The High Endemism of Haemosporidian Lineages in a Southern Vietnam Avian Community
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling
2.2. DNA Extraction and PCR
2.3. Data Analyses
3. Results
Our lineage | Nearest BLAST | Species found in | Avian family | Geographic distribution |
LARCYA01 | MYIFLA01 | Myiopagis flavivertex | Tyrannidae | Peru |
PYCCON01 | SHOWMAJ03 | Sholicola major | Muscicapidae | India |
IOLPORO02 | BUL1 | Pycnonotus barbatus | Pycnonotidae | Benin |
Not reported on GenBank | Sweden | |||
AEGLAF01 | POMSUP01 | Pomatostomus superciliosus | Timaliidae | Australia |
DICLEU03 | CXPIP27 | Corvus corone | Corvidae | Italy, Portugal |
LACPUL02 | CHLIND01 | Chloroceryle inda | Alcedinidae | Brazil |
GLACUC09 | AEFUN03 | Aegolius funereus | Strigidae | Czech Republic |
GLACUC8 | Butastur linventer | Accipitridae | Thailand | |
Glaucidium cuculoides | Strigidae | Thailand | ||
PITMOL02/03 | 183 | Not reported on GenBank | Mexico | |
PYCFIN01/02 | AEGTIP01 | Aegithina tiphia | Aegithinidae | Thailand |
Dicrurus leucocephalus | Dicruridae | Thailand | ||
LARCYA02/03 | DELURB5 | Chrysomma sinense | Timaliidae | India, Myanmar |
Delichon urbicum | Hirundinidae | Spain | ||
Hirundo rustica | Hirundinidae | Spain | ||
Egretta garzetta | Ardeidae | China | ||
Emberiza godlewskii | Fringillidae | China | ||
Ficedula hyperythra | Muscicapidae | China | ||
Heterophasia melanoleuca | Timaliidae | China | ||
Luscinia svecica | Turdidae | Czech Republic | ||
Oriolus oriolus | Oriolidae | India | ||
Parus monticolus | Paridae | China | ||
Prinia inornate | Cisticolidae | India | ||
Prinia socialis | Cisticolidae | India | ||
Saxicola rubetra | Turdidae | Sweden | ||
Sylvia borin | Sylviidae | Spain | ||
Zosterops palpebrosus | Zosteropidae | India | ||
MALCIN01 | CERRUB01 | Pipra rubrocapilla | Pipridae | Brazil |
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, C.; Van Riper, C., III. Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon, and Haemoproteus. In Bird–Parasite Interactions: Ecology, Evolution and Behaviour; Loye, J.E., Zuk, M., Eds.; Oxford University Press: London, UK, 1991; pp. 19–48. [Google Scholar]
- Fecchio, A.; Clark, N.J.; Bell, J.A.; Skeen, H.R.; Lutz, H.L.; De La Torre, G.M.; Vaughan, J.A.; Tkach, V.V.; Schunck, F.; Ferreira, F.C.; et al. Global drivers of avian haemosporidian infections vary across zoogeographical regions. Global Ecol. Biogeogr. 2021, 30, 2393–2406. [Google Scholar] [CrossRef]
- Schoener, E.R.; Tompkins, D.M.; Howe, L.; Castro, I.C. New insight into avian malaria vectors in New Zealand. Parasites Vectors 2024, 17, 150. [Google Scholar] [CrossRef]
- Valkiūnas, G.; Iezhova, T.A. Insights into the biology of Leucocytozoon species (Haemosporida, Leucocytozoidae): Why is there slow research progress on agents of leucocytozoonosis? Microorganisms 2023, 11, 1251. [Google Scholar] [CrossRef]
- Žiegytė, R.; Palinauskas, V.; Bernotienė, R. Natural vector of avian Haemoproteus asymmetricus parasite and factors altering the spread of infection. Insects 2023, 14, 926. [Google Scholar] [CrossRef]
- Clark, N.; Drovetski, S.V.; Voelker, G. Robust geographical determinants of infection prevalence and a contrasting latitudinal diversity gradient for haemosporidian parasites in Western Palearctic birds. Mol. Ecol. 2020, 29, 3131–3143. [Google Scholar] [CrossRef] [PubMed]
- Rooyen, J.; Lalubin, F.; Glaizot, O.; Christe, P. Altitudinal variation in haemosporidian parasite distribution in great tit populations. Parasites Vectors 2013, 6, 139. [Google Scholar] [CrossRef]
