cambridge, UK, 2011; 649p. [Google Scholar]
- Paasche, E. A Review of the Coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with Particular Reference to Growth, Coccolith Formation, and Calcification-Photosynthesis Interactions. Phycologia 2001, 40, 503–529. [Google Scholar] [CrossRef]
- Lauderdale, J.M.; Dutkiewicz, S.; Williams, R.G.; Follows, M.J. Quantifying the Drivers of Ocean–Atmosphere CO2 Fluxes. Glob. Biogeochem. Cycles 2016, 30, 983–999. [Google Scholar] [CrossRef]
- Krivosheya, V.G.; Moskalenko, L.V.; Melnikov, V.A.; Skirta, A.Y. Effects of the Wind and Thermal Conditions Variability on the Structure and Dynamics of the Seawater in the Northeastern Black Sea. Oceanology 2012, 52, 453–466. [Google Scholar] [CrossRef]
- Tyrrell, T.; Holligan, P.M.; Mobley, C.D. Optical Impacts of Oceanic Coccolithophore Blooms. J. Geophys. Res. 1999, 104, 3223–3241. [Google Scholar] [CrossRef]
- Arkhipkin, V.S.; Gippius, F.N.; Koltermann, K.P.; Surkova, G.V. Wind Waves in the Black Sea: Results of a Hindcast Study. Nat. Hazards Earth Syst. Sci. 2014, 14, 2883–2897. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Stanichny, S.V.; Zatsepin, A.G.; Kremenetskiy, V.V. Long-Term Variations of the Black Sea Dynamics and Their Impact on the Marine Ecosystem. J. Mar. Syst. 2016, 163, 80–94. [Google Scholar] [CrossRef]
- Krause, J.W.; Brzezinski, M.A.; Villareal, T.A.; Wilson, C. Increased Kinetic Efficiency for Silicic Acid Uptake as a Driver of Summer Diatom Blooms in the North Pacific Subtropical Gyre. Limnol. Oceanogr. 2012, 57, 1084–1098. [Google Scholar] [CrossRef]
- Krause, J.W.; Duarte, C.M.; Marquez, I.A.; Assmy, P.; Fernández-Méndez, M.; Wiedmann, I.; Wassmann, P.; Kristiansen, S.; Agustí, S. Biogenic Silica Production and Diatom Dynamics in the Svalbard Region during Spring. Biogeosciences 2018, 15, 6503–6517. [Google Scholar] [CrossRef]
- Tilman, D. Resource Competition between Planktonic Algae: An Experimental and Theoretical Approach. Ecology 1977, 58, 338–348. [Google Scholar] [CrossRef]
- Tilman, D. Resource Competition and Community Structure; Princeton University Press: Princeton, NJ, USA, 1982; 296p. [Google Scholar]
- Abrosov, N.S.; Bogolyubov, A.G. Ekologo-Geneticheskie Zakonomernosti Sushchestvovaniya i Koėvolyutsii Vidov [Ecological and Genetic Patterns of Species Existence and Coevolution]; Nauka: Novosibirsk, Russia, 1988; 333p. (In Russian) [Google Scholar]
- Shoemaker, L.G.; Barner, A.K.; Bittleston, L.S.; Teufel, A.I. Quantifying the Relative Importance of Variation in Predation and the Environment for Species Coexistence. Ecol. Lett. 2020, 23, 939–950. [Google Scholar] [CrossRef]
- Siegel, P.; Baker, K.G.; Low-Décarie, E.; Geider, R.J. Phytoplankton Competition and Resilience under Fluctuating Temperature. Ecol. Evol. 2023, 13, e9851. [Google Scholar] [CrossRef]
- Mikaelyan, A.S.; Kubryakov, A.A.; Silkin, V.A.; Pautova, L.A.; Chasovnikov, V.K. Regional climate and patterns of phytoplankton annual succession in the open waters of the Black Sea. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2018, 142, 44–57. [Google Scholar] [CrossRef]
