Log, Rock, and a Gradient of Choice: Speleomantes strinatii Adjusts Shelter Use with Stream Distance
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Species and Site
2.2. Sampling Design
2.3. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaeger, R.G. Moisture as a Factor Influencing the Distributions of Two Species of Terrestrial Salamanders. Oecologia 1971, 6, 191–207. [Google Scholar] [CrossRef]
- Wake, D.B. Adaptive Radiation of Salamanders in Middle American Cloud Forests. Ann. Mo. Bot. Gard. 1987, 74, 242–264. [Google Scholar] [CrossRef]
- Farallo, V.R.; Miles, D.B. The Importance of Microhabitat: A Comparison of Two Microendemic Species of Plethodon to the Widespread P. cinereus. Copeia 2016, 104, 67–77. [Google Scholar] [CrossRef]
- Petranka, J.W. Salamanders of the United States and Canada; Smithsonian Institution Press: Washington, DC, USA, 1998. [Google Scholar]
- Sutherland, C.; Royle, J.A.; Linden, D.W. oSCR: A Spatial Capture–Recapture R Package for Inference about Spatial Ecological Processes. Ecography 2019, 42, 1459–1469. [Google Scholar] [CrossRef]
- Rosa, G.; Costa, A.; Salvidio, S. Moving in the Dark: Enlightening the Spatial Population Ecology of European Cave Salamanders. Popul. Ecol. 2025, 1–10. [Google Scholar] [CrossRef]
- Rosa, G.; Salvidio, S.; Costa, A. European Plethodontid Salamanders on the Forest Floor: Testing for Age-Class Segregation and Habitat Selection. J. Herpetol. 2022, 56, 27–33. [Google Scholar] [CrossRef]
- Costa, A.; Crovetto, F.; Salvidio, S. European Plethodontid Salamanders on the Forest Floor: Local Abundance Is Related to Fine-Scale Environmental Factors. Herpetol. Conserv. Biol. 2016, 11, 344–349. [Google Scholar]
- Moore, S.J.; Nicholson, K.E. Beneath the Leaf-Litter: Can Salamander Personality Influence Forest-Floor Dynamics? Herpetologica 2021, 77, 209–218. [Google Scholar] [CrossRef]
- Rosa, G.; Salvidio, S.; Costa, A. The Role of Familiarity in Shelter Site Fidelity: Insights from a Mesocosm Experiment with a Plethodontid Salamander. Ethol. Ecol. Evol. 2024, 36, 616–626. [Google Scholar] [CrossRef]
- Keen, W.H. Influence of Moisture on the Activity of a Plethodontid Salamander. Copeia 1984, 1984, 684–688. [Google Scholar] [CrossRef]
- Kluber, M.R.; Olson, D.H.; Puettmann, K.J. Downed Wood Microclimates and Their Potential Impact on Plethodontid Salamander Habitat in the Oregon Coast Range. Northwest Sci. 2009, 83, 25–34. [Google Scholar] [CrossRef]
- Hill, S.; Johnson, I.; Kennedy, C.; Kennedy, I.; Mullins, C.; Roark, M.; Salazar, O.; Still, K.; Smith, W.H. Cover Object Availability and Preferences by Woodland Salamanders (Genus Plethodon) on Surface-Mined and Unmined Habitats in the Virginia Coalfields. Catesbeiana 2021, 41, 43–56. [Google Scholar]
- Grover, M.C. Determinants of Salamander Distributions along Moisture Gradients. Copeia 2000, 2000, 156–168. [Google Scholar] [CrossRef]
- Jaeger, R.G.; Wicknick, J.A.; Griffis, M.R.; Anthony, C.D. Socioecology of a Terrestrial Salamander: Juveniles Enter Adult Territories during Stressful Foraging Periods. Ecology 1995, 76, 533–543. [Google Scholar] [CrossRef]
- Scheffers, B.R.; Edwards, D.P.; Diesmos, A.; Williams, S.E.; Evans, T.A. Microhabitats Reduce Animal’s Exposure to Climate Extremes. Glob. Change Biol. 2014, 20, 495–503. [Google Scholar] [CrossRef]
- Farallo, V.R.; Muñoz, M.M.; Uyeda, J.C.; Miles, D.B. Scaling between Macro-to Microscale Climatic Data Reveals Strong Phylogenetic Inertia in Niche Evolution in Plethodontid Salamanders. Evolution 2020, 74, 979–991. [Google Scholar] [CrossRef]