- Gupta, P.; Vishnudas, C.; Robin, V.V.; Dharmarajan, G. Host phylogeny matters: Examining sources of variation in infection risk by blood parasites across a tropical montane bird community in India. Parasites Vectors 2020, 13, 536. [Google Scholar] [CrossRef]
- Pellegrino, I.; Ilahiane, L.; Boano, G.; Cucco, M.; Pavia, M.; Prestridge, H.L.; Voelker, G. Avian haemosporidian diversity on Sardinia: A first general assessment for the Insular Mediterranean. Diversity 2021, 13, 75. [Google Scholar] [CrossRef]
- Lau, G.C.F.; Class Freeman, A.M.; Pulgarín-R, P.; Cadena, C.D.; Ricklefs, R.E.; Freeman, B.G. Host phylogeny and elevation predict infection by avian haemosporidians in a diverse New Guinean bird community. J. Biogeogr. 2022, 50, 23–31. [Google Scholar] [CrossRef]
- Ham-Dueñas, J.G.; Chapa-Vargas, L.; Stracey, C.M.; Huber-Sannwald, E. Haemosporidian prevalence and parasitaemia in the Black-throated sparrow (Amphispiza bilineata) in central-Mexican dryland habitats. Parasitol. Res. 2017, 116, 2527–2537. [Google Scholar] [CrossRef]
- Garcia-Longoria, L.; Marzal, A.; De Lope, F.; Garamszegi, L. Host–parasite interaction explains variation in the prevalence of avian haemosporidians at the community level. PLoS ONE 2019, 14, e0205624. [Google Scholar] [CrossRef]
- Harvey, J.A.; Voelker, G. Host associations and climate influence avian haemosporidian distributions in Benin. Int. J. Parasitol. 2019, 49, 27–36. [Google Scholar] [CrossRef]
- Ishtiaq, F. Ecology and evolution of avian malaria: Implications of land use changes and climate change on disease dynamics. J. Indian Inst. Sci. 2021, 101, 213–225. [Google Scholar] [CrossRef]
- Krama, T.; Krams, R.; Cīrule, D.; Moore, F.R.; Rantala, M.J.; Krams, I.A. Intensity of haemosporidian infection of parids positively correlates with proximity to water bodies, but negatively with host survival. J. Ornithol. 2015, 156, 1075–1084. [Google Scholar] [CrossRef]
- Sehgal, R.N.M. Manifold habitat effects on the prevalence and diversity of avian blood parasites. Int. J. Parasitol. Parasites Wildl. 2015, 4, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Bensch, S.; Jönsson, J.; Copete, J. Low prevalence of Haemoproteus infections in Chiffchaffs. Parasitology 2012, 139, 302–309. [Google Scholar] [CrossRef]
- Soares, L.; Escudero, G.; Penha, V.A.S.; Ricklefs, R.E. Low prevalence of haemosporidian parasites in shorebirds. Ardea 2016, 104, 129–141. [Google Scholar] [CrossRef]
- Subaneg, S.; Sitdhibutr, R.; Pornpanom, P.; Lertwatcharasarakul, P.; Ploypan, R.; Kiewpong, A.; Chatkaewchai, B.; To-adithep, N.; Kasorndorkbua, C. Molecular Prevalence and Haematological Assessments of Avian Malaria in Wild Raptors of Thailand. Birds 2024, 5, 428–439. [Google Scholar] [CrossRef]
- Marzal, A.; Asghar, M.; Rodríguez, L.; Reviriego, M.; Hermosell, I.G.; Balbontín, J.; Garcia-Longoria, L.; de Lope, F.; Bensch, S. Co-infections by malaria parasites decrease feather growth but not feather quality in house martin. J. Avian Biol. 2013, 44, 437–444. [Google Scholar] [CrossRef]
- Romano, A.; Nodari, R.; Bandi, C.; Caprioli, M.; Costanzo, A.; Ambrosini, R.; Rubolini, D.; Parolini, M.; Epis, S.; Saino, N. Haemosporidian parasites depress breeding success and plumage coloration in female barn swallows Hirundo rustica. J. Avian Biol. 2018, 50, e01889. [Google Scholar] [CrossRef]
