Distribution and Abundance of Native Orchids on Roadside Trees in a Global Biodiversity Hotspot
Abstract
1. Introduction
2. Materials and Methods
Study Area
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Krömer, T.; Einzmann, H.J.R.; Mendieta-Leiva, G.; Zotz, G. Impact of Land-Use Change on Vascular Epiphytes: A Review. Plants 2025, 14, 1188. [Google Scholar] [CrossRef] [PubMed]
- Schuiteman, A.; Kailash, B.; Shrestha, U.B. A Checklist of the Orchidaceae of India André Schuiteman, Uttam Babu Shrestha. In Monographs in Systematic Botany from the Missouri Botanical Garden; The University of Chicago Press: Chicago, IL, USA, 2021; pp. 1–264. [Google Scholar]
- Vijayan, D.; Kaechele, H.; Girindran, R.; Chattopadhyay, S.; Lukas, M.C.; Arshad, M. Tropical Forest Conversion and Its Impact on Indigenous Communities Mapping Forest Loss and Shrinking Gathering Grounds in the Western Ghats, India. Land Use Policy 2021, 102, 105133. [Google Scholar] [CrossRef]
- Reddy, C.S.; Jha, C.S.; Dadhwal, V.K. Assessment and Monitoring of Long-Term Forest Cover Changes (1920–2013) in Western Ghats Biodiversity Hotspot. J. Earth Syst. Sci. 2016, 125, 103–114. [Google Scholar] [CrossRef]
- Yokoya, K.; Zettler, L.W.; Kendon, J.P.; Bidartondo, M.I.; Stice, A.L.; Skarha, S.; Corey, L.L.; Knight, A.C.; Sarasan, V. Preliminary Findings on Identification of Mycorrhizal Fungi from Diverse Orchids in the Central Highlands of Madagascar. Mycorrhiza 2015, 25, 611–625. [Google Scholar] [CrossRef]
- Sarasan, V.; MK, R.N.; Venugopal, M.; Sukumaran, P.N. Rescue of Native Orchids and Introduction to an Urban Landscape: Potential Benefits to Supporting Conservation and Connecting People with Nature. Diversity 2025, 17, 184. [Google Scholar] [CrossRef]
- Besi, E.E.; Mustafa, M.; Yong, C.S.Y.; Go, R. Habitat Ecology, Structure Influence Diversity, and Host-Species Associations of Wild Orchids in Undisturbed and Disturbed Forests in Peninsular Malaysia. Forests 2023, 14, 544. [Google Scholar] [CrossRef]
- Turner, I.M.; Tan, H.T.W.; Wee, Y.C.; Bin Ibrahim, A.; Chew, P.T.; Corlett, R.T. A Study of Plant Species Extinction in Singapore: Lessons for the Conservation of Tropical Biodiversity. Conserv. Biol. 1994, 8, 705–712. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity Hotspots for Conservation Priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Chitale, V.S.; Behera, M.D.; Roy, P.S. Future of Endemic Flora of Biodiversity Hotspots in India. PLoS ONE 2014, 9, e115264. [Google Scholar] [CrossRef] [PubMed]
- Izuddin, M.; Srivathsan, A.; Lee, A.L.; Yam, T.W.; Webb, E.L. Availability of Orchid Mycorrhizal Fungi on Roadside Trees in a Tropical Urban Landscape. Sci. Rep. 2019, 9, 19528. [Google Scholar] [CrossRef]
- Hofmann, B.; Dreyling, L.; Dal Grande, F.; Otte, J.; Schmitt, I. Habitat and Tree Species Identity Shape Aboveground and Belowground Fungal Communities in Central European Forests. Front. Microbiol. 2023, 14, 1067906. [Google Scholar] [CrossRef]
- Köster, N.; Nieder, J.; Barthlott, W. Effect of Host Tree Traits on Epiphyte Diversity in Natural and Anthropogenic Habitats in Ecuador. Biotropica 2011, 43, 685–694. [Google Scholar] [CrossRef]
- Adhikari, Y.P.; Fischer, H.S.; Fischer, A. Host Tree Utilization by Epiphytic Orchids in Different Land-Use Intensities in Kathmandu Valley, Nepal. Plant Ecol. 2012, 213, 1393–1412. [Google Scholar] [CrossRef]
- Zarate-García, A.M.; Noguera-Savelli, E.; Andrade-Canto, S.B.; Zavaleta-Mancera, H.A.; Gauthier, A.; Alatorre-Cobos, F. Bark Water Storage Capacity Influences Epiphytic Orchid Preference for Host Trees. Am. J. Bot. 2020, 107, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Kolanowska, M. Climate Change Will Decrease the Coverage of Suitable Niches for Asian Medicinal Orchid (Bulbophyllum odoratissimum) and Its Main Phorophyte (Pistacia weinmannifolia). Sci. Rep. 2024, 14, 22656. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Feng, C.-L.; Luo, Y.-B.; Chen, B.-S.; Wang, Z.-S.; Gu, H.-Y. Potential Challenges of Climate Change to Orchid Conservation in a Wild Orchid Hotspot in Southwestern China. Bot. Rev. 2010, 76, 174–192. [Google Scholar] [CrossRef]
- Willmer, P. Climate Change: Bees and Orchids Lose Touch. Curr. Biol. 2014, 24, R1133–R1135. [Google Scholar] [CrossRef]
- Reji, M.J.K.; Varikoden, H.; Vellore, R.K.; Turner, A.G.; Gokul, T.; Krishnan, R. On the Slowdown of Southwest Monsoon Rainfall Decline in Recent Decades over Kerala. Clim. Dyn. 2025, 63, 229. [Google Scholar] [CrossRef]
- R., L.; Thomas, J.; Joseph, S. Impacts of Recent Rainfall Changes on Agricultural Productivity and Water Resources within the Southern Western Ghats of Kerala, India. Environ. Monit. Assess. 2024, 196, 115. [Google Scholar] [CrossRef]
- Mann, R.; Saini, D.; Sharma, S.; Dhorde, A.; Gupta, A. Paradoxical Behaviour of Rainfall and Temperature over Ecologically Sensitive Areas along the Western Ghats. Environ. Monit. Assess. 2023, 195, 1461. [Google Scholar] [CrossRef]
- Bhatt, H.; Gopakumar, S.; Bhindhu, P.S.; Br, V.; Jugran, H.P. Woody Vegetation and Soil Composition of Tropical Forest along an Altitudinal Gradient in Western Ghats, India. Asian J. For. 2024, 8, 51–62. [Google Scholar] [CrossRef]
- Rasmussen, H.N.; Rasmussen, F.N. The Epiphytic Habitat on a Living Host: Reflections on the Orchid–Tree Relationship. Bot. J. Linn. Soc. 2018, 186, 456–472. [Google Scholar] [CrossRef]
- Hundera, K.; Aerts, R.; De Beenhouwer, M.; Van Overtveld, K.; Helsen, K.; Muys, B.; Honnay, O. Both Forest Fragmentation and Coffee Cultivation Negatively Affect Epiphytic Orchid Diversity in Ethiopian Moist Evergreen Afromontane Forests. Biol. Conserv. 2013, 159, 285–291. [Google Scholar] [CrossRef]
- Zhao, M.M.; Zhang, G.; Zhang, D.W.; Hsiao, Y.Y.; Guo, S.X. ESTs Analysis Reveals Putative Genes Involved in Symbiotic Seed Germination in Dendrobium officinale. PLoS ONE 2013, 8, e72705. [Google Scholar] [CrossRef]
- Kendon, J.P.; Yokoya, K.; Zettler, L.W.; Jacob, A.S.; McDiarmid, F.; Bidartondo, M.I.; Sarasan, V. Recovery of Mycorrhizal Fungi from Wild Collected Protocorms of Madagascan Endemic Orchid Aerangis ellisii (B.S. Williams) Schltr. and Their Use in Seed Germination in Vitro. Mycorrhiza 2020, 30, 567–576. [Google Scholar] [CrossRef]
- Huang, H.; Zi, X.-M.; Lin, H.; Gao, J.-Y. Host-Specificity of Symbiotic Mycorrhizal Fungi for Enhancing Seed Germination, Protocorm Formation and Seedling Development of over-Collected Medicinal Orchid, Dendrobium devonianum. J. Microbiol. 2018, 56, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, H.N.; Dixon, K.W.; Jersáková, J.; Těšitelová, T. Germination and Seedling Establishment in Orchids: A Complex of Requirements. Ann. Bot. 2015, 116, 391–402. [Google Scholar] [CrossRef]
- Calevo, J.; Voyron, S.; Adamo, M.; Alibrandi, P.; Perotto, S.; Girlanda, M. Can Orchid Mycorrhizal Fungi Be Persistently Harbored by the Plant Host? Fungal Ecol. 2021, 53, 101071. [Google Scholar] [CrossRef]