- Margalef, R. Life Forms of Phytoplankton as Survival Alternatives in an Unstable Environment. Oceanol. Acta 1978, 1, 493–509. [Google Scholar]
- Smayda, T.J. Ecological Features of Harmful Algal Blooms in Coastal Upwelling Ecosystems. S. Afr. J. Mar. Sci. 2000, 22, 219–253. [Google Scholar] [CrossRef]
- Glibert, P.M. Margalef Revisited: A New Phytoplankton Mandala Incorporating Twelve Dimensions, Including Nutritional Physiology. Harmful Algae 2016, 55, 25–30. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Mikaelyan, A.S.; Stanichny, S.V. Extremely Strong Coccolithophore Blooms in the Black Sea: The Decisive Role of Winter Vertical Entrainment of Deep Water. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2021, 125, 103554. [Google Scholar] [CrossRef]










| April | May | June | July | ||
|---|---|---|---|---|---|
| 2016 | Wind | 5.2 | 5.4 | 13.8 | 4.0 |
| Cells/L | 1.1 | 1.2 | |||
| 2017 | Wind | 7.9 | 2.4 | 0.01 | 5.6 |
| Cells/L | NA | 7.6 | |||
| 2019 | Wind | 1.2 | 0.8 | 8.8 (4.9) * | 2.4 ** |
| Cells/L | 3.0 | 3.8 | |||
| 2022 | Wind | 6.7 | 9.3 | 3.8 | 4.8 |
| Cells/L | NA | NA | 9.2 | 4.1 | |
| 2023 | Wind | 0.8 | 5.2 | 3.8 | 0.4 |
| Cells/L | 1.9 | 4.3 | 2.3 | 1.3 |
| Parameters | Carbonate Pump June–July | Organic Pumps August | p1 | p2 |
|---|---|---|---|---|
| Temperature | 20.23 | 24.77 | 5.4 × 10−5 | 0.002 |
| Salinity | 18.021 | 18.346 | 1.0 × 10−5 | 7.4 × 10−5 |
| Density | 11.80 | 10.84 | 0.003 | 0.012 |
| Phosphorus | 0.096 | 0.061 | 0.140 | 0.037 |
| Silicon | 7.232 | 1.995 | 1.0 × 10−8 | 3.0 × 10−7 |
| Nitrogen | 1.169 | 0.786 | 0.036 | 0.009 |
| N:P | 28.32 | 385.8 | 0.027 | 0.183 |
| Si:N | 7.675 | 3.505 | 0.0035 | 0.0015 |
| Si:P | 149.3 | 496.2 | 0.023 | 0.693 |
| Date | Cell’s Abundance, 106 Cells L−1 | Precipitation | |
|---|---|---|---|
| Date | mm | ||
| 11 July 2012 * | 8.1 | 6 July 2012 | flood |
| 6 June 2017 * | 3.7 | 31 May 2017 | 43.4 |
| 6 June 2022 | 8.5 | - | - |
| 21 July 2022 | 4.1 | 11 July 2022 | 32.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Silkin, V.; Pautova, L.; Chasovnikov, V.; Podymov, O.; Kremenetskiy, V. Prolonged Summer Coccolithophore Blooms in the Northeastern Black Sea: Anomaly or Emerging Trend? Diversity 2026, 18, 4. https://doi.org/10.3390/d18010004
Silkin V, Pautova L, Chasovnikov V, Podymov O, Kremenetskiy V. Prolonged Summer Coccolithophore Blooms in the Northeastern Black Sea: Anomaly or Emerging Trend? Diversity. 2026; 18(1):4. https://doi.org/10.3390/d18010004
Chicago/Turabian StyleSilkin, Vladimir, Larisa Pautova, Valeryi Chasovnikov, Oleg Podymov, and Viacheslav Kremenetskiy. 2026. "Prolonged Summer Coccolithophore Blooms in the Northeastern Black Sea: Anomaly or Emerging Trend?" Diversity 18, no. 1: 4. https://doi.org/10.3390/d18010004
APA StyleSilkin, V., Pautova, L., Chasovnikov, V., Podymov, O., & Kremenetskiy, V. (2026). Prolonged Summer Coccolithophore Blooms in the Northeastern Black Sea: Anomaly or Emerging Trend? Diversity, 18(1), 4. https://doi.org/10.3390/d18010004

