Study on the Rhizosphere Soil Microbial Diversity of Five Common Orchidaceae Species in the Transitional Zone Between Warm Temperate and Subtropical Regions
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sampling Design
2.3. Determination of Soil Bacterial Communities
2.4. Determination of Soil Physicochemical Properties
2.5. Statistical Analysis
3. Results
3.1. Species Composition and Diversity of Soil Bacterial Communities
3.2. Response of Bacterial Communities to Environmental Factors
3.3. Differences in Rhizosphere Soil Bacterial Community Assembly
3.4. Functional Diversity of Soil Microorganisms in Different Orchidaceae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bazzicalupo, M.; Calevo, J.; Smeriglio, A.; Cornara, L. Traditional, Therapeutic Uses and Phytochemistry of Terrestrial European Orchids and Implications for Conservation. Plants 2023, 12, 257. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Shi, R.; Yan, X.; Zhang, A.; Wang, Y.; Jiao, J.; Yu, Y.; Horowitz, A.R.; Lu, J.; He, X. Changes in Soil Chemistry and Microbial Communities in Rhizospheres of Planted Gastrodia elata on a Barren Slope and under a Forest. Forests 2024, 15, 331. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, D.; Huang, Y.; Zhong, L.; Liao, J.; Shi, Y.; Jiang, H.; Luo, Y.; Liang, Y.; Chai, S. The structure and diversity of bacteria and fungi in the roots and rhizosphere soil of three different species of Geodorum. BMC Genom. 2024, 25, 222. [Google Scholar] [CrossRef]
- Kaur, J.; Harder, C.B.; Sharma, J. Congeneric temperate orchids recruit similar-yet differentially abundant-endophytic bacterial communities that are uncoupled from soil, but linked to host phenology and population size. Am. J. Bot. 2023, 110, e16168. [Google Scholar] [CrossRef]
- Nargar, K.; Chen, J.-T. Orchid genomics and developmental biology, volume II. Front. Plant Sci. 2023, 14, 1136350. [Google Scholar] [CrossRef]
- Wang, T.; Chi, M.; Chen, J.; Liang, L.; Wang, Y.; Chen, Y. The Diversity and Growth-Promoting Potential of the Endophytic Fungi of Neuwiedia singapureana (Orchidaceae) in China. Diversity 2024, 16, 34. [Google Scholar] [CrossRef]
- Zhang, J.; Li, P.; Li, L.; Zhao, M.; Yan, P.; Liu, Y.; Li, W.; Ding, S.; Zhao, Q. Soil respiration and carbon sequestration response to short-term fertilization in wheat-maize cropping system in the North China Plain. Soil Tillage Res. 2025, 251, 106536. [Google Scholar] [CrossRef]
- Li, M.-H.; Zhang, G.-Q.; Liu, Z.-J.; Lan, S.-R. Subtribal relationships in Cymbidieae (Epidendroideae, Orchidaceae) reveal a new subtribe, Dipodiinae, based on plastid and nuclear coding DNA. Phytotaxa 2016, 246, 37–48. [Google Scholar] [CrossRef]
- Chamara, R.M.S.R.; Rammitsu, K.; Minobe, M.; Kinoshita, A.; Kotaka, N.; Yukawa, T.; Ogura-Tsujita, Y. Mycorrhizal Fungi of Phalaenopsis japonica (Orchidaceae) and Their Role in Seed Germination and Seedling Development. Diversity 2024, 16, 218. [Google Scholar] [CrossRef]
- Tawfiq, R.; Niu, K.; Hoehndorf, R.; Kulmanov, M. DeepGOMeta for functional insights into microbial communities using deep learning-based protein function prediction. Sci. Rep. 2024, 14, 31813. [Google Scholar] [CrossRef] [PubMed]
- Yao, N.; Wang, T.; Jiang, J.; Yang, Y.; Cao, X. Coriolopsis strumosa as an Orchid Endophytic Fungus and Its Spatial Distribution in Epidendrum sp. (Orchidaceae). Microorganisms 2024, 12, 1054. [Google Scholar] [CrossRef]
- Nogueira, P.T.S.; Freitas, E.F.S.; Silva, J.A.R.; Kasuya, M.C.M.; Pereira, O.L. Efficiency of mycorrhizal fungi for seed germination and protocorms development of commercial Cattleya species (Orchidaceae). Braz. J. Microbiol. 2025, 56, 589–599. [Google Scholar] [CrossRef]