- Lunghi, E.; Mammola, S.; Martínez, A.; Hesselberg, T. Behavioural Adjustments Enable the Colonization of Subterranean Environments. Zool. J. Linn. Soc. 2024, 201, 549–559. [Google Scholar] [CrossRef]
- Morris, D.W. Adaptation and Habitat Selection in the Eco-Evolutionary Process. Proc. R. Soc. B Biol. Sci. 2011, 278, 2401–2411. [Google Scholar] [CrossRef] [PubMed]
- Milanovich, J.R.; Peterman, W.E.; Nibbelink, N.P.; Maerz, J.C. Projected Loss of a Salamander Diversity Hotspot as a Consequence of Projected Global Climate Change. PLoS ONE 2010, 5, e12189. [Google Scholar] [CrossRef] [PubMed]
- Dondero, L.; Allaria, G.; Rosa, G.; Costa, A.; Ficetola, G.F.; Cogoni, R.; Grasselli, E.; Salvidio, S. Threats of the Emerging Pathogen Batrachochytrium salamandrivorans (Bsal) to Italian Wild Salamander Populations. Acta Herpetol. 2023, 18, 3–9. [Google Scholar] [CrossRef]
- Lanza, B. Speleomantes Strinatii (Aellen, 1958). Fauna D’italia 2007, 42, 152–156. [Google Scholar]
- Manenti, R. Dry Stone Walls Favour Biodiversity: A Case-Study from the Appennines. Biodivers. Conserv. 2014, 23, 1879–1893. [Google Scholar] [CrossRef]
- Costa, A.; Romano, A.; Rosa, G.; Salvidio, S. Weighted Individual-Resource Networks in Prey–Predator Systems: The Role of Prey Availability on the Emergence of Modular Structures. Integr. Zool. 2022, 17, 115–127. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Pennati, R.; Manenti, R. Spatial Segregation among Age Classes in Cave Salamanders: Habitat Selection or Social Interactions? Popul. Ecol. 2013, 55, 217–226. [Google Scholar] [CrossRef]
- Renet, J.; Leprêtre, L.; Champagnon, J.; Lambret, P. Monitoring Amphibian Species with Complex Chromatophore Patterns: A Non-Invasive Approach with an Evaluation of Software Effectiveness and Reliability. Herpetol. J. 2019, 29, 13–22. [Google Scholar] [CrossRef]
- Bolger, D.T.; Morrison, T.A.; Vance, B.; Lee, D.; Farid, H. A Computer-assisted System for Photographic Mark–Recapture Analysis. Methods Ecol. Evol. 2012, 3, 813–822. [Google Scholar] [CrossRef]
- Thomas, V.; Wang, Y.; Rooij, P.V.; Verbrugghe, E.; Baláž, V.; Bosch, J.; Cunningham, A.A.; Fisher, M.C.; Garner, T.W.J.; Gilbert, M.J.; et al. Mitigating Batrachochytrium salamandrivorans in Europe. Amphibia-Reptilia 2019, 40, 265–290. [Google Scholar] [CrossRef]
- Bürkner, P.-C.; Gabry, J.; Vehtari, A. Efficient Leave-One-out Cross-Validation for Bayesian Non-Factorized Normal and Student-t Models. Comput. Stat. 2021, 36, 1243–1261. [Google Scholar] [CrossRef]
- Bürkner, P.-C. Advanced Bayesian Multilevel Modeling with the R Package Brms. arXiv 2017, arXiv:1705.11123. [Google Scholar]
- Peig, J.; Green, A.J. New Perspectives for Estimating Body Condition from Mass/Length Data: The Scaled Mass Index as an Alternative Method. Oikos 2009, 118, 1883–1891. [Google Scholar] [CrossRef]
- MacCracken, J.G.; Stebbings, J.L. Test of a Body Condition Index with Amphibians. J. Herpetol. 2012, 46, 346–350. [Google Scholar] [CrossRef]
- Southerland, M.T. The Effects of Variation in Streamside Habitats on the Composition of Mountain Salamander Communities. Copeia 1986, 1986, 731–741. [Google Scholar] [CrossRef]
- Thybring, E.E.; Fredriksson, M. Wood and Moisture. In Springer Handbook of Wood Science and Technology; Niemz, P., Teischinger, A., Sandberg, D., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 355–397. ISBN 978-3-030-81315-4. [Google Scholar]
- Rittenhouse, T.A.G.; Harper, E.B.; Rehard, L.R.; Semlitsch, R.D. The Role of Microhabitats in the Desiccation and Survival of Anurans in Recently Harvested Oak–Hickory Forest. Copeia 2008, 2008, 807–814. [Google Scholar] [CrossRef]