- Knowles, S.C.L.; Palinauskas, V.; Sheldon, B.C. Chronic malaria infections increase family inequalities and reduce parental fitness: Experimental evidence from a wild bird population. J. Evol. Biol. 2010, 23, 557–569. [Google Scholar] [CrossRef]
- Martínez-De La Puente, J.; Merino, S.; Tomás, G.; Moreno, J.; Morales, J.; Lobato, E.; García-Fraile, S.; Belda, E.J. The blood parasite Haemoproteus reduces survival in a wild bird: A medication experiment. Biol. Lett. 2010, 6, 663–665. [Google Scholar] [CrossRef]
- Asghar, M.; Hasselquist, D.; Bensch, S. Are chronic avian haemosporidian infections costly in wild birds? J. Avian Biol. 2011, 42, 530–537. [Google Scholar] [CrossRef]
- Fletcher, K.; Träff, J.; Gustafsson, L. Importance of infection of haemosporidia blood parasites during different life history stages for long-term reproductive fitness of collared flycatchers. J. Avian Biol. 2019, 50, e02118. [Google Scholar] [CrossRef]
- Hegemann, A.; Alcalde Abril, P.; Muheim, R.; Sjöberg, S.; Alerstam, T.; Nilsson, J.-Å.; Hasselquist, D. Immune function and blood parasite infections impact stopover ecology in passerine birds. Oecologia 2018, 188, 1011–1024. [Google Scholar] [CrossRef]
- de Angeli Dutra, D.; Filion, A.; Fecchio, A.; Martins Braga, É.; Poulin, R. Migrant birds disperse haemosporidian parasites and affect their transmission in avian communities. Oikos 2021, 130, 979–988. [Google Scholar] [CrossRef]
- de Angeli Dutra, D.; Fecchio, A.; Braga, É.; Poulin, R. Migratory birds have higher prevalence and richness of avian haemosporidian parasites than residents. Int. J. Parasitol. 2021, 51, 877–882. [Google Scholar] [CrossRef]
- Garamszegi, L.Z. Climate change increases the risk of malaria in birds. Glob. Change Biol. 2011, 17, 1751–1759. [Google Scholar] [CrossRef]
- Loiseau, C.; Harrigan, R.J.; Bichet, C.; Julliard, R.; Garnier, S.; Lendvai, Á.Z.; Chastel, O.; Sorci, G. Predictions of avian Plasmodium expansion under climate change. Sci. Rep. 2013, 3, 126. [Google Scholar] [CrossRef]
- Jiménez-Peñuela, J.; Ferraguti, M.; Martínez-de la Puente, J.; Soriguer, R.; Figuerola, J. Urbanization and blood parasite infections affect the body condition of wild birds. Sci. Total Environ. 2019, 651, 3015–3022. [Google Scholar] [CrossRef]
- Tchoumbou, M.A.; Mayi, M.P.A.; Malange, E.N.F.; Foncha, F.D.; Kowo, C.; Fru-cho, J.; Tchuinkam, T.; Awah-Ndukum, J.; Dorazio, R.; Anong, D.N.; et al. Effect of deforestation on prevalence of avian haemosporidian parasites and mosquito abundance in a tropical rainforest of Cameroon. Int. J. Parasitol. 2020, 50, 63–73. [Google Scholar] [CrossRef]
- Outlaw, D.C.; Harvey, J.A.; Drovetski, S.D.; Voelker, G. Diversity and distribution of avian haemosporidians in Sub-Saharan Africa: An inter-regional biogeographic overview. Parasitology 2017, 144, 394–402. [Google Scholar] [CrossRef]
- La Chapelle, M.; Ruta, M.; Dunn, J.C. Bird species with wider geographical ranges have higher blood parasite diversity but not prevalence across the African-Eurasian flyway. Int. J. Parasitol. 2023, 53, 787–796. [Google Scholar] [CrossRef]
- Pinheiro, R.B.P.; Felix, G.M.F.; Bell, J.A.; Fecchio, A. The latitudinal specialization gradient of bird–malarial parasite networks in South America: Lower connectance, but more evenly distributed interactions towards the equator. Ecography 2023, 2024, e06763. [Google Scholar] [CrossRef]
- Wells, K.; Bell, J.A.; Fecchio, A.; Drovetski, S.D.; Ellis, V.; Galen, S.; Hackett, S.; Lutz, H.; Skeen, H.R.; Voelker, G.; et al. Parasite abundance-occupancy relationships across biogeographic regions: Joint effects of niche breadth, host availability and climate. J. Biogeogr. 2024, 52, 55–65. [Google Scholar] [CrossRef]