- Kambara, K.; Shimura, H.; Fujino, K.; Masuta, C. Metagenomic Analyses of Viruses in the Orchid Mycorrhizal Interaction Using Improved Assemble Tools. Methods Mol. Biol. 2024, 2732, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Merckx, V.S.; Gomes, S.I. The Mycoheterotrophy. Curr. Biol. 2023, 33, R463–R465. [Google Scholar] [CrossRef]
- Lv, R.; Zhang, J.; Liao, H.; Yong, J.W.H.; Song, J. Study on the Soil Microbial Diversity of Cymbidium goeringii and Cymbidium faberi in the Qinling Mountains after Introduction and Domestication. Diversity 2023, 15, 951. [Google Scholar] [CrossRef]
- Hu, X.; Qi, X.; Ramírez, M.D.A.; Wu, Q.; Liu, S.; Deng, Z.; Li, X.; Zhang, N.; Zhang, H.; Dai, H.; et al. Analysis of the Fungal Community Composition in Endemic Orchids with Terrestrial Habitat in Subtropical Regions. Microorganisms 2024, 12, 1412. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Shao, Y.; Guo, S.; Liu, F.; Tian, X.; Chen, Y.; Yuan, Z.; Ye, Q. Latitudinal gradient patterns and driving factors of the fruit types of woody plants based on multiple forest dynamic monitoring plots. J. Plant Ecology. 2025, 18, taf018. [Google Scholar] [CrossRef]
- Chen, Y.; Niu, S.; Li, P.; Jia, H.; Wang, H.; Ye, Y.; Yuan, Z. Stand Structure and Substrate Diversity as Two Major Drivers for Bryophyte Distribution in a Temperate Montane Ecosystem. Front. Plant Sci. 2017, 8, 874. [Google Scholar] [CrossRef]
- Zhou, X.; Cheng, Z.; Liu, Q.; Zhang, J.; Hu, A.; Huang, M.; Hu, C.; Tian, H. An updated checklist of Orchidaceae for China, with two new national records. Phytotaxa 2016, 276, 1–148. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, L.; Wang, Y.; Qian, X.; Ding, G.; Jacquemyn, H.; Xing, X. Unlocking germination: The role of mycorrhizal strain and seed provenance in driving seed germination of a widespread terrestrial orchid. Mycorrhiza 2025, 35, 18. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Z.; Liu, W.; Fu, Q.; Shao, Y.; Liu, F.; Ye, Y.; Chen, Y.; Yuan, Z. Distribution Pattern of Woody Plants in a Mountain Forest Ecosystem Influenced by Topography and Monsoons. Forests 2022, 13, 957. [Google Scholar] [CrossRef]
- Tang, J.; Wang, H.; Cong, N.; Zu, J.; Yang, Y. Analysis of Changes in Forest Vegetation Peak Growth Metrics and Driving Factors in a Typical Climatic Transition Zone: A Case Study of the Funiu Mountain, China. Remote Sens. 2024, 16, 2921. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Ye, Y.; Chen, M.; Chen, H.; Yang, D.; Li, M.; Jiang, F.; Zhang, X.; Zhang, C. The rhizosphere microbiome and its influence on the accumulation of metabolites in Bletilla striata (Thunb.) Reichb. f. Bmc Plant Biol. 2024, 24, 409. [Google Scholar] [CrossRef]
- Xi, J.; Shao, Y.; Li, Z.; Zhao, P.; Ye, Y.; Li, W.; Chen, Y.; Yuan, Z. Distribution of Woody Plant Species Among Different Disturbance Regimes of Forests in a Temperate Deciduous Broad-Leaved Forest. Front. Plant Sci. 2021, 12, 618524. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, X.; Liu, F.; Tian, X.; Shao, Y.; Yuan, Z.; Chen, Y. Differences in Soil Microbial Communities across Soil Types in China’s Temperate Forests. Forests 2024, 15, 1110. [Google Scholar] [CrossRef]
- Balducci, M.G.; Calevo, J.; Duffy, K.J. Orchid Mycorrhizal Communities Associated with Orchis italica Are Shaped by Ecological Factors and Geographical Gradients. J. Biogeogr. 2025, 52, 544–557. [Google Scholar] [CrossRef]