- Brehm, A.M.; Mortelliti, A. Land-use Change Alters Associations between Personality and Microhabitat Selection. Ecol. Appl. 2021, 31, e02443. [Google Scholar] [CrossRef]
- Romano, A.; Costa, A.; Salvidio, S.; Menegon, M.; Garollo, E.; Tabarelli de Fatis, K.; Miserocchi, D.; Matteucci, G.; Pedrini, P. Forest Management and Conservation of an Elusive Amphibian in the Alps: Habitat Selection by the Golden Alpine Salamander Reveals the Importance of Fine Woody Debris. For. Ecol. Manag. 2018, 424, 338–344. [Google Scholar] [CrossRef]
- Blomquist, S.M. A Multi-Scale Assessment of Habitat Selection and Movement Patterns by Northern Leopard Frogs (Lithobates [Rana] pipiens) in a Managed Forest. Herpetol. Conserv. Biol. 2009, 4, 142–160. [Google Scholar]
- Indermaur, L.; Schmidt, B.R. Quantitative Recommendations for Amphibian Terrestrial Habitat Conservation Derived from Habitat Selection Behavior. Ecol. Appl. 2011, 21, 2548–2554. [Google Scholar] [CrossRef]
- Otto, C.R.V.; Kroll, A.J.; McKenny, H.C. Amphibian Response to Downed Wood Retention in Managed Forests: A Prospectus for Future Biomass Harvest in North America. For. Ecol. Manag. 2013, 304, 275–285. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre. Mapping and Assessment of Primary and Old-Growth Forests in Europe; Publications Office: Luxembourg, 2021. [Google Scholar]
- Nordén, B.; Ryberg, M.; Götmark, F.; Olausson, B. Relative Importance of Coarse and Fine Woody Debris for the Diversity of Wood-Inhabiting Fungi in Temperate Broadleaf Forests. Biol. Conserv. 2004, 117, 1–10. [Google Scholar] [CrossRef]
- Siitonen, J. Forest Management, Coarse Woody Debris and Saproxylic Organisms: Fennoscandian Boreal Forests as an Example. Ecol. Bull. 2001, 49, 11–41. [Google Scholar]
- Manning, A.D.; Cunningham, R.B.; Lindenmayer, D.B. Bringing Forward the Benefits of Coarse Woody Debris in Ecosystem Recovery under Different Levels of Grazing and Vegetation Density. Biol. Conserv. 2013, 157, 204–214. [Google Scholar] [CrossRef]
Model | Formula | looic | elpd_diff | se_diff | elpd_loo | p_loo | Weight |
---|---|---|---|---|---|---|---|
bayes9 | Distance × Type | 93.32 | 0 | 0 | −46.66 | 15.54 | 0.434 |
bayes1 | Area | 93.54 | −0.11 | 2.32 | −46.77 | 11.82 | ~0 |
bayes2 | Distance | 93.80 | −0.24 | 2.54 | −46.90 | 13.52 | 0.306 |
bayes8 | Distance + Type | 93.83 | −0.25 | 2.32 | −46.91 | 14.26 | 0.023 |
bayes3 | Distance × Type + Area | 94.97 | −0.82 | 2.71 | −47.48 | 11.88 | ~0 |
bayes4 | Distance + Type + Area | 95.17 | −0.93 | 0.87 | −47.59 | 16.67 | ~0 |
bayes5 | Distance + Area | 95.47 | −1.07 | 2.37 | −47.73 | 15.31 | ~0 |
bayes7 | Distance × Area | 95.92 | −1.30 | 2.37 | −47.96 | 13.34 | ~0 |
bayes6 | Type | 99.52 | −3.10 | 4.33 | −49.76 | 14.02 | 0.237 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa, G.; Costa, A.; Salvidio, S. Log, Rock, and a Gradient of Choice: Speleomantes strinatii Adjusts Shelter Use with Stream Distance. Diversity 2025, 17, 632. https://doi.org/10.3390/d17090632
Rosa G, Costa A, Salvidio S. Log, Rock, and a Gradient of Choice: Speleomantes strinatii Adjusts Shelter Use with Stream Distance. Diversity. 2025; 17(9):632. https://doi.org/10.3390/d17090632
Chicago/Turabian StyleRosa, Giacomo, Andrea Costa, and Sebastiano Salvidio. 2025. "Log, Rock, and a Gradient of Choice: Speleomantes strinatii Adjusts Shelter Use with Stream Distance" Diversity 17, no. 9: 632. https://doi.org/10.3390/d17090632
APA StyleRosa, G., Costa, A., & Salvidio, S. (2025). Log, Rock, and a Gradient of Choice: Speleomantes strinatii Adjusts Shelter Use with Stream Distance. Diversity, 17(9), 632. https://doi.org/10.3390/d17090632