Effects of Fertilization and Reseeding on Above- and Belowground Biodiversity in Degraded Alpine Steppe
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Experimental Design
2.3. Plot Investigation and Sample Collection
2.4. Determination of Soil Physicochemical Properties
2.5. Soil Microbial Analysis
2.6. Data Processing and Statistical Analysis
3. Results
3.1. Effects of Different Restoration Measures on Vegetation Communities and Diversity
3.2. Effects of Different Restoration Measures on Soil Physicochemical Properties
3.3. Effects of Different Restoration Measures on Soil Microbial Communities
3.3.1. Composition Characteristics of Soil Microbial Communities Under Different Restoration Measures
3.3.2. Diversity Characteristics of Soil Microbial Communities Under Different Restoration Measures
3.3.3. Soil Microbial Ecological Networks Under Different Restoration Measures
3.3.4. Effects of Environmental Factors on Soil Microbial Communities Under Different Remediation Measures
4. Discussion
4.1. Effects of Different Restoration Measures on Aboveground Vegetation in Degraded Alpine Steppe
4.2. Effects of Different Restoration Measures on Soil Physicochemical Properties
4.3. Effects of Different Restoration Measures on Soil Microbial Diversity in Degraded Alpine Steppe
4.4. Microbial Co-Occurrence Networks Under Different Restoration Measures in Degraded Alpine Steppe
4.5. Correlation Between Microbial Communities and Environmental Factors in Degraded Alpine Steppe Under Different Restoration Measures
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Qin, T.; Yan, D.; Liu, S.; Feng, J.; Wang, Q.; Liu, H.; Gao, H. Analysis of the evolution of ecosystem service value and its driving factors in the Yellow River Source Area, China. Ecol. Indic. 2024, 158, 111344. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, X.; Zhang, J.; Li, C.; Zhang, Y.; Li, X. Change in Alpine Grassland NPP in Response to Climate Variation and Human Activities in the Yellow River Source Zone from 2000 to 2020. Sustainability 2022, 14, 8790. [Google Scholar] [CrossRef]
- Isbell, F.; Gonzalez, A.; Loreau, M.; Cowles, J.; Díaz, S.; Hector, A.; Mace, G.M.; Wardle, D.A.; O‘Connor, M.I.; Duffy, J.E.; et al. Linking the influence and dependence of people on biodiversity across scales. Nature 2017, 546, 65–72. [Google Scholar] [CrossRef]
- Coban, O.; De Deyn, G.B.; van der Ploeg, M. Soil microbiota as game-changers in restoration of degraded lands. Science 2022, 375, abe0725. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Osborne, B.; Zhou, H.; Wu, J.; Zhang, W.; Zou, J. Edaphic factors control microbial biomass and elemental stoichiometry in alpine meadow soils of the Tibet Plateau. Plant Soil 2024, 503, 247–262. [Google Scholar] [CrossRef]
- Li, W.; Shang, X.; Yan, H.; Xu, J.; Liang, T.; Zhou, H. Impact of restoration measures on plant and soil characteristics in the degraded alpine grasslands of the Qinghai Tibetan Plateau: A meta-analysis. Agric. Ecosyst. Environ. 2023, 347, 108394. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, T.; Guo, R.; Li, H.; Zhang, R.; Allan Degen, A.; Huang, K.; Wang, X.; Bai, Y.; Shang, Z. Fencing enclosure alters nitrogen distribution patterns and tradeoff strategies in an alpine meadow on the Qinghai-Tibetan Plateau. CATENA 2021, 197, 104948. [Google Scholar] [CrossRef]