- Cuscó, A.; Catozzi, C.; Viñes, J.; Sanchez, A.; Francino, O. Microbiota profiling with long amplicons using Nanopore sequencing: Full-length 16S rRNA gene and the 16S-ITS-23S of the rrn operon [version 2; peer review: 2 approved, 3 approved with reservations]. F1000Research 2019, 7, 1755. [Google Scholar] [CrossRef]
- Bell, J.; Yokoya, K.; Kendon, J.P.; Sarasan, V. Diversity of root-associated culturable fungi of Cephalanthera rubra (Orchidaceae) in relation to soil characteristics. Peerj 2020, 8, e8695. [Google Scholar] [CrossRef]
- Tian, L.; An, M.; Liu, F.; Zhang, Y. Fungal community characteristics of the last remaining habitat of three paphiopedilum species in China. Sci. Rep. 2024, 14, 24737. [Google Scholar] [CrossRef]
- Volynchikova, E.A.; Khrenova, M.G.; Panova, T.V.; Rodin, V.A.; Zvereva, M.I.; Tsavkelova, E.A.; Pritchard, L. Complete genome sequence of new Microbacterium sp. strain ET2, isolated from roots of leafless orchid. Microbiol. Resour. Announc. 2024, 13, e0089923. [Google Scholar] [CrossRef]
- Mujica, M.I.; Pérez, M.F.; Jakalski, M.; Martos, F.; Selosse, M.A. Soil P reduces mycorrhizal colonization whereas favors fungal pathogens: Observational and experimental evidence in Bipinnula (Orchidaceae). Fems Microbiol. Ecol. 2020, 96, 178. [Google Scholar] [CrossRef]
- Yang, H.-X.; Guo, S.-X.; Liu, R.-J. Characteristics of arbuscular mycorrhizal fungal diversity and functions in saline-alkali land. Ying Yong Sheng Tai Xue Bao, J. Appl. Ecol. 2015, 26, 311–320. [Google Scholar]
- Yokoya, K.; Jacob, A.S.; Zettler, L.W.; Kendon, J.P.; Menon, M.; Bell, J.; Rajaovelona, L.; Sarasan, V. Fungal Diversity of Selected Habitat Specific Cynorkis Species (Orchidaceae) in the Central Highlands of Madagascar. Microorganisms 2021, 9, 792. [Google Scholar] [CrossRef]
- Liu, L.; Xia, A.; Tang, X.; Zhang, Y.; Meng, X.; Lei, S.; Wang, B.; Peng, S.; Liu, Y. Microbial diversity and prediction function profiling of microbial communities in rose jam. J. Food Saf. 2024, 44, e13102. [Google Scholar] [CrossRef]
- Novotná, A.; Suárez, J.P. Molecular detection of bacteria associated with Serendipita sp., a mycorrhizal fungus from the orchid Stanhopea connata Klotzsch in southern Ecuador. Bot. Lett. 2018, 165, 307–313. [Google Scholar] [CrossRef]
- Jung, S. Advances in functional analysis of the microbiome: Integrating metabolic modeling, metabolite prediction, and pathway inference with Next-Generation Sequencing data. J. Microbiol. 2025, 63, e.2411006. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-J.; Yang, X.-Q.; Li, Z.-Y.; Miao, J.-Y.; Li, S.-B.; Zhang, W.-P.; Lin, Y.-C.; Lin, L.-B. The role of symbiotic fungi in the life cycle of Gastrodia elata Blume (Orchidaceae): A comprehensive review. Front. Plant Sci. 2024, 14, 1309038. [Google Scholar] [CrossRef]
- Zhou, Y.; Shi, Y.; Huang, Y.; Zhong, J. Microbes on the “peachy spots” of ancient Kaihua paper: Microbial community and functional analysis. Front. Microbiol. 2024, 14, 1326835. [Google Scholar] [CrossRef]
- Zuo, J.; Zu, M.; Liu, L.; Song, X.; Yuan, Y. Composition and diversity of bacterial communities in the rhizosphere of the Chinese medicinal herb Dendrobium. BMC Plant Biol. 2021, 21, 127. [Google Scholar] [CrossRef]
- Kollmann, R.; Dörr, I. Fine structure of mycorrhiza in Neottia nidus-avis (L.) L. C. Rich. (Orchidaceae). Planta 1969, 89, 372–375. [Google Scholar] [CrossRef]
- Waud, M.; Busschaert, P.; Lievens, B.; Jacquemyn, H. Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecol. 2016, 20, 155–165. [Google Scholar] [CrossRef]