- Rock-Blake, R.; McCormick, M.K.; Brooks, H.E.A.; Jones, C.S.; Whigham, D.F. Symbiont Abundance Can Affect Host Plant Population Dynamics. Am. J. Bot. 2017, 104, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, Y.P.; Fischer, A.; Fischer, H.S.; Rokaya, M.B.; Bhattarai, P.; Gruppe, A. Diversity, Composition and Host-Species Relationships of Epiphytic Orchids and Ferns in Two Forests in Nepal. J. Mt. Sci. 2017, 14, 1065–1075. [Google Scholar] [CrossRef]
- Timsina, B.; Rokaya, M.B.; Münzbergová, Z.; Kindlmann, P.; Shrestha, B.; Bhattarai, B.; Raskoti, B.B. Diversity, Distribution and Host-Species Associations of Epiphytic Orchids in Nepal. Biodivers. Conserv. 2016, 25, 2803–2819. [Google Scholar] [CrossRef]
- Silcock, J.L.; Simmons, C.L.; Monks, L.; Dillon, R.; Reiter, N.; Jusaitis, M.; Vesk, P.A.; Byrne, M.; Coates, D.J. Threatened Plant Translocation in Australia: A Review. Biol. Conserv. 2019, 236, 211–222. [Google Scholar] [CrossRef]
- Soanes, K.; Sievers, M.; Chee, Y.E.; Williams, N.S.G.; Bhardwaj, M.; Marshall, A.J.; Parris, K.M. Correcting Common Misconceptions to Inspire Conservation Action in Urban Environments. Conserv. Biol. 2019, 33, 300–306. [Google Scholar] [CrossRef] [PubMed]









| Plot No. | Plot Details | Approximate Percent Fragmentation |
|---|---|---|
| Plot 1 | The plot is close to a paddy field, with the roadside hosting both native and deciduous trees planted as part of social forestry. | 92 |
| Plot 2 | The original forest landscape is partially replaced with introduced social forestry, with many of the original forest trees still existing. | 7 |
| Plot 3 | The original forest landscape. | 4 |
| Plot 4 | The original forest landscape is partially replaced with social forestry trees, with some original forest trees still existing. | 7 |
| Plot 5 | Mixture of native and social forestry origin trees. | 9 |
| Plot 6 | Roadside and fallowed coffee plantation with mixture of native and plantation trees. | 11 |
| Plot 7 | Close to the urban area with small number of native trees. | 15 |
| Plot 8 | Within the urban area which is dry with abundance of exotic trees orchid species. | 19 |
| Plot 9 | Within the urban areas, with sampled areas which are dry. | 94 |
| Plot 10 | Urban area and dry area abundant with social forestry trees. | 24 |
| Plot 11 | Close to the Wayanad wildlife sanctuary with a high proportion of native trees. | 7 |
| Plot 12 | Social forestry trees interspersed with native forest trees. | 10 |
| Plot 13 | Sampled areas host more social forestry taxa than native trees. | 16 |
| Plot 14 | Mix of domesticated trees and social forestry trees with few native trees. | 20 |
| Plot 15 | Mix of social forestry and domesticated trees with coffee plantations nearby. | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarasan, V.; Venugopal, M.; Narayanan, R.M.K.; Nair, S.S.; Sukumaran, P.N. Distribution and Abundance of Native Orchids on Roadside Trees in a Global Biodiversity Hotspot. Diversity 2025, 17, 580. https://doi.org/10.3390/d17080580
Sarasan V, Venugopal M, Narayanan RMK, Nair SS, Sukumaran PN. Distribution and Abundance of Native Orchids on Roadside Trees in a Global Biodiversity Hotspot. Diversity. 2025; 17(8):580. https://doi.org/10.3390/d17080580
Chicago/Turabian StyleSarasan, Viswambharan, Mithun Venugopal, Ratheesh M. K. Narayanan, Sidharth S. Nair, and Pradeep N. Sukumaran. 2025. "Distribution and Abundance of Native Orchids on Roadside Trees in a Global Biodiversity Hotspot" Diversity 17, no. 8: 580. https://doi.org/10.3390/d17080580
APA StyleSarasan, V., Venugopal, M., Narayanan, R. M. K., Nair, S. S., & Sukumaran, P. N. (2025). Distribution and Abundance of Native Orchids on Roadside Trees in a Global Biodiversity Hotspot. Diversity, 17(8), 580. https://doi.org/10.3390/d17080580

