Monitoring of Algae Communities on the Littoral of the Barents Sea Using UAV Imagery
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Area and Its Features
2.2. The Data
2.2.1. The Studied Species and Community
2.2.2. Aerial Photography from a UAV
2.2.3. GIS Processing and Mapping
2.2.4. Construction of the Kola Bay Vegetation Map
3. Results
3.1. Biomass of Fucus Algae
3.2. Biomass of Ulvophycean Algae
3.3. Detailing of Aerial Photos for Littoral Research
3.4. Green Algae Distribution Analysis Based on Aerial Photo
3.5. Distribution of Vegetation Biomass in the Kola Bay
4. Discussion
Methodological Recommendations for Organizing Monitoring
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UAV | Unmanned aerial vehicle. |
GSD | Ground sampling distance. The distance between two consecutive pixels in an aerial image, measured on the ground. |
Slit | Surface/area of littoral zone. The total area free from water during the survey. |
SF | Surface/area occupied by Fucophyceae. |
SChl | Surface/area occupied by Chlorophyta. |
Appendix A
Species | Number of Stations | Shapiro–Wilk | p (Normal) | Monte Carlo |
---|---|---|---|---|
A. nodosum | 54 | 0.9497 | 0.02072 | 9999 |
F. vesiculosus | 81 | 0.846 | 0.0000001 | 9999 |
F. distichus | 5 | 0.8065 | 0.0914 | 9999 |
F. serratus | 3 | 0.8934 | 0.3646 | 9999 |
Date | Polygon | Species | B ± SE, g/m2 |
---|---|---|---|
15 July 2022 | Cape Belokamenny | A. nodosum | 28 ± 12 |
18 July 2023 | Cape Belokamenny | A. nodosum | 5478 ± 2339 |
18 July 2023 | Cape Belokamenny | A. nodosum | 40 ± 17 |
25 July 2024 | Cape Belokamenny | F. serratus | 46 ± 2 |
15 July 2022 | Cape Belokamenny | F. vesiculosus | 5965 ± 556 |
18 July 2023 | Cape Belokamenny | F. vesiculosus | 1634 ± 352 |
29 March 2021 | Cape Belokamenny | A. nodosum | 0 ± 0 |
29 March 2021 | Cape Belokamenny | F. distichus | 1689 ± 731 |
29 March 2021 | Cape Belokamenny | F. vesiculosus | 3 ± 0 |
24 June 2021 | Cape Elovy | F. vesiculosus | 11,630 ± 2646 |
19 July 2023 | Cape Elovy | F. vesiculosus | 4640 ± 833 |
26 July 2024 | Cape Elovy | F. vesiculosus | 9000 ± 524 |
28 July 2021 | Retinskaya Bay | F. vesiculosus | 426 ± 98 |
15 July 2022 | Retinskaya Bay | F. vesiculosus | 10,000 ± 100 |
18 July 2023 | Retinskaya Bay | F. vesiculosus | 426 ± 98 |
25 July 2024 | Retinskaya Bay | F. vesiculosus | 28,752 ± 1907 |
9 September 2022 | Teriberskaya Bay | A. nodosum | 21,733 ± 2480 |
15 June 2023 | Teriberskaya Bay | A. nodosum | 9800 ± 70 |
9 September 2022 | Teriberskaya Bay | A. nodosum | 0 ± 0 |
13 July 2023 | Teriberskaya Bay | A. nodosum | 28,744 ± 1904 |
13 July 2023 | Teriberskaya Bay | A. nodosum | 19,053 ± 1370 |
13 July 2023 | Teriberskaya Bay | A. nodosum | 8733 ± 571 |
13 September 2023 | Teriberskaya Bay | A. nodosum | 40 ± 5 |
13 September 2023 | Teriberskaya Bay | A. nodosum | 40 ± 5 |
23 July 2024 | Teriberskaya Bay | A. nodosum | 17,973 ± 100 |
23 July 2024 | Teriberskaya Bay | A. nodosum | 14,333 ± 1720 |
23 July 2024 | Teriberskaya Bay | A. nodosum | 60 ± 5 |
6 June 2024 | Teriberskaya Bay | A. nodosum | 8429 ± 1399 |