- Kaur, J.; Phillips, C.; Sharma, J. Host population size is linked to orchid mycorrhizal fungal communities in roots and soil, which are shaped by microenvironment. Mycorrhiza 2021, 31, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Sasse, J.; Lewald, K.M.; Zhalnina, K.; Cornmesser, L.T.; Duncombe, T.A.; Yoshikuni, Y.; Vogel, J.P.; Firestone, M.K.; Northen, T.R. Ecosystem Fabrication (EcoFAB) Protocols for The Construction of Laboratory Ecosystems Designed to Study Plant-microbe Interactions. Jove-J. Vis. Exp. 2018, 134, e57170. [Google Scholar] [CrossRef]
- Noguchi, M.; Toju, H. Mycorrhizal and endophytic fungi structure contrasting but interdependent assembly processes in forest below-ground symbiosis. BioRxiv 2024, 19, 84. [Google Scholar] [CrossRef]
- Li, X.; Qu, Z.; Zhang, Y.; Ge, Y.; Sun, H. Soil Fungal Community and Potential Function in Different Forest Ecosystems. Diversity 2022, 14, 520. [Google Scholar] [CrossRef]
- Li, Y.M.; Hu, J.C.; Wang, S.L. Function and application of soil microorganisms in forest ecosystem. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2004, 15, 1943–1946. [Google Scholar]
- Zhang, J.; Wang, C.; Guo, S.; Chen, J.; Xiao, P. Studies on the plant hormones produced by 5 species of endophytic fungi isolated from medicinal plants (Orchidacea). Zhongguo Yi Xue Ke Xue Yuan Xue Bao Acta Acad. Med. Sin. 1999, 21, 460–465. [Google Scholar]
- Egidi, E.; Delgado-Baquerizo, M.; Plett, J.M.; Wang, J.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 2019, 10, 2369. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; An, M.; Wu, M.; Liu, F.; Zhang, Y. Habitat ecological characteristics and soil fungal community structure of Paphiopedilum subgenus Brachypetalum Hallier (Orchidaceae) plants in Southwest China. Plant Signal. Behav. 2023, 18, 2227365. [Google Scholar] [CrossRef]
Species Names | Elevation/m | Longitude | Latitude |
---|---|---|---|
Cremastra appendiculata | 1258 | 112.005364 | 33.693947 |
Cremastra appendiculata | 1388 | 112.002483 | 33.697272 |
Changnienia amoena | 944 | 111.914447 | 33.574636 |
Changnienia amoena | 953 | 111.91445 | 33.5746 |
Cypripedium macranthos | 1205 | 111.905097 | 33.585867 |
Cypripedium macranthos | 1278 | 111.905042 | 33.585114 |
Gastrodia elata | 1248 | 112.067697 | 33.789036 |
Gastrodia elata | 1094 | 111.9133333 | 33.57277778 |
Cymbidium faberi | 1009 | 112.0002778 | 33.68416667 |
Cymbidium faberi | 1009 | 112.00029 | 33.68412 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Guo, S.; Li, X.; Geng, Z.; Yuan, Z.; Song, X. Study on the Rhizosphere Soil Microbial Diversity of Five Common Orchidaceae Species in the Transitional Zone Between Warm Temperate and Subtropical Regions. Diversity 2025, 17, 605. https://doi.org/10.3390/d17090605
Du J, Guo S, Li X, Geng Z, Yuan Z, Song X. Study on the Rhizosphere Soil Microbial Diversity of Five Common Orchidaceae Species in the Transitional Zone Between Warm Temperate and Subtropical Regions. Diversity. 2025; 17(9):605. https://doi.org/10.3390/d17090605
Chicago/Turabian StyleDu, Jingjing, Shengqian Guo, Xiaohang Li, Zhonghu Geng, Zhiliang Yuan, and Xiqiang Song. 2025. "Study on the Rhizosphere Soil Microbial Diversity of Five Common Orchidaceae Species in the Transitional Zone Between Warm Temperate and Subtropical Regions" Diversity 17, no. 9: 605. https://doi.org/10.3390/d17090605
APA StyleDu, J., Guo, S., Li, X., Geng, Z., Yuan, Z., & Song, X. (2025). Study on the Rhizosphere Soil Microbial Diversity of Five Common Orchidaceae Species in the Transitional Zone Between Warm Temperate and Subtropical Regions. Diversity, 17(9), 605. https://doi.org/10.3390/d17090605