- Gu, S.; Zhou, X.; Yu, H.; Yan, H.; Wang, Y.; Liu, Y.; Wang, Z.; Feng, K.; Du, X.; Lu, G.; et al. Microbial and chemical fertilizers for restoring degraded alpine grassland. Biol. Fertil. Soils 2023, 59, 911–926. [Google Scholar] [CrossRef]
- Tian, L.; Yang, W.; Ji-Shi, A.; Ma, Y.; Zhao, W.; Chen, Y.; Zhou, Q.; Qu, G.; Zhao, J.; Wu, G.-L. Artificial reseeding improves multiple ecosystem functions in an alpine sandy meadow of the eastern Tibetan Plateau. Land Degrad. Dev. 2023, 34, 2052–2060. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, X.; Zhou, C.; Shao, X.; Shi, Z.; Li, H.; Su, H.; Qin, R.; Chang, T.; Hu, X.; et al. Alpine Grassland Degradation and Its Restoration in the Qinghai–Tibet Plateau. Grasses 2023, 2, 31–46. [Google Scholar] [CrossRef]
- Sun, J.; Liang, E.; Barrio, I.C.; Chen, J.; Wang, J.; Fu, B. Fences undermine biodiversity targets. Science 2021, 374, 269. [Google Scholar] [CrossRef]
- Zhang, P.; Yu, T.; Shan, D.; Yan, R.; Zhang, L.; Wang, J.; Wuren, Q. Investigation into the Effects of Different Restoration Techniques on the Soil Nutrient Status in Degraded Stipa grandis Grassland. Agronomy 2024, 14, 57. [Google Scholar] [CrossRef]
- Yu, H.; Liu, Q.; Deng, Y.; Gu, S.S.; Lu, G.X.; Zhou, X.L. Effects of Reseeding and Fertilization on Bacterial Communities in Rhizosphere Soil of Alpine Degraded Grassland. Huan Jing Ke Xue 2024, 45, 7350–7357. [Google Scholar] [CrossRef]
- Li, X.; Ma, Y.; Duan, C.; Chai, Y.; Xu, W. Effects of Fertilization and Reseeding on Biomass and Species Diversity of Patchy Degraded Alpine Meadows with Different Slope Directions. Chin. J. Grassl. 2024, 46, 1–13. [Google Scholar]
- Yu, H.; Liu, Y.; Deng, Y.; Lu, G.X.; Yan, H.L.; Wang, Y.C. Effects of the Transformation from Natural Alpine Grassland to Mixed Artificial Grassland on the Characteristics of Soil Microbial Community. Huan Jing Ke Xue 2023, 44, 2928–2935. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Sun, Q.; Zhang, S.; Li, W.; Wang, X.; Long, R.; Jin, G.; Zhang, B. Effects of No-Till Seeding and Fertilization on Vegetation Restoration and Soil Physicochemical Properties in Alpine Degraded Grazing Grasslands. Agronomy 2025, 15, 578. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, X.; Qin, W.; Wang, S. Ecological Restoration Enhances the Stability and Associated Organic Carbon of Soil Aggregates in a Tibetan Alpine Meadow. Land Degrad. Dev. 2025, 36, 1206–1218. [Google Scholar] [CrossRef]
- Zong, N.; Shi, P.; Zheng, L.; Zhou, T.; Cong, N.; Hou, G.; Song, M.; Tian, J.; Zhang, X.; Zhu, J. Restoration effects of fertilization and grazing exclusion on different degraded alpine grasslands: Evidence from a 10-year experiment. Ecol. Eng. 2021, 170, 106361. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, L.; Fang, H.; Dang, Z.; Zhao, J.; Wu, G.-L. Reseeding improved productivity but not soil functions in the severely degraded alpine meadows on the Qinghai-Tibetan Plateau. Restor. Ecol. 2025, 33, e70019. [Google Scholar] [CrossRef]
- Slodowicz, D.; Durbecq, A.; Ladouceur, E.; Eschen, R.; Humbert, J.-Y.; Arlettaz, R. The relative effectiveness of different grassland restoration methods: A systematic literature search and meta-analysis. Ecol. Solut. Evid. 2023, 4, e12221. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, X.; Ma, Y.; Wang, Y.; Ma, Y.; Xie, L. Fertilization can accelerate the pace of soil microbial community response to rest-grazing duration in the three-river source region of China. Ecol. Evol. 2023, 13, e10734. [Google Scholar] [CrossRef]
- Akiyama, T.; Kawamura, K. Grassland degradation in China: Methods of monitoring, management and restoration. Grassl. Sci. 2007, 53, 1–17. [Google Scholar] [CrossRef]
- Zhao, F.; Xu, B.; Yang, X.; Jin, Y.; Li, J.; Xia, L.; Chen, S.; Ma, H. Remote Sensing Estimates of Grassland Aboveground Biomass Based on MODIS Net Primary Productivity (NPP): A Case Study in the Xilingol Grassland of Northern China. Remote Sens. 2014, 6, 5368–5386. [Google Scholar] [CrossRef]
- Dong, L.; Li, J.; Sun, J.; Yang, C. Soil degradation influences soil bacterial and fungal community diversity in overgrazed alpine meadows of the Qinghai-Tibet Plateau. Sci. Rep. 2021, 11, 11538. [Google Scholar] [CrossRef]
- Li, C.; Zhang, D.; Xu, G.; Yan, R.; Huang, Y.; Feng, L.; Yi, J.; Xue, X.; Liu, H. Effects of Alpine Grassland Degradation on Soil Microbial Communities in Qilian Mountains of China. J. Soil Sci. Plant Nutr. 2023, 23, 912–923. [Google Scholar] [CrossRef]
- Tu, Q.; Yan, Q.; Deng, Y.; Michaletz, S.T.; Buzzard, V.; Weiser, M.D.; Waide, R.; Ning, D.; Wu, L.; He, Z.; et al. Biogeographic patterns of microbial co-occurrence ecological networks in six American forests. Soil Biol. Biochem. 2020, 148, 107897. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, J.; Wang, B.; Fan, B.; Zhou, G. Soil microbial network complexity predicts soil multifunctionality better than soil microbial diversity during grassland-farmland-shrubland conversion on the Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2025, 379, 109356. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Li, S.; Tang, R.; Su, J. Microbial network complexity and diversity together drive the soil ecosystem multifunctionality of forests during different woodland use intensity in dry and wet season. For. Ecol. Manag. 2023, 542, 121086. [Google Scholar] [CrossRef]
- Wagg, C.; Schlaeppi, K.; Banerjee, S.; Kuramae, E.E.; van der Heijden, M.G.A. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 2019, 10, 4841. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Li, S.; Wang, S.; Huang, Q.; Shen, Q.; Kang, Y.; Shi, M.; Zhang, Y.; Luo, D. Latitudinal gradient and environmental drivers of soil organic carbon in permafrost regions of the Headwater Area of the Yellow River. Carbon Neutrality 2025, 4, 16. [Google Scholar] [CrossRef]
- Sanaei, A.; Ali, A.; Chahouki, M.A.Z.; Jafari, M. Plant coverage is a potential ecological indicator for species diversity and aboveground biomass in semi-steppe rangelands. Ecol. Indic. 2018, 93, 256–266. [Google Scholar] [CrossRef]
- Tilman, D. Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. Proc. Natl. Acad. Sci. USA 2004, 101, 10854–10861. [Google Scholar] [CrossRef]
- Mi, W.; Zheng, H.; Chi, Y.; Ren, W.; Zhang, W.; Zhang, H.; Liu, Y.; Yuan, F. Reseeding inhibits grassland vegetation degradation—Global evidence. Agric. Ecosyst. Environ. 2024, 374, 109144. [Google Scholar] [CrossRef]
- Niu, K.; Choler, P.; de Bello, F.; Mirotchnick, N.; Du, G.; Sun, S. Fertilization decreases species diversity but increases functional diversity: A three-year experiment in a Tibetan alpine meadow. Agric. Ecosyst. Environ. 2014, 182, 106–112. [Google Scholar] [CrossRef]
- Singh, K.; Sobuj, N.; Byun, C. Native plants do not benefit from arriving early, but invasives pay to arrive late. Ecol. Indic. 2024, 166, 112453. [Google Scholar] [CrossRef]
- Wu, D.; Senbayram, M.; Zang, H.; Ugurlar, F.; Aydemir, S.; Brüggemann, N.; Kuzyakov, Y.; Bol, R.; Blagodatskaya, E. Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils. Appl. Soil Ecol. 2018, 129, 121–127. [Google Scholar] [CrossRef]
- Desie, E.; Vancampenhout, K.; van den Berg, L.; Nyssen, B.; Weijters, M.; den Ouden, J.; Muys, B. Litter share and clay content determine soil restoration effects of rich litter tree species in forests on acidified sandy soils. For. Ecol. Manag. 2020, 474, 118377. [Google Scholar] [CrossRef]
- Robles-Aguilar, A.A.; Pang, J.; Postma, J.A.; Schrey, S.D.; Lambers, H.; Jablonowski, N.D. The effect of pH on morphological and physiological root traits of Lupinus angustifolius treated with struvite as a recycled phosphorus source. Plant Soil 2019, 434, 65–78. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, Z.; Li, Q.; Zou, J.; Feng, Z.; Wen, T. Effects of Pinus sylvestris var. mongolica afforestation on soil physicochemical properties at the southern edge of the Mu Us Sandy Land, China. For. Ecol. Manag. 2023, 545, 121254. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Yang, Y.; Zhang, Y.; Wang, J.; Zhang, M.; Wu, C.; Zou, J.; Zhou, H.; Li, J. Alpine meadow degradation regulates soil microbial diversity via decreasing plant production on the Qinghai-Tibetan Plateau. Ecol. Indic. 2024, 163, 112097. [Google Scholar] [CrossRef]
- Du, Y.; Yang, Y.; Wu, S.; Gao, X.; He, X.; Dong, S. Core microbes regulate plant-soil resilience by maintaining network resilience during long-term restoration of alpine grasslands. Nat. Commun. 2025, 16, 3116. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, D.; Jiang, Z.; Sun, P.; Xiao, H.; Yuxin, W.; Chen, J. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Sci. Total Environ. 2019, 651, 2281–2291. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Liang, B.; Li, X.; Lv, H.; Zhou, W.; Wu, X.; Wang, L. Digging deeper to find the effect of long-term greenhouse cultivation with excessive fertilization and irrigation on the structure and assemblage of soil bacterial community. Geoderma 2024, 451, 117087. [Google Scholar] [CrossRef]
- Shi, Y.; Delgado-Baquerizo, M.; Li, Y.; Yang, Y.; Zhu, Y.-G.; Peñuelas, J.; Chu, H. Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. Environ. Int. 2020, 142, 105869. [Google Scholar] [CrossRef]
- Su, H.; Ma, L.; Chang, T.; Qin, R.; Zhang, Z.; She, Y.; Wei, J.; Zhou, C.; Hu, X.; Shi, Z.; et al. Effects of Main Land-Use Types on Plant and Microbial Diversity and Ecosystem Multifunctionality in Degraded Alpine Grasslands. Land 2023, 12, 638. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, H.; Zuo, J.; Chen, P.; She, Y.; Yao, B.; Dong, S.; Wu, J.; Li, F.; Njoroge, D.M.; et al. Responses of Soil Microbial Metabolic Activity and Community Structure to Different Degraded and Restored Grassland Gradients of the Tibetan Plateau. Front. Plant Sci. 2022, 13, 770315. [Google Scholar] [CrossRef]
- Witt, C.; Setälä, H. Do plant species of different resource qualities form dissimilar energy channels below-ground? Appl. Soil Ecol. 2010, 44, 270–278. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Huang, M.; Zhou, S. Plant diversity promotes soil fungal pathogen richness under fertilization in an alpine meadow. J. Plant Ecol. 2020, 14, 323–336. [Google Scholar] [CrossRef]
- Wen, Y.-C.; Li, H.-Y.; Lin, Z.-A.; Zhao, B.-Q.; Sun, Z.-B.; Yuan, L.; Xu, J.-K.; Li, Y.-Q. Long-term fertilization alters soil properties and fungal community composition in fluvo-aquic soil of the North China Plain. Sci. Rep. 2020, 10, 7198. [Google Scholar] [CrossRef]
- Cao, X.; Liu, H.; Zhang, R.; Wen, Y.; Ma, L.; Xu, Z.; Wen, L.; Zhuo, Y.; Liu, D.; Wang, L. Composition, Predicted Functions, and Co-occurrence Networks of Bacteria and Fungi in Hummock Wetlands of Northeastern Inner Mongolia, China. Microb. Ecol. 2025, 88, 34. [Google Scholar] [CrossRef]
- Shu, X.; Liu, W.; Hu, Y.; Xia, L.; Fan, K.; Zhang, Y.; Zhang, Y.; Zhou, W. Ecosystem multifunctionality and soil microbial communities in response to ecological restoration in an alpine degraded grassland. Front. Plant Sci. 2023, 14, 1173962. [Google Scholar] [CrossRef]
- Wan, P.; Zhang, F.; Zhang, K.; Li, Y.; Qin, R.; Yang, J.; Fang, C.; Kuzyakov, Y.; Li, S.; Li, F.-M. Soil warming decreases carbon availability and reduces metabolic functions of bacteria. CATENA 2023, 223, 106913. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Z.; Zhang, B.; Zhang, R.; Xing, F. Planting grass enhances relations between soil microbes and enzyme activities and restores soil functions in a degraded grassland. Front. Microbiol. 2024, 15, 1290849. [Google Scholar] [CrossRef]
- Li, D.; Xu, H.; Li, Y.; Xu, J.; Zhang, M.; Wu, J. Sheep dung addition and reseeding promote ecosystem multifunctionality by mediating soil microbial network complexity in a subtropical grassland. Appl. Soil Ecol. 2025, 211, 106157. [Google Scholar] [CrossRef]
- Wu, X.; Yang, J.; Ruan, H.; Wang, S.; Yang, Y.; Naeem, I.; Wang, L.; Liu, L.; Wang, D. The diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation. Ecol. Indic. 2021, 129, 107989. [Google Scholar] [CrossRef]
- Wu, B.; Ding, M.; Zhang, H.; Devlin, A.T.; Wang, P.; Chen, L.; Zhang, Y.; Xia, Y.; Wen, J.; Liu, L.; et al. Reduced soil multifunctionality and microbial network complexity in degraded and revegetated alpine meadows. J. Environ. Manag. 2023, 343, 118182. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, L.; Che, L.; Su, Y.; Li, Y. Nutrients addition decreases soil fungal diversity and alters fungal guilds and co-occurrence networks in a semi-arid grassland in northern China. Sci. Total Environ. 2024, 926, 172100. [Google Scholar] [CrossRef]
- Jin, J.; Zhao, D.; Wang, J.; Wang, Y.; Zhu, H.; Wu, Y.; Fang, L.; Bing, H. Fungal community determines soil multifunctionality during vegetation restoration in metallic tailing reservoir. J. Hazard. Mater. 2024, 478, 135438. [Google Scholar] [CrossRef]
- Liao, H.; Zhang, Y.; Zuo, Q.; Du, B.; Chen, W.; Wei, D.; Huang, Q. Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China. Sci. Total Environ. 2018, 635, 784–792. [Google Scholar] [CrossRef]
- Ai, C.; Zhang, S.; Zhang, X.; Guo, D.; Zhou, W.; Huang, S. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma 2018, 319, 156–166. [Google Scholar] [CrossRef]
- Mei, N.; Zhang, X.; Wang, X.; Peng, C.; Gao, H.; Zhu, P.; Gu, Y. Effects of 40 years applications of inorganic and organic fertilization on soil bacterial community in a maize agroecosystem in northeast China. Eur. J. Agron. 2021, 130, 126332. [Google Scholar] [CrossRef]
- Tan, H.; Barret, M.; Mooij, M.J.; Rice, O.; Morrissey, J.P.; Dobson, A.; Griffiths, B.; O’Gara, F. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol. Fertil. Soils 2013, 49, 661–672. [Google Scholar] [CrossRef]
- Zhu, R.; Liu, J.; Wang, J.; Han, W.; Shen, Z.; Muraina, T.O.; Chen, J.; Sun, D. Comparison of soil microbial community between reseeding grassland and natural grassland in Songnen Meadow. Sci. Rep. 2020, 10, 16884. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; He, Y.; Zhou, L.; Liu, R.; Chen, H.; Du, Z.; Fu, Y.; Zhu, Y.; Zhou, Y.; Wu, C.; et al. Opposite effects of soil pH on bacteria and fungi β diversity in forests at a continental scale. J. Environ. Manag. 2024, 370, 122428. [Google Scholar] [CrossRef]
- Kong, C.; Zhang, S.; Yuan, S.; Wang, W.; Song, X.; Guo, D.; Lawi, A.S. Soil bacterial community characteristics and its effect on organic carbon under different fertilization treatments. Front. Microbiol. 2024, 15, 1356171. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chen, L.; Xu, J.; Ma, L.; Olk, D.C.; Zhao, B.; Zhang, J.; Xin, X. Chemical nature of soil organic carbon under different long-term fertilization regimes is coupled with changes in the bacterial community composition in a Calcaric Fluvisol. Biol. Fertil. Soils 2018, 54, 999–1012. [Google Scholar] [CrossRef]
- Li, D.; Li, S.; Chen, H.; Wu, J. Reseeding promotes plant biomass by improving microbial community stability and soil fertility in a degraded subalpine grassland. Geoderma 2025, 453, 117160. [Google Scholar] [CrossRef]
Index | F | B | F + B | CK | |
---|---|---|---|---|---|
Bacteria | Chao 1 | 2190.8 ± 69.231 | 2351 ± 75.247 | 2269.6 ± 58.795 | 2171.8 ± 143.447 |
Faith’s PD | 116.86 ± 2.289 | 128.49 ± 3.222 | 128.85 ± 8.518 | 118.96 ± 3.53 | |
Shannon | 9.83 ± 0.057 | 9.92 ± 0.071 | 9.8 ± 0.054 | 9.84 ± 0.095 | |
Simpson | 0.997 ± 0.0002 | 0.997 ± 0.0002 | 0.997 ± 0.0002 | 0.997 ± 0.0002 | |
Fungi | Chao 1 | 545.4 ± 45.00 | 606.6 ± 49.29 | 588 ± 23.44 | 542.8 ± 12.67 |
Faith’s PD | 135.83 ± 12.07 | 168.31 ± 16.89 | 145.03 ± 7.98 | 147.3 ± 2.34 | |
Shannon | 6.1 ± 0.44 | 5.85 ± 0.63 | 6.56 ± 0.26 | 6.67 ± 0.18 | |
Simpson | 0.94 ± 0.02 ab | 0.88 ± 0.06 a | 0.97 ± 0.01 b | 0.97 ± 0.01 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, X.; Wang, S.; Huangqing, D.; Kang, Y.; Zhang, Y.; Shi, M.; Yang, L.; Yang, M. Effects of Fertilization and Reseeding on Above- and Belowground Biodiversity in Degraded Alpine Steppe. Diversity 2025, 17, 617. https://doi.org/10.3390/d17090617
Ning X, Wang S, Huangqing D, Kang Y, Zhang Y, Shi M, Yang L, Yang M. Effects of Fertilization and Reseeding on Above- and Belowground Biodiversity in Degraded Alpine Steppe. Diversity. 2025; 17(9):617. https://doi.org/10.3390/d17090617
Chicago/Turabian StyleNing, Xiaochun, Shouxing Wang, Dongzhi Huangqing, Yanbin Kang, Yafei Zhang, Mingming Shi, Liusheng Yang, and Mingxin Yang. 2025. "Effects of Fertilization and Reseeding on Above- and Belowground Biodiversity in Degraded Alpine Steppe" Diversity 17, no. 9: 617. https://doi.org/10.3390/d17090617
APA StyleNing, X., Wang, S., Huangqing, D., Kang, Y., Zhang, Y., Shi, M., Yang, L., & Yang, M. (2025). Effects of Fertilization and Reseeding on Above- and Belowground Biodiversity in Degraded Alpine Steppe. Diversity, 17(9), 617. https://doi.org/10.3390/d17090617