6 June 2024 | Teriberskaya Bay | A. nodosum | 24 ± 1 |
23 July 2024 | Teriberskaya Bay | A. nodosum | 1213 ± 396 |
20 June 2021 | Teriberskaya Bay | F. distichus | 4189 ± 1249 |
20 June 2021 | Teriberskaya Bay | F. serratus | 14,800 ± 1452 |
20 June 2021 | Teriberskaya Bay | F. vesiculosus | 5293 ± 74 |
26 July 2021 | Teriberskaya Bay | F. vesiculosus | 8586 ± 435 |
14 July 2022 | Teriberskaya Bay | F. vesiculosus | 2000 ± 707 |
14 July 2022 | Teriberskaya Bay | F. vesiculosus | 8386 ± 482 |
14 July 2022 | Teriberskaya Bay | F. vesiculosus | 2813 ± 1124 |
14 July 2022 | Teriberskaya Bay | F. vesiculosus | 12,066 ± 2268 |
15 June 2023 | Teriberskaya Bay | F. vesiculosus | 5613 ± 1243 |
13 July 2023 | Teriberskaya Bay | F. vesiculosus | 10,480 ± 326 |
13 July 2023 | Teriberskaya Bay | F. vesiculosus | 23,133 ± 1347 |
23 July 2024 | Teriberskaya Bay | F. vesiculosus | 16,813 ± 1480 |
23 July 2024 | Teriberskaya Bay | F. vesiculosus | 29,693 ± 1065 |
6 June 2024 | Teriberskaya Bay | F. vesiculosus | 10,466 ± 202 |
23 July 2024 | Teriberskaya Bay | F. vesiculosus | 2813 ± 1209 |
31 March 2021 | Khlebnaya Bay | A. nodosum | 2852 ± 233 |
13 July 2022 | Khlebnaya Bay | A. nodosum | 16,400 ± 1997 |
13 July 2022 | Khlebnaya Bay | A. nodosum | 14,840 ± 1351 |
17 August 2022 | Khlebnaya Bay | A. nodosum | 17,133 ± 1925 |
17 July 2023 | Khlebnaya Bay | A. nodosum | 15,813 ± 601 |
22 July 2024 | Khlebnaya Bay | A. nodosum | 13,880 ± 70 |
22 July 2024 | Khlebnaya Bay | A. nodosum | 25,253 ± 377 |
22 July 2024 | Khlebnaya Bay | A. nodosum | 9986 ± 1232 |
22 July 2024 | Khlebnaya Bay | A. nodosum | 15,133 ± 900 |
31 March 2021 | Khlebnaya Bay | F. distichus | 10,266 ± 174 |
31 March 2021 | Khlebnaya Bay | F. vesiculosus | 23,066 ± 744 |
23 July 2021 | Khlebnaya Bay | F. vesiculosus | 9946 ± 2862 |
13 July 2022 | Khlebnaya Bay | F. vesiculosus | 6760 ± 1626 |
13 July 2022 | Khlebnaya Bay | F. vesiculosus | 573 ± 81 |
17 August 2022 | Khlebnaya Bay | F. vesiculosus | 11,893 ± 958 |
17 July 2023 | Khlebnaya Bay | F. vesiculosus | 6000 ± 0 |
22 July 2024 | Khlebnaya Bay | F. vesiculosus | 2408 ± 84 |
22 July 2024 | Khlebnaya Bay | F. vesiculosus | 7234 ± 1086 |
18 July 2022 | Yarnyshnaya Bay | A. nodosum | 9160 ± 962 |
18 July 2022 | Yarnyshnaya Bay | A. nodosum | 8546 ± 383 |
18 July 2022 | Yarnyshnaya Bay | A. nodosum | 25,400 ± 1577 |
6 July 2023 | Yarnyshnaya Bay | A. nodosum | 3026 ± 87 |
8 July 2023 | Yarnyshnaya Bay | A. nodosum | 26,093 ± 2295 |
8 July 2023 | Yarnyshnaya Bay | A. nodosum | 3386 ± 302 |
8 July 2023 | Yarnyshnaya Bay | A. nodosum | 7413 ± 472 |
14 July 2024 | Yarnyshnaya Bay | A. nodosum | 17,133 ± 1925 |
14 July 2024 | Yarnyshnaya Bay | A. nodosum | 1333 ± 152 |
14 August 2021 | Yarnyshnaya Bay | F. vesiculosus | 15,813 ± 601 |
18 July 2022 | Yarnyshnaya Bay | F. vesiculosus | 6200 ± 1402 |
18 July 2022 | Yarnyshnaya Bay | F. vesiculosus | 1157 ± 462 |
18 July 2022 | Yarnyshnaya Bay | F. vesiculosus | 590 ± 128 |
18 July 2022 | Yarnyshnaya Bay | F. vesiculosus | 13,880 ± 70 |
19 July 2022 | Yarnyshnaya Bay | F. vesiculosus | 25,253 ± 377 |
6 July 2023 | Yarnyshnaya Bay | F. vesiculosus | 9986 ± 1232 |
8 July 2023 | Yarnyshnaya Bay | F. vesiculosus | 15,133 ± 900 |
8 July 2023 | Yarnyshnaya Bay | F. vesiculosus | 6844 ± 1060 |
8 July 2023 | Yarnyshnaya Bay | F. vesiculosus | 11,200 ± 1257 |
10 July 2023 | Yarnyshnaya Bay | F. vesiculosus | 693 ± 300 |
10 July 2023 | Yarnyshnaya Bay | F. vesiculosus | 12,120 ± 534 |
Taxa | Species Characteristics | Features Identified from Aerial Photographs |
---|---|---|
Genus Ascophyllum, Fucus, Pelvetia | Easily identified by external morphological characteristics—location of air bubbles, shape of receptacles, shape of thalli branches | Fucus species are clearly recognizable in photographs taken from low and ultra-low altitudes. It is possible to distinguish species characteristics in high-resolution images from ultra-low altitudes Except F. spiralis, rare species, which requires microscopy of receptacles |
Saccharina latissima, Alaria esculenta, Laminaria digitata | Reliably identified by the shape of the thallus. It is possible to confuse L. digitata with L. hyperborea; they differ only in adulthood in the presence of mucous canals in the thallus. But the second species is not found in the littoral zone on the Murmansk coast | They are easily identified in photographs even from low altitudes, but they grow on the lower horizon of the littoral zone and are not hidden under water only at spring tides |
Palmaria palmata | Specific palm shape and bright green or crimson color of the thallus | Well recognizable in photographs from ultra-low altitudes |
Ulva intestinalis, Ulva prolifera | Large forms are easily recognized by their tubular, corrugated, weakly branched, brightly colored form, but species are reliably distinguished from each other only by the shape of their cells; microscopy is required. Young thalli can be confused with other types of green algae | The accumulation of thalli of these species is well recognizable by their specific bright green color and their association with sandy soils. But reliable results can be obtained in conjunction with laboratory sample processing |
Pylaiella littoralis, Ectocarpus siliculosus, Phleospora brachiata, Pylaiella varia and some other Acinetosporaceae and Ectocarpaceae | Outwardly, they all look similar and are easily distinguished from other groups but are distinguishable from each other only upon microscopic examination. It is necessary to evaluate the shape of chloroplasts, unicellular and multicellular sporangia, branching | Distinguishable in photographs from ultra-low altitudes if they form large clusters. May interfere with Fucus analysis |
Ulvaria obscura, Monostroma grevillei, Ulva lactuca | In most cases, they can be identified by the shape of the thallus and density, but often verification is required by the shape and size of the cells, the number of cell layers | In aerial photographs, only clusters can be distinguished and identification is impossible |
Genus Ulothrix, Urospora, Rhizoclonium, Cladophora, Rama, Acrosiphonia | Identification using microscopy only | Poorly visible |
References
- Sejr, M.K.; Poste, A.E.; Renaud, P.E. Multiple climatic drivers increase pace and consequences of ecosystem change in the Arctic Coastal Ocean. Limnol. Oceanogr. Letters. 2024, 9, 683–695. [Google Scholar] [CrossRef]
- Yu, G.; Yu, Z.; Chen, Z.; Wang, Q. Macrosystems ecology: A new engine and frontier in contemporary ecosystem science. Geogr. Sustainability 2025, 6, 100334. [Google Scholar] [CrossRef]
- Puig, M.; Darbra, R.M. Innovations and insights in environmental monitoring and assessment in port areas. Curr. Opin. Environ. Sustainability. 2024, 70, 101472. [Google Scholar] [CrossRef]
- D’Archino, R.; Piazzi, L. Macroalgal assemblages as indicators of the ecological status of marine coastal systems: A review. Ecol. Indic. 2021, 129, 107835. [Google Scholar] [CrossRef]
- Pinedo, S.; García, M.; Satta, M.P.; De Torres, M.; Ballesteros, E. Rocky-shore communities as indicators of water quality: A case study in the Northwestern Mediterranean. Mar. Pollut. Bull. 2007, 55, 126–135. [Google Scholar] [CrossRef]
- GOST R 70767-2023; National Standard of the Russian Federation “Environmental Protection. Biological Diversity. Industrial Environmental of Biological Diversity”. Available online: https://protect.gost.ru/default.aspx/document1.aspx?control=31&baseC=6&page=0&month=11&year=-1&search=&id=254283 (accessed on 30 June 2025).
- Attila, J.; Kauppila, P.; monitoring Kallio, K.Y.; Alasalmi, H.; Keto, V.; Bruun, E.; Koponen, S. Applicability of Earth Observation chlorophyll-a data in assessment of water status via MERIS—With implications for the use of OLCI sensors. Remote Sens. Environ. 2018, 212, 273–287. [Google Scholar] [CrossRef]
- Schneider, S.C.; Cara, M.; Eriksena, T.E.; Goreskac, B.; Imeri, A.; Kupe, L.; Lokoskac, T.; Patcevac, S.; Trajanovskac, S.; Trajanovski, S.; et al. Eutrophication impacts littoral biota in Lake Ohrid while water phosphorus concentrations are low. Limnologica 2014, 44, 90–97. [Google Scholar] [CrossRef]
- Salo, T.; Salovius-Laurén, S. Green algae as bioindicators for long-term nutrient pollution along a coastal eutrophication gradient. Ecol. Indic. 2022, 140, 109034. [Google Scholar] [CrossRef]
- Levinsen, J.U.G.; Nielsen, M.M.; Schmedes, P.S.; Thomasberger, A.; Rasmussen, M.B.; Mikkelsen, S.E.; Bruhn, A. Sustainable management of Fucus beds–testing of UAV-assisted biomass mapping and evaluation of re-growth after harvest at individual and population level. J. Appl. Phycol. 2025, 37, 1493–1508. [Google Scholar] [CrossRef]
- Menge, B.A.; Farrell, T.M.; Oison, A.M.; van Tamelen, P.; Turner, T. Algal recruitment and the maintenance of a plant mosaic in the low intertidal region on the Oregon coast. J. Exp. Mar. Biol. Ecol. 1993, 170, 91–116. [Google Scholar] [CrossRef]
- Tait, L.W.; Schie, D.R. Ecophysiology of Layered Macroalgal Assemblages: Importance of Subcanopy Species Biodiversity in Buffering Primary Production. Front. Mar. Sci. 2018, 5. [Google Scholar] [CrossRef]
- Murfitt, S.L.; Allan, B.M.; Bellgrove, A.; Rattray, A.; Young, M.A.; Ierodiaconou, D. Applications of unmanned aerial vehicles in intertidal reef monitoring. Sci. Rep. 2017, 7, 10259. [Google Scholar] [CrossRef]
- Rossiter, T.; Furey, T.; McCarthy, T.; Stengel, D.B. UAV-mounted hyperspectral mapping of intertidal macroalgae. Estuar. Coast. Shelf Sci. 2020, 242, 106789. [Google Scholar] [CrossRef]
- Rossiter, T.; Furey, T.; McCarthy, T.; Stengel, D.B. Application of multiplatform, multispectral remote sensors for mapping intertidal macroalgae: A comparative approach. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 30, 1595–1612. [Google Scholar] [CrossRef]
- Kosenko, D.V.; Shidlovsky, A.L.; Yunakovsky, N.S. Application of unmanned aerial vehicles for monitoring hazardous phenomena in the Arctic. Nat. Man-Made Risks (Phys. Math. Appl. Asp.) 2019, 1, 5–9. [Google Scholar]
- Duarte, C.M.; Gattuso, J.P.; Hancke, K.; Gundersen, H.; Filbee-Dexter, K.; Pedersen, M.F.; Krause-Jensen, D. Global estimates of the extent and production of macroalgal forests. Glob. Ecol. Biogeogr. 2022, 31, 1422–1439. [Google Scholar] [CrossRef]
- Krause-Jensen, D.; Archambault, P.; Assis, J.; Bartsch, I.; Bischof, K.; Karen Filbee-Dexter, K.; Dunton, K.H.; Olga Maximova, O.; Ragnarsdóttir, S.B.; Sejr, M.K.; et al. Imprint of climate change on pan-Arctic marine vegetation. Front. Mar. Sci. 2020, 7, 617324. [Google Scholar] [CrossRef]
- Rose, D.J.; Hemery, L.G. Methods for measuring carbon dioxide uptake and permanence: Review and implications for macroalgae aquaculture. J. Mar. Sci. Eng. 2023, 11, 175. [Google Scholar] [CrossRef]
- Dulenin, A.A.; Dulenina, P.A.; Kotsyuk, D.V.; Sviridov, V.V. Experience and prospects of using small unmanned aerial vehicles in marine coastal biological research. Tr. VNIRO 2021, 185, 134–151. [Google Scholar]
- Lyubimov, I.V.; Kolyuchkina, G.A.; Simakova, U.V. Mapping of the White Sea Zostera meadows using a copter (Chernaya Bay, Kandalaksha Gulf). In Proceedings of the X International Scientific and Practical Conference “Marine Research and Education (MARESEDU-2021)” Volume II (III): Tver: OOO “PoliPRESS”, Moscow, Russia, 25–29 October 2021; pp. 111–114. [Google Scholar]
- Vashchenko, P.S.; Shavykin, A.A. Aerial photography for assessing the sensitivity of the coast to oil spills (on the example of the Kola Bay). NVEO—Nat. Volatiles Essent. Oils 2021, 8, 5917–5930. [Google Scholar]
- Kislik, C.; Dronova, I.; Kelly, M. UAVs in Support of Algal Bloom Research: A Review of Current Applications and Future Opportunities. Drones 2018, 2, 35. [Google Scholar] [CrossRef]
- Diruit, W.; Le Bris, A.; Bajjouk, T.; Richier, S.; Helias, M.; Burel, T.; Ar Gall, E. Seaweed habitats on the shore: Characterization through hyperspectral UAV imagery and field sampling. Remote Sens. 2022, 14, 3124. [Google Scholar] [CrossRef]
- Borges, D.; Duarte, L.; Costa, I.; Bio, A.; Silva, J.; Sousa-Pinto, I.; Gonçalves, J.A. New Methodology for intertidal seaweed biomass estimation using multispectral data obtained with unoccupied aerial vehicles. Remote Sens. 2023, 15, 3359. [Google Scholar] [CrossRef]
- Lønborg, C.; Thomasberger, A.; Stæhr, P.A.U.; Stockmarr, A.; Sengupta, S.; Rasmussen, M.L.; Nielsen, L.T.; Hansen, L.B.; TimmermannSubmerged, K. aquatic vegetation: Overview of monitoring techniques used for the identification and determination of spatial distribution in European coastal waters. Integr. Environ. Assess. Manag. 2021, 18, 892–908. [Google Scholar] [CrossRef]
- Arroyo-Mora, J.P.; Kalacska, M.; Løke, T.; Schläpfer, D.; Coops, N.C.; Lucanus, O.; Leblanc, G. Assessing the impact of illumination on UAV pushbroom hyperspectral imagery collected under various cloud cover conditions. Remote Sens. Environ. 2021, 258, 112396. [Google Scholar] [CrossRef]
- Vinogradova, K.L. Ulvophycean (Chlorophyta) of the Seas of the USSR; Nauka: Moscow, Russia, 1974; p. 166. [Google Scholar]
- Mathieson, A.C.; Dawes, C.J. Seaweeds of the Northwest Atlantic; University of Massachusetts Press: Amherst, MA, USA; Boston, MA, USA, 2017; p. 798. [Google Scholar]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. Available online: https://www.algaebase.org (accessed on 30 June 2025).
- Blinova, E.I.; Vilkova, O.Y.; Milyutin, D.M.; Pronina, O.A.; Shtrik, V.A. Study of ecosystems of fishery water bodies, collection and processing of data on aquatic bioresources, equipment and technology of their extraction and processing. Issue 3. In Methods of Landscape Research and Assessment of Stocks of Bottom Invertebrates and Algae of the Coastal Zone of the Seas; Publishing House of VNIRO: Moscow, Russia, 2005; p. 135. [Google Scholar]
- Kautsky, H. Phytobenthos Techniques Methods for the Study of Marine Benthos; Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 427–465. [Google Scholar]
- Agisoft Metashape User Manual: Professional Edition. 2021. 221p. Available online: https://www.agisoft.com/pdf/metashape-pro_1_7_ru.pdf (accessed on 30 June 2025).
- Malavenda, S.V.; Shavykin, A.A.; Vaschenko, P.S. Macrophytobenthos biomass and areas of its greatest vulnerability to oil spills in the Kola Bay. Environ. Prot. Oil Gas Complex 2015, 12, 5–12. [Google Scholar]
- Malavenda, S.V. Stocks of fucus algae in the Barents Sea: Level of study and new data. Modern ecological-biological and chemical research, engineering and production technology. 2018, pp. 43–50. Available online: https://www.elibrary.ru/item.asp?id=36444447&pff=1 (accessed on 30 June 2025).
- Felipe-García, B.; Hernández-López, D.; Lerma, J.L. Analysis of the ground sample distance on large photogrammetric surveys. Appl. Geomat. 2012, 4, 231–244. [Google Scholar] [CrossRef]
- Pix4D Documentation. Ground Sampling Distance (GSD) in Photogrammetry. 2019. Available online: https://support.pix4d.com/hc/en-us/articles/202559809-Ground-sampling-distance-GSD-in-photogrammetry (accessed on 30 June 2025).
- Ground Sample Distance Calculator. Available online: https://www.propelleraero.com/ground-sample-distance-calculator/ (accessed on 30 June 2025).
- Murmansk Department of Hydrometeorology and Environmental Monitoring. Archive. Available online: https://kolgimet.ru/news/archive/?type=uploader (accessed on 30 June 2025).
- Marbà, N.; Krause-Jensen, D.; Olesen, B.; Christensen, P.B.; Merzouk, A.; Rodrigues, J.; Wilce, R.T. Climate change stimulates the growth of the intertidal macroalgae Ascophyllum nodosum near the northern distribution limit. Ambio 2017, 46, 119–131. [Google Scholar] [CrossRef]
- Lauzon-Guay, J.S.; Feibel, A.I.; Gibson, M.; Mac Monagail, M.; Morse, B.L.; Robertson, C.A.; Ugarte, R.A. A novel approach reveals underestimation of productivity in the globally important macroalga, Ascophyllum nodosum. Mar. Biol. 2022, 169, 1–11. [Google Scholar] [CrossRef]
- Thyrring, J.; Wegeberg, S.; Blicher, M.E.; Krause-Jensen, D.; Høgslund, S.; Olesen, B.; Sejr, M.K. Latitudinal patterns in intertidal ecosystem structure in West Greenland suggest resilience to climate change. Ecography 2021, 44, 1156–1168. [Google Scholar] [CrossRef]
- Chang, H.; Zuo, P.; Yan, Y.; Qin, Y. Approaches, challenges and prospects for modeling macroalgal dynamics in the green tide: The case of Ulva prolifera. Mar. Pollut. Bull. 2025, 215, 117897. [Google Scholar] [CrossRef]
- Marin, O.A.; Filimon, A. Ulva species from the Romanian Black sea coast-between green blooms and nature’s contribution to people. Cercet. Mar.—Rech. Mar. 2024, 54, 90–103. [Google Scholar] [CrossRef]
- Park, J.; Lee, H.; De Saeger, J.; Depuydt, S.; Asselman, J.; Janssen, C.; Han, T. Harnessing green tide Ulva biomass for carbon dioxide sequestration. Rev. Environ. Sci. Bio Technol. 2024, 23, 1041–1061. [Google Scholar] [CrossRef]
- Costa, S.P.; Cotas, J.; Pereira, L. Laminar Ulva species: A multi-tool for humankind? Appl. Sci. 2024, 14, 3448. [Google Scholar] [CrossRef]
- Pankeeva, T.V.; Mironova, N.V.; Novikov, B.A. Experience of mapping bottom vegetation (on the example of Laspi Bay, Black Sea). Geopolit. Ecogeodynamics Reg. 2020, 6, 154–169. [Google Scholar] [CrossRef]
Area | Polygon | Research Period | |||
---|---|---|---|---|---|
2021 | 2022 | 2023 | 2024 | ||
Teriberskaya bay | Lodeynaya Bay | + | + | + | + |
Kola bay | Cape Belokamenny | + | + | + | − |
Retinskaya Bay | − | + | + | − | |
Khlebnaya Bay | − | + | + | − | |
Cape Elovy—Kola Bay bridge | − | − | + | + | |
Yarnyshnaya bay | Yarnyshnaya Bay | − | − | + | − |
Polygon | Year | Slit, m2 | SChl, m2 |
---|---|---|---|
Cape Elovy | 2023 | 250,222 | 78,255.91 |
Cape Elovy | 2024 | 227,425 | 7078.11 |
Cape Belokamenny | 2022 | 117,509 | 22,154.39 |
Cape Belokamenny | 2023 | 103,311 | 15,765.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolbeeva, S.V.; Vashchenko, P.S.; Vodopyanova, V.V. Monitoring of Algae Communities on the Littoral of the Barents Sea Using UAV Imagery. Diversity 2025, 17, 518. https://doi.org/10.3390/d17080518
Kolbeeva SV, Vashchenko PS, Vodopyanova VV. Monitoring of Algae Communities on the Littoral of the Barents Sea Using UAV Imagery. Diversity. 2025; 17(8):518. https://doi.org/10.3390/d17080518
Chicago/Turabian StyleKolbeeva, Svetlana V., Pavel S. Vashchenko, and Veronika V. Vodopyanova. 2025. "Monitoring of Algae Communities on the Littoral of the Barents Sea Using UAV Imagery" Diversity 17, no. 8: 518. https://doi.org/10.3390/d17080518
APA StyleKolbeeva, S. V., Vashchenko, P. S., & Vodopyanova, V. V. (2025). Monitoring of Algae Communities on the Littoral of the Barents Sea Using UAV Imagery. Diversity, 17(8), 518. https://doi.org/10.3390/d17080518