- Bensch, S.; Hellgren, O.; Pérez-Tris, J. MalAvi: A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol. Ecol. Resour. 2009, 9, 1353–1358. [Google Scholar] [CrossRef]
- Pornpanom, P.; Chagas, C.R.F.; Lertwatcharasarakul, P.; Kasorndorkbua, C.; Valkiūnus, G.; Salakij, C. Molecular prevalence and phylogenetic relationship of Haemoproteus and Plasmodium parasites of owls in Thailand: Data from a rehabilitation centre. Int. J. Parasitol. Parasites Wildl. 2019, 9, 248–257. [Google Scholar] [CrossRef]
- Pornpanom, P.; Kasorndorkbua, C.; Lertwatcharasarakul, P.; Salakij, C. Prevalence and genetic diversity of Haemoproteus and Plasmodium in raptors from Thailand: Data from rehabilitation center. Int. J. Parasitol. Parasites Wildl. 2021, 16, 75–82. [Google Scholar] [CrossRef]
- Lertwatcharasarakul, P.; Salakij, C.; Prasopsom, P.; Kasorndorkbua, C.; Jakthong, P.; Santavakul, M.; Suwanasaeng, P.; Ploypan, R. Molecular and morphological analyses of Leucocytozoon parasites (Haemosporida: Leucocytozoidae) in raptors from Thailand. Acta Parasitol. 2021, 66, 1406–1416. [Google Scholar] [CrossRef]
- Ivanova, K.; Zehtindjiev, P.; Mariaux, J.; Georgiev, B.B. Genetic diversity of avian haemosporidians in Malaysia: Cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Selangor. Infect. Genet. Evol. 2015, 31, 33–39. [Google Scholar] [CrossRef]
- Perkins, S.J.; Schall, J.J. A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J. Parasitol. 2002, 88, 972–978. [Google Scholar] [CrossRef]
- Martinsen, E.S.; Perkins, S.L.; Schall, J.J. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol. Phylogenet. Evol. 2007, 47, 261–273. [Google Scholar] [CrossRef]
- Drovetski, S.V.; Aghayan, S.A.; Mata, V.A.; Lopes, R.J.; Mode, N.A.; Harvey, J.A.; Voelker, G. Does the niche breadth or trade-off hypothesis explain the abundance-occupancy relationship in avian Haemosporidia? Mol. Ecol. 2014, 23, 3322–3329. [Google Scholar] [CrossRef]
- Stephens, M.; Smith, N.; Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 2001, 68, 978–989. [Google Scholar] [CrossRef]
- Stephens, M.; Donnelly, P. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 2003, 73, 1162–1169. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Outlaw, D.C.; Ricklefs, R.E. Species limits in avian malaria parasites (Haemosporida): How to move forward in the molecular era. Parasitology 2014, 141, 1223–1232. [Google Scholar] [CrossRef]
- DeBrock, S.; Cohen, E.; Balasubramanian, S.; Marra, P.; Hamer, S. Characterization of the Plasmodium and Haemoproteus parasite community in temperate-tropical birds during spring migration. Int. J. Parasitol. Parasites Wildl. 2021, 15, 12–21. [Google Scholar] [CrossRef]
- Martinez, V.; Keith, K.D.; Grace, J.K.; Voelker, G. Avian haemosporidians of breeding birds in the Davis Mountains skyislands of west Texas, USA. Parasitology 2023, 150, 1266–1276. [Google Scholar] [CrossRef]
- Harrigan, R.J.; Sedano, R.; Chasar, A.C.; Chaves, J.A.; Nguyen, J.T.; Whitaker, A.; Smith, T.B. New host and lineage diversity of avian haemosporidia in the northern Andes. Evol. Appl. 2014, 7, 799–811. [Google Scholar] [CrossRef]
- Jones, S.M.; Cumming, G.S.; Peters, J.L. Host community heterogeneity and the expression of host specificity in avian haemosporidia in the Western Cape, South Africa. Parasitology 2018, 145, 1876–1883. [Google Scholar] [CrossRef] [PubMed]
