The Influence of Infrastructure on the Breeding Distribution of a Threatened Top Predator
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Population Survey
2.3. Selection of Spatial Scales and Measurement of Habitat Variables
2.4. Statistical Analyses
3. Results
3.1. Minimal Observed Distance of Nest Sites from Infrastructures
3.2. Infrastructural Effects on Present Distribution Within the Core Study Area
3.3. Infrastructural Effects on the Potential Distribution in the Eastern Hungarian Plain
4. Discussion
5. Conclusions
- (1)
- Minimize further habitat fragmentation: Plans for new linear infrastructure (e.g., roads, railways, and power lines) should aim to minimize the further fragmentation of priority habitats of imperial eagles and other globally threatened species. Negative impacts can be reduced if new infrastructure is routed close to existing infrastructure (of the same or different types) and avoids bisecting previously continuous, undisturbed habitat patches.
- (2)
- Mitigate Electrocution Risks: Electrocution remains the most significant infrastructure-related cause of mortality and is likely the only one that can be effectively reduced through targeted mitigation measures [68,69,70]. According to the 2009 amendment of the Hungarian Nature Conservation Law (53/1996), all newly constructed or fully renovated power line sections must be designed to minimize risk to wild bird populations. In addition to enforcing this regulation, retrofitting approximately 700,000 existing hazardous power poles across the Hungarian Plain would provide a long-term solution [37]. In the medium term. modifying the roughly 14,000 most dangerous pylons, those located in high-probability imperial eagle habitats, as identified by our model, would substantially reduce electrocution-related mortality.
- (3)
- Prioritize Monitoring in High-Probability Areas: Intensive field surveys and monitoring should be focused on high-probability habitats, particularly in regions with limited coverage by SPAs or nationally protected areas (Nagykunság, Hajdúhát, and Békés Plain). Our habitat suitability model can assist in locating new breeding territories more efficiently, which is essential for implementing timely conservation measures and addressing threats such as habitat degradation or direct persecution.
- (4)
- Develop Further Predictive Models: Further research should aim to refine habitat occupancy and population dynamics models to better forecast changes in the distribution and breeding behavior of the Pannonian imperial eagle population. These models should incorporate additional variables, such as nesting tree availability, prey abundance, microhabitat structure, breeding success, mortality rates, density dependence, and long-term behavioral adaptations (i.e., habituation to human activity).
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BirdLife International. State of the World’s Birds 2022: Insights and Solutions for the Biodiversity Crisis; BirdLife International: Cambridge, UK, 2022. [Google Scholar]
- Benítez-López, A.; Alkemade, R.; Verweij, P.A. The impacts of roads and other infrastructure on mammal and bird populations: A meta-analysis. Biol. Conserv. 2010, 143, 1307–1316. [Google Scholar] [CrossRef]
- European Environment Agency. Urban Sprawl in Europe—The Ignored Challenge (EEA Report No 10/2006); Office for Official Publications of the European Communities: Luxembourg, 2006. [Google Scholar]
- European Environment Agency). Urban Sprawl in Europe—Joint EEA-FOEN Report (EEA Report No 11/2016); Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Byron, H.; Arnold, L. TEN-T and Natura 2000: The Way Forward—An Assessment of the Potential Impact of the TEN-T Priority Projects on Natura 2000; Royal Society for the Protection of Birds: Bedfordshire, UK, 2008. [Google Scholar]
- Burfield, I.J.; Rutherford, C.A.; Fernando, E.; Grice, H.; Piggott, A.; Martin, R.W.; Balman, M.; Evans, M.I.; Staneva, A. Birds in Europe 4: The fourth assessment of Species of European Conservation Concern. Bird Conserv. Int. 2023, 33, e66. [Google Scholar] [CrossRef]
- López-López, P.; García-Ripollés, C.; Aguilar, J.M.; García-López, F.; Verdejo, J. Modelling breeding habitat preferences of Bonelli’s eagle (Hieraaetus fasciatus) in relation to topography, disturbance, climate and land use at different spatial scales. J. Ornithol. 2006, 147, 97–106. [Google Scholar] [CrossRef]
- Morán-López, M.; Sánchez Guzmán, J.M.; Costillo Borrego, E.; Villegas Sánchez, A. Nest-site selection of endangered cinereous vulture (Aegypius monachus) populations affected by anthropogenic disturbance: Present and future conservation implications. Anim. Conserv. 2006, 9, 29–37. [Google Scholar] [CrossRef]
- Sergio, F.; Marchesi, L.; Pedrini, P.; Ferrer, M.; Penteriani, V. Electrocution alters the distribution and density of a top predator, the eagle owl Bubo bubo. J. Appl. Ecol. 2004, 41, 836–845. [Google Scholar] [CrossRef]
- Sergio, F.; Pedrini, P.; Rizzolli, F.; Marchesi, L. Adaptive range selection by golden eagles in a changing landscape: A multiple modelling approach. Biol. Conserv. 2006, 133, 2–41. [Google Scholar] [CrossRef]
- Engler, R.; Guisan, A.; Rechsteiner, L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J. Appl. Ecol. 2004, 41, 263–274. [Google Scholar] [CrossRef]
- Lehmann, A.; Overton, J.M.C.; Leathwick, J.R. GRASP: Generalized regression analysis and spatial predictions. Ecol. Model. 2002, 157, 189–207. [Google Scholar] [CrossRef]
- Rushton, S.P.; Ormerod, S.J.; Kerby, G. New paradigms for modelling species distributions? J. Appl. Ecol. 2004, 41, 193–200. [Google Scholar] [CrossRef]
- Cody, M.L. Habitat Selection in Birds; Academic Press: Orlando, FL, USA; London, UK, 1985. [Google Scholar]
- Gavashelishvili, L.; McGrady, M.J. Breeding site selection by bearded vulture (Gypaetus barbatus) and Eurasian griffon (Gyps fulvus) in the Caucasus. Anim. Conserv. 2006, 9, 159–170. [Google Scholar] [CrossRef]
- Moskát, C.; Honza, M. Effects of nest and nest site characteristics on the risk of cuckoo Cuculus canorus parasitism in the great reed warbler Acrocephalus arundinaceus. Ecography 2000, 23, 335–341. [Google Scholar] [CrossRef]
- López-López, P.; García-Ripollés, C.; Soutullo, A.; Cadahía, L.; Urios, V. Identifying potentially suitable nesting habitat for golden eagles applied to ‘important bird areas’ design. Anim. Conserv. 2007, 10, 208–218. [Google Scholar] [CrossRef]
- Tapia, L.; Domínguez, J.; Rodríguez, L. Modelling habitat use and distribution of golden eagles Aquila chrysaetos in a low-density area of the Iberian Peninsula. Biodiv. Conserv. 2007, 16, 3559–3574. [Google Scholar] [CrossRef]
- Carrete, M.; Grande, J.M.; Tella, J.L.; Sánchez-Zapata, J.A.; Donázar, J.A.; Díaz-Delgado, R.; Romo, A. Habitat, human pressure, and social behavior: Partialling out factors affecting large-scale territory extinction in an endangered vulture. Biol. Conserv. 2007, 136, 143–154. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Posse, B.; Oggier, P.-A.; Crettenand, Y.; Glenz, C.; Arlettaz, R. Ecological requirements of reintroduced species and the implications for release policy: The case of the bearded vulture. J. Appl. Ecol. 2004, 41, 1103–1116. [Google Scholar] [CrossRef]
- Syartinilia Tsuyuki, S. GIS-based modeling of Javan Hawk-Eagle distribution using logistic and autologistic regression models. Biol. Conserv. 2008, 141, 756–769. [Google Scholar] [CrossRef]
- Väli, Ü.; Treinys, R.; Löhmus, A. Geographical variation in macrohabitat use and preferences of the Lesser Spotted Eagle Aquila pomarina. Ibis 2004, 146, 661–671. [Google Scholar] [CrossRef]
- Caro, T.M.; O’Doherty, G. On the use of surrogate species in conservation biology. Conserv. Biol. 1999, 13, 805–814. [Google Scholar] [CrossRef]
- Sergio, F.; Newton, I.; Marchesi, L.; Pedrini, P. Top predators and biodiversity: Much debate, few data. J. Appl. Ecol. 2008, 45, 992–999. [Google Scholar] [CrossRef]
- BirdLife International. Aquila heliaca (Amended Version of 2017 Assessment). The IUCN Red List of Threatened Species. Available online: https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T22696048A155464885.en (accessed on 29 September 2024).
- Karyakin, I.V. Breeding Population Structure of the Eastern Imperial Eagle. Raptors Conserv. 2020, 41, 64–269. [Google Scholar] [CrossRef]
- Demerdzhiev, D.; Horváth, M.; Kovács, A.; Stoychev, S.; Karyakin, I. Status and population trend of the Eastern Imperial Eagle (Aquila heliaca) in Europe in the period 2000–2010. Acta Zool. Bulg. 2011, 3, 5–14. [Google Scholar]
- Demerdzhiev, D.; Boev, Z.; Dobrev, D.; Nedyalkov, N.; Petrov, T. Does Temporal and Spatial Diet Alteration Lead to Successful Adaptation of the Eastern Imperial Eagle, a Top Predator? Diversity 2022, 14, 1000. [Google Scholar] [CrossRef]
- Haraszthy, L.; Bagyura, J.; Szitta, T.; Petrovics, Z.; Viszló, L. Biology, Status and Conservation of the Imperial Eagle Aquila heliaca in Hungary. In Eagle Studies; Meyburg, B.-U., Chancellor, R.D., Eds.; World Working Group on Birds of Prey (WWGBP): Berlin, Germany; London, UK; Paris, France, 1996; pp. 425–427. [Google Scholar]
- Bagyura, J.; Szitta, T.; Haraszthy, L.; Firmánszky, G.; Viszló, L.; Kovács, A.; Demeter, I.; Horváth, M. Population increase of imperial eagle (Aquila heliaca) in Hungary between 1980 and 2000. Aquila 2002, 107–108, 133–144. [Google Scholar]
- Horváth, M.; Szitta, T.; Fatér, I.; Kovács, A.; Demeter, I.; Firmánszky, G.; Bagyura, J. Population dynamics of the Eastern imperial eagle (Aquila heliaca) in Hungary between 2001 and 2009. Acta Zool. Bulg. 2011, 2011 (Suppl. 3), 61–70. [Google Scholar]
- Horváth, M.; Fatér, I.; Juhász, T.; Árvay, M.; Deák, G.; Őze, P.; Bereczky, A. Nesting population of Eastern Imperial Eagles (Aquila heliaca) in Hungary between 2020 and 2023. Heliaca 2024, 20, 64–70, (In Hungarian with English summary). [Google Scholar]
- Brochet, A.; Van Den Bossche, W.; Jones, V.R.; Arnardottir, H.; Damoc, D.; Demko, M.; Driessens, G.; Flensted, K.; Gerber, M.; Ghasabyan, M.; et al. Illegal killing and taking of birds in Europe outside the Mediterranean: Assessing the scope and scale of a complex issue. Bird Conserv. Int. 2019, 29, 10–40. [Google Scholar] [CrossRef]
- Buij, R.; Richards, N.L.; Rooney, E.; Ruddock, M.; Horváth, M.; Krone, O.; Mason, H.; Shorrock, G.; Chriél, M.; Deák, G.; et al. Raptor poisoning in Europe between 1996 and 2016: A continental assessment of the most affected species and the most used poisons. J. Rapt. Res. 2025, 59, 1–19. [Google Scholar] [CrossRef]
- Deák, G.; Árvay, M.; Horváth, M. Using detection dogs to reveal illegal pesticide poisoning of raptors in Hungary. J. Vert. Biol. 2021, 69, 15. [Google Scholar] [CrossRef]
- Zsinka, B.; Pásztory-Kovács Sz Kövér Sz Vili, N.; Horváth, M. Moderate evidence for the sex-dependent effect of poisoning on adult survival in a long-lived raptor species. Ecol. Evol. 2024, 14, e70295. [Google Scholar] [CrossRef]
- Demeter, I.; Horváth, M.; Nagy, K.; Görögh, Z.; Tóth, P.; Bagyura, J.; Solt, S.; Kovács, A.; Dwyer, J.F.; Harness, R.E. Documenting and reducing avian electrocutions in Hungary: A conservation contribution from citizen scientists. Wilson J. Ornithol. 2018, 130, 600–614. [Google Scholar] [CrossRef]
- Horváth, M.; Kleszó, A.; Pigniczki, C.; Bagyura, J.; Szitta, T. Nest building activities of Eastern Imperial Eagles (Aquila heliaca) on high-voltage pylons in Hungary. Heliaca 2020, 16, 135–138. (In Hungarian) [Google Scholar]
- Csányi, S.; Márton, M.; Bőti Sz és Schally, G. Vadgazdálkodási Adattár-2023/2024. Vadászati Év. MATE VTI; Országos Vadgazdálkodási Adattár: Gödöllő, Hungary, 2024. (in Hungarian) [Google Scholar]
- Horváth, M.; Solti, B.; Fatér, I.; Juhász, T.; Haraszthy, L.; Szitta, T.; Ballók, Z.; Pásztory-Kovács, S. Temporal changes in the diet composition of the Eastern Imperial Eagle (Aquila heliaca) in Hungary. Ornis Hung. 2018, 26, 1–26. [Google Scholar] [CrossRef]
- Szapu, J.; Lanszki, J.; Pongrácz, P.; Cserkész, T. Friend or foe? Engaging public can save the critically endangered common hamster (Cricetus cricetus). Conserv. Sci. Pract. 2024, 6, e13184. [Google Scholar] [CrossRef]
- Tanács, E.; Belenyesi, M.; Lehoczki, R.; Pataki, R.; Petrik, O.; Standovár, T.; Pásztor, L.; Laborczi, A.; Szatmári, G.; Molnár, Z.; et al. A national, high-resolution ecosystem basemap: Methodology, validation, and possible uses. Természetvédelmi Közlