The Impact of Rice Phenology on Local Bat Activity and Community Composition in Gunung Keriang, Malaysia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
- (1)
- MADA A (6°10′ 59.2″ N, 100°19′ 22.4″ E)—This site is located in a rice field area near residential areas alongside the main road, which is equipped with streetlights;
- (2)
- MADA B (6°11′ 57.4″ N, 100°19′ 50.0″ E)—This site is located in a rice field area near residential areas, adjacent to a small stream along the main road;
- (3)
- MADA C (6°11′ 22.4″ N, 100°20′ 30.2″ E)—This site is located in a rice field area near a stream that provides water to the paddy plants, with residential areas scattered along the rice fields.
2.2. Echolocation Call Recording
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neuweiler, G. Foraging ecology and audition in echolocating bats. Trends Ecol. Evol. 1989, 4, 160–166. [Google Scholar] [CrossRef]
- Schnitzler, H.U.; Moss, C.F.; Denzinger, A. From spatial orientation to food acquisition in echolocating bats. Trends Ecol. Evol. 2003, 18, 386–394. [Google Scholar] [CrossRef]
- Danilovich, S.; Yovel, Y. Integrating vision and echolocation for navigation and perception in bats. Sci. Adv. 2019, 5, eaaw6503. [Google Scholar] [CrossRef]
- Griffin, D.R. Listening in the Dark, 2nd ed.; Yale University Press: New York, NY, USA, 1958. [Google Scholar]
- Jones, G. Echolocation. Curr. Biol. 2005, 15, R484–R488. [Google Scholar] [CrossRef]
- De Datta, S.K. Principles and Practices of Rice Production; International Rice Research Institute: Manila, Philippine, 1981.
- Damanik, R.I.; Maziah, M.; Ismail, M.R.; Ahmad, S.; Zain, A.M. Responses of the antioxidative enzymes in Malaysian rice (Oryza sativa L.) cultivars under submergence condition. Acta Physiol. Plant. 2010, 32, 739–747. [Google Scholar] [CrossRef]
- Kiritani, K. Integrated biodiversity management in paddy fields: Shift of paradigm from IPM toward IBM. Integr. Pest Manag. Rev. 2000, 5, 175–183. [Google Scholar] [CrossRef]
- Wan-Norafikah, O.; Chen, C.D.; Mohd-Amir, M.H.; Azahari, A.H.; Zainal-Abidin, A.H.; Nazni, W.A.; Mariam, M.; Mohd-Shahizan, J.; Sofian-Azirun, M. Mosquito larval surveillance in a rice field in Tanjung Karang, Selangor, Malaysia. Adv. Sci. Lett. 2017, 23, 1480–1483. [Google Scholar] [CrossRef]
- Sophia, E. Foraging behaviour of the microchiropteran bat, Hipposideros ater on chosen insect pests. J. Biopestic. 2010, 3, 68–73. [Google Scholar]
- Sedlock, J.L.; Stuart, A.M.; Horgan, F.G.; Hadi, B.; Como Jacobson, A.; Alviola, P.A.; Alvarez, J.D. Local-scale bat guild activity differs with rice growth stage at ground level in the Philippines. Diversity 2019, 11, 148. [Google Scholar] [CrossRef]
- Puig-Montserrat, X.; Flaquer, C.; Gómez-Aguilera, N.; Burgas, A.; Mas, M.; Tuneu, C.; Marquès, E.; López-Baucells, A. Bats actively prey on mosquitoes and other deleterious insects in rice paddies: Potential impact on human health and agriculture. Pest Manag. Sci. 2020, 76, 3759–3769. [Google Scholar] [CrossRef] [PubMed]
- Thongjued, K.; Chotigeat, W.; Bumrungsri, S.; Thanakiatkrai, P.; Kitpipit, T. Direct PCR-DGGE technique reveals wrinkle-lipped free-tailed bat (Chaerephon plicatus Buchanan, 1800) predominantly consume planthoppers and mosquitoes in central Thailand. Acta Chiropterologica 2021, 23, 93–106. [Google Scholar] [CrossRef]
- Norberg, U.M.; Rayner, J.M. Ecological morphology and flight in bats (Mammalia; Chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. London. B Biol. Sci. 1987, 316, 335–427. [Google Scholar]
- Segura-Trujillo, C.A.; Lidicker, W.Z., Jr.; Álvarez-Castañeda, S.T. New perspectives on trophic guilds of arthropodivorous bats in North and Central America. J. Mammal. 2016, 97, 644–654. [Google Scholar] [CrossRef]
- Schnitzler, H.U.; Kalko, E.K. Echolocation by insect-eating bats: We define four distinct functional groups of bats and find differences in signal structure that correlate with the typical echolocation tasks faced by each group. Bioscience 2001, 51, 557–569. [Google Scholar] [CrossRef]
- Giannini, N.P.; Kalko, E.K. Trophic structure in a large assemblage of phyllostomid bats in Panama. Oikos 2004, 105, 209–220. [Google Scholar] [CrossRef]
- Russo, D.; Ancillotto, L. Sensitivity of bats to urbanization: A review. Mamm. Biol. 2015, 80, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Roemer, C.; Julien, J.; Ahoudji, P.P.; Chassot, J.; Genta, M.; Colombo, R.; Botto, G.; Negreira, C.A.; Djossa, B.A.; Ing, R.K.; et al. An automatic classifier of bat sonotypes around the world. Methods Ecol. Evol. 2021, 12, 2432–2444. [Google Scholar] [CrossRef]
- Yoh, N.; Kingston, T.; McArthur, E.; Aylen, O.E.; Huang, J.C.C.; Jinggong, E.R.; Khan, F.A.A.; Lee, B.P.; Mitchell, S.L.; Bicknell, J.E.; et al. A machine learning framework to classify Southeast Asian echolocating bats. Ecol. Indic. 2022, 136, 108696. [Google Scholar] [CrossRef]
- Hazard, Q.C.; Froidevaux, J.S.; Yoh, N.; Moore, J.; Senawi, J.; Gibson, L.; Palmeirim, A.F. Foraging guild modulates insectivorous bat responses to habitat loss and insular fragmentation in peninsular Malaysia. Biol. Conserv. 2023, 281, 110017. [Google Scholar] [CrossRef]
- Preble, J.H.; Vincenot, C.E.; Hill, D.A.; Ohte, N. Capturing endangered endemic Okinawan bats with acoustic lures. J. Nat. Conserv. 2021, 64, 126074. [Google Scholar] [CrossRef]
- Görföl, T.; Huang, J.C.-C.; Csorba, G.; Győrössy, D.; Estók, P.; Kingston, T.; Szabadi, K.L.; McArthur, E.; Senawi, J.; Furey, N.M.; et al. ChiroVox: A public library of bat calls. PeerJ 2022, 10, e12445. [Google Scholar] [CrossRef] [PubMed]
- Nur-Izzati, A.; Nurul-Ain, E.; Ohte, N.; Vincenot, C.E. Bat community in response to insect abundance in relation to rice phenology in Peninsular Malaysia. Authorea Preprints 2023. [Google Scholar] [CrossRef]
- Dendup, T.; Soisook, P.; Bumrungsri, S. Habitat selections of Himalayan insectivorous bats in forest-dominated landscapes. Acta Chiropterologica 2021, 23, 165–176. [Google Scholar] [CrossRef]
- Kingston, T.; Francis, C.M.; Akbar, Z.; Kunz, T.H. Species richness in an insectivorous bat assemblage from Malaysia. J. Trop. Ecol. 2003, 19, 67–79. [Google Scholar] [CrossRef]
- Huang, J.C.C.; Rustiati, E.L.; Nusalawo, M.; Kingston, T. Echolocation and roosting ecology determine sensitivity of forest-dependent bats to coffee agriculture. Biotropica 2019, 51, 757–768. [Google Scholar] [CrossRef]
- Wilson, D.E.; Mittermeier, R.A. Hipposideridae. In Handbook of the Mammals of the World—Volume 9 Bats; Lynx Edicions: Cerdanyola del Vallès, Spain, 2019. [Google Scholar] [CrossRef]
- Katunzi, T.; Soisook, P.; Webala, P.W.; Armstrong, K.N.; Bumrungsri, S. Bat activity and species richness in different land-use types in and around Chome Nature Forest Reserve, Tanzania. Afr. J. Ecol. 2021, 59, 117–131. [Google Scholar] [CrossRef]
- Nur-Izzati, A.; Nurul-Ain, E.; Ohte, N.; Vincenot, C.E. Resource partitioning among bat species in Peninsular Malaysia rice fields. PeerJ 2024, 12, e16657. [Google Scholar] [CrossRef]
- Hashim, N.A.; Aziz, M.A.; Basari, N.; Saad, K.; Jasmi, A.H.; Hamid, S.A. Diversity and guild structure of insects during rice flowering stage at a selected rice field in Penang, Malaysia. Malays. Appl. Biol. 2017, 46, 161–169. [Google Scholar]
- Salmah, M.C.; Siregar, A.Z.; Hassan, A.; Nasution, Z. Dynamics of aquatic organisms in a rice field ecosystem: Effects of seasons and cultivation phases on abundance and predator-prey interactions. Trop. Ecol. 2017, 58, 177–191. [Google Scholar]
- Douglas, W.A.; Ingram, J.W. Rice-Field Insects (No. 632); United States Department of Agriculture: Washington, DC, USA, 1942.
- Kim, J.D.; Kim, H.J.; Rho, S.P.; Bae, S.H. Analysis of Damage on Rice by Brown Planthopper (Nilaparvata lugens Stal) I. Effects of Infested Stages of Rice and Appearance Days of Hopper-Burn on Yield Loss. Korean J. Appl. Entomol. 1984, 23, 153–157. [Google Scholar]
- Lee, J.H.; Hyun, J.S. The Yield Loss Due to the Brown Plant hopper, Nilaparvata lugens Stal, in Relation to the Growth Stages of the Rice. Korean J. Appl. Entomol. 1983, 22, 244–250. [Google Scholar]
- Maisarah, M.S.; Badrulhadza, A.; Mohd Fitri, M.; Jack, A.; Siti Norsuhana, M.; Ramachandran, K.; Chong, T.V.; Azmi, M. Buku Poket Perosak, Penyakit dan Rumpai Padi di Malaysia; Institut Penyelidikan dan Kemajuan Pertanian Malaysia (MARDI): Kuala Lumpur, Malaysia, 2015.
- Nurul-Ain, E.; Rosli, H.; Kingston, T. Resource availability and roosting ecology shape reproductive phenology of rain forest insectivorous bats. Biotropica 2017, 49, 382–394. [Google Scholar] [CrossRef]
- Ane, N.U.; Hussain, M. Diversity of insect pests in major rice growing areas of the world. J. Entomol. Zool. Stud. 2016, 4, 36–41. [Google Scholar]
- Heong, K.L.; Teng, P.S.; Moody, K. Managing rice pests with less chemicals. GeoJournal 1995, 35, 337–349. [Google Scholar] [CrossRef]
- Janzen, D.H. Insect diversity of a Costa Rican dry forest: Why keep it, and how? Biol. J. Linn. Soc. 1987, 30, 343–356. [Google Scholar] [CrossRef]
- Toffoli, R.; Rughetti, M. Effect of water management on bat activity in rice paddies. Paddy Water Environ. 2020, 18, 687–695. [Google Scholar] [CrossRef]
- Denzinger, A.; Schnitzler, H.U. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Front. Physiol. 2013, 4, 48812. [Google Scholar] [CrossRef]
- Shah, A.S.R.M.; Mansor, M.; Shah, S.A.M.; Rawi, C.S.M.; Ahmad, A.H.; Jaafar, I. Agrobiodiversity of Muda Rice agroecosystem: A case study in largest granary area of Malaysia. Wetl. Sci. 2008, 6, 34–44. [Google Scholar]
- Utthammachai, K.; Bumrungsri, S.; Chimchome, V.; Ross, J.; Mackie, I. The habitat use and feeding activity of Tadarida plicata in Thailand. Thai J. For. 2008, 27, 21–27. [Google Scholar]
- Suksai, P. Bat Activity in an Agricultural Landscape in Central Thailand. Master’s Thesis, Prince of Songkla University, Hat Yai, Thailand, 2018. [Google Scholar]
- Suksai, P.; Bumrungsri, S. Water bodies are a critical foraging habitat for insectivorous bats in tropical agricultural landscapes of central Thailand. Songklanakarin J. Sci. Technol. 2020, 42, 521–532. [Google Scholar]
- Boonchuay, P.; Bumrungsri, S. Bat activity in organic rice fields is higher than in conventional fields in landscapes of intermediate complexity. Diversity 2022, 14, 444. [Google Scholar] [CrossRef]
- Francis, C.M. A comparison of mist nets and two designs of harp traps for capturing bats. J. Mammal. 1989, 70, 865–870. [Google Scholar] [CrossRef]
- MacSwiney, M.C.; Clarke, F.M.; Racey, P.A. What you see is not what you get: The role of ultrasonic detectors in increasing inventory completeness in Neotropical bat assemblages. J. Appl. Ecol. 2008, 45, 1364–1371. [Google Scholar] [CrossRef]
- Kalko, E.K.; Estrada Villegas, S.; Schmidt, M.; Wegmann, M.; Meyer, C.F. Flying high—Assessing the use of the aerosphere by bats. Integr. Comp. Biol. 2008, 48, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Russo, D.; Voigt, C.C. The use of automated identification of bat echolocation calls in acoustic monitoring: A cautionary note for a sound analysis. Ecol. Indic. 2016, 66, 598–602. [Google Scholar] [CrossRef]
- Toledo-Hernández, M.; Xu, W.; Li, J.; Xiao, L.; Vincenot, C.; Wanger, T. Advancing on Agri-Environmental Schemes Through Technology Innovations in EastAsia—Two Case Studies. Biol. Conserv. 2025, in press. [Google Scholar]
- Kuenzi, A.J.; Morrison, M.L. Detection of bats by mist-nets and ultrasonic sensors. Wildl. Soc. Bull. 1998, 26, 307–311. [Google Scholar]
- O’Farrell, M.J.; Gannon, W.L. A comparison of acoustic versus capture techniques for the inventory of bats. J. Mammal. 1999, 80, 24–30. [Google Scholar] [CrossRef]
- Thomas, R.J.; Davison, S.P. Seasonal swarming behavior of Myotis bats revealed by integrated monitoring, involving passive acoustic monitoring with automated analysis, trapping, and video monitoring. Ecol. Evol. 2022, 12, e9344. [Google Scholar] [CrossRef] [PubMed]
Sonotype Name | Species/Potential Species | Guild | Number of Bat Passes According to Season | Percentage of Dominant Bat Activity in Phase of Paddy Growth Phase by Season (%) | ||
---|---|---|---|---|---|---|
Dry | Wet | Dry | Wet | |||
H. bicolor | Hipposideros bicolor | Forest | 2 | 0 | Vegetative (0.4%) | 0 |
H. larvatus | Hipposideros larvatus | Forest | 7 | 0 | Harvesting (0.3%) | 0 |
H. diadema | Hipposideros diadema | Forest | 2 | 23 | Germination (0.9%) | Harvesting (0.3%) |
H. armiger | Hipposideros armiger | Forest | 14 | 6 | Vegetative (1.3%) | Germination (0.4%) |
R. affinis | Rhinolophus affinis | Forest | 1 | 0 | Harvesting (0.2%) | 0 |
R. coelophyllus | Rhinolophus coelophyllus | Forest | 14 | 1 | Vegetative (2.2%) | 0 |
R. malayanus | Rhinolophus malayanus | Forest | 82 | 1 | Vegetative (11.5%) | 0 |
R. stheno | Rhinolophus stheno | Forest | 41 | 36 | Harvesting (5.2%) | Harvesting (2.0%) |
R. refulgens | Rhinolophus refulgens | Forest | 38 | 41 | Germination (13.9%) | Harvesting (0.6%) |
R. pusillus | Rhinolophus pusillus | Forest | 72 | 161 | Harvesting (9.5%) | Harvesting (2.4%) |
M. muricola | Myotis muricola | Forest | 0 | 3 | 0 | Germination (0.3%) |
S. kuhlii | Scotophilus kuhlii | Edge | 471 | 2237 | Ripening (44.7%) | Harvesting (29.1%) |
FMqCF72 | Miniopterus pusillus * | Edge | 665 | 1724 | Germination (55.3%) | Germination (28.1%) |
M. magnater | Miniopterus magnater | Edge | 1 | 2 | Vegetative (0.2%) | 0 |
FMqCF20 | Chaerephon plicatus * | Open space | 5 | 252 | Harvesting (0.8%) | Harvesting (3.7%) |
T. melanopogon | Taphozous melanopogon | Edge | 67 | 3124 | Germination (17.6%) | Germination (42.1%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, N.-I.; Elias, N.-‘A.; Ohte, N.; Vincenot, C.E. The Impact of Rice Phenology on Local Bat Activity and Community Composition in Gunung Keriang, Malaysia. Diversity 2025, 17, 618. https://doi.org/10.3390/d17090618
Abdullah N-I, Elias N-‘A, Ohte N, Vincenot CE. The Impact of Rice Phenology on Local Bat Activity and Community Composition in Gunung Keriang, Malaysia. Diversity. 2025; 17(9):618. https://doi.org/10.3390/d17090618
Chicago/Turabian StyleAbdullah, Nur-Izzati, Nurul-‘Ain Elias, Nobuhito Ohte, and Christian E. Vincenot. 2025. "The Impact of Rice Phenology on Local Bat Activity and Community Composition in Gunung Keriang, Malaysia" Diversity 17, no. 9: 618. https://doi.org/10.3390/d17090618
APA StyleAbdullah, N.-I., Elias, N.-‘A., Ohte, N., & Vincenot, C. E. (2025). The Impact of Rice Phenology on Local Bat Activity and Community Composition in Gunung Keriang, Malaysia. Diversity, 17(9), 618. https://doi.org/10.3390/d17090618