- Olsson-Pons, S.; Clark, N.J.; Clegg, S.M. Differences in host species relationships and biogeographic influences produce contrasting patterns of prevalence, community composition and genetic structure in two genera of avian malaria parasites in southern Melanesia. J. Animal Ecol. 2015, 84, 985–998. [Google Scholar] [CrossRef]
- Mata, V.A.; da Silva, L.P.; Lopes, R.J.; Drovetski, S.V. The Strait of Gibraltar poses an effective barrier to host-specialised but not to host-generalised lineages of avian Haemosporidia. Int. J. Parasitiol. 2015, 45, 711–719. [Google Scholar] [CrossRef]
- Lutz, H.L.; Hochachka, W.M.; Engel, J.; Bell, J.A.; Tkach, V.V.; Bates, J.M.; Hackett, S.J.; Weckstein, J.D. Parasite Prevalence Corresponds to Host Life History in a Diverse Assemblage of Afrotropical Birds and Haemosporidian Parasites. PLoS ONE 2015, 10, e0121254. [Google Scholar] [CrossRef]
- Harvey, J.A.; Voelker, G. Avian haemosporidian detection across source materials: Prevalence and genetic diversity. Parasitol. Res. 2017, 116, 3361–3371. [Google Scholar] [CrossRef]
- Keith, K.D.; Pistone, J.P.; Campbell, T.A.; Voelker, G. Avian Haemosporidian Diversity in south Texas: New lineages and variation in prevalence between sampling sources and sites. Diversity 2022, 14, 378. [Google Scholar] [CrossRef]
- Erokhina, M.; Bushuev, A.; Palinauskas, V.; Platonova, E.; Mukhin, A. Intensity of Haemoproteus spp. blood infection differs between wild birds captured using different trapping methods. Biol. Commun. 2024, 69, 192–199. [Google Scholar] [CrossRef]
- Takaoka, H.; Sofian-Azirun, M.; Ya’cob, Z.; Chen, C.D.; Lau, K.W.; Low, V.L.; Pham, X.C.; Adler, P.H. The black flies (Diptera: Simuliidae) of Vietnam. Zootaxa 2017, 4261, 1–165. [Google Scholar] [CrossRef]
- Sutcliffe, J.F. Black fly host location: A review. Can. J. Zool. 1986, 64, 1041–1053. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Zhang, Q.; Su, D.; Zou, F. Prevalence patterns of avian Plasmodium and Haemoproteus parasites and the influence of host relative abundance in southern China. PLoS ONE 2014, 9, e99501. [Google Scholar] [CrossRef]
- Lauron, E.J.; Loiseau, C.; Bowie, R.C.K.; Spicer, G.S.; Smith, T.B.; Melo, M.; Sehgal, R.N.M. Coevolutionary patterns and diversification of avian malaria parasites in African sunbirds (Family Nectariniidae). Parasitology 2015, 142, 635–647. [Google Scholar] [CrossRef] [PubMed]
- Cheke, R.A.; Mann, C.F. Family Nectariniidae (Sunbirds). In Handbook of Birds of the World Vol. 13 Penduline-tits to Shrikes; del Hoyo, J., Christie, D.A., Eds.; Lynx Edicions: Barcelona, Spain, 2008; pp. 196–232. [Google Scholar]
- Díez-Fernández, A.; Martínez-de la Puente, J.; Gangoso, L.; López, P.; Soriguer, R.; Martín, J.; Figuerola, J. Mosquitoes are attracted by the odour of Plasmodium-infected birds. Int. J. Parasitol. 2020, 50, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Collar, N.J.; Robson, C. Family Timaliidae (Babblers). In Handbook of Birds of the World Vol. 12 Picathartes to Tits and Chickadees; del Hoyo, J., Christie, D.A., Eds.; Lynx Edicions: Barcelona, Spain, 2007; pp. 70–291. [Google Scholar]
BLAST | % Match | BP difference | Novel Lineage Designation | Parasite Summary Per Host (H/P/L) | |
Haemoproteus | |||||
ruddy kingfisher (Halcyon coromanda) | DICLEU02 | 100 | 0 | 0/0/0 | |
ashy drongo (Dicrurus leucophaeus) | DICLEU02 | 100 | 0 | 2/2/0 | |
two-barred warbler (Phylloscopus plumbeitarsus) | GW1 | 100 | 0 | 0/0/0 | |
Asian barred owlet (Glaucidium cuculoides) | GLACUC03 | 100 | 0 | 3/9/0 | |
Asian barred owlet (Glaucidium cuculoides) | (AEFUN03) | 99.8 | 1 | GLACUC09 | above |
banded kingfisher (Lacedo pulchella) | (CHLIND01) | 99.4 | 3 | LACPUL02 | 1/0/0 |
great iora (Aegithina lafresnayei) | (POMSUP01) | 99.2 | 4 | AEGLAF01 | 0/0/0 |
ashy drongo (Dicrurus leucophaeus) | (CXPIP27) | 98.5 | 7 | DICLEU03 | above |
grey-eyed bulbul (Iole propinqua) | (BUL1) | 97.9 | 10 | IOLPRO02 | 2/0/0 |
black-headed bulbul (Brachypodius melanocephalos) | (BUL1) | 97.9 | 10 | IOLPRO02 | 0/0/0 |
Siberian blue robin (Larvivora cyane) | (MYIFLA01) | 97.5 | 12 | LARCYA01 | 0/0/0 |
dark-necked tailorbird (Orthotomus atrogularis) | (GAGLA02) | 97 | 16 | ORTATR01 | 0/0/0 |
dark-necked tailorbird (Orthotomus atrogularis) | (H298) | 97.7 | 11 | ORTATR02 | above |
streak-eared bulbul (Pycnonotus conradi) | (SHOWMAJ03) | 95.4 | 22 | PYCCON01 | 0/0/0 |
Plasmodium | |||||
green-billed malkoha (Phaenicophaeus tristis) | ORW1 | 100 | 0 | 0/0/0 | |
stripe-throated bulbul (Pycnonotus finlaysoni) | ORW1 | 100 | 0 | 0/0/0 | |
Tickell’s blue flycatcher (Cyornis sumatrensis) | ORW1 | 100 | 0 | 0/0/0 | |
Asian brown flycatcher (Muscicapa dauurica) | (GLACUC8) | 99.4 | 3 | MUSLAT01 | 0/0/1 |
Asian brown flycatcher (Muscicapa latirostris) | (GLACUC8) | 98.9 | 5 | MUSLAT02 | above |
stripe-throated bulbul (Pycnonotus finlaysoni) | (AEGTIP01) | 98.9 | 5 | PYCFIN01 | above |
stripe-throated bulbul (Pycnonotus finlaysoni) | (AEGTIP01) | 98.9 | 5 | PYCFIN02 | above |
stripe-throated bulbul (Pycnonotus finlaysoni) | ORW1 | 100 | 0 | above | |
stripe-throated bulbul (Pycnonotus finlaysoni) | (ORW1) | 99 | 1 | PYCFIN03 | above |
scaly-crowned babbler (Malacopteron cinereum) | (CERRUB01) | 97.8 | 10 | MALCIN01 | 0/0/0 |
Abbott’s babbler (Malacocincla abbotti) | (CERRUB01) | 97.8 | 10 | MALCIN01 | 0/0/0 |
white-rumped shama (Copsychus malabaricus) (4) | (DELURB5) | 97.7 | 11 | LARCYA02 | 3/2/0 |
Siberian blue robin (Larvivora cyane) (2) | (DELURB5) | 97.7 | 11 | LARCYA03 | above |
Siberian blue robin (Larvivora cyane) | (DELURB5) | 97.7 | 11 | LARCYA02 | above |
blue-winged pitta (Pitta moluccensis) | (183) | 95.6 | 21 | PITMOL02 | 0/0/0 |
blue-winged pitta (Pitta moluccensis) | (183) | 95.8 | 20 | PITMOL03 | above |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voelker, G.; Ortega, M.; Sanchez, M.; Keith, K.D.; Koblik, E.A.; Bushuev, A.V.; Kerimov, A.B.; Linh, N.V.; Drovetski, S.V. The High Endemism of Haemosporidian Lineages in a Southern Vietnam Avian Community. Diversity 2025, 17, 568. https://doi.org/10.3390/d17080568
Voelker G, Ortega M, Sanchez M, Keith KD, Koblik EA, Bushuev AV, Kerimov AB, Linh NV, Drovetski SV. The High Endemism of Haemosporidian Lineages in a Southern Vietnam Avian Community. Diversity. 2025; 17(8):568. https://doi.org/10.3390/d17080568
Chicago/Turabian StyleVoelker, Gary, Mariel Ortega, McKenna Sanchez, Katrina D. Keith, Evgeniy A. Koblik, Andrey V. Bushuev, Anvar B. Kerimov, Nguyễn Văn Linh, and Sergei V. Drovetski. 2025. "The High Endemism of Haemosporidian Lineages in a Southern Vietnam Avian Community" Diversity 17, no. 8: 568. https://doi.org/10.3390/d17080568
APA StyleVoelker, G., Ortega, M., Sanchez, M., Keith, K. D., Koblik, E. A., Bushuev, A. V., Kerimov, A. B., Linh, N. V., & Drovetski, S. V. (2025). The High Endemism of Haemosporidian Lineages in a Southern Vietnam Avian Community. Diversity, 17(8), 568. https://doi.org/10.3390/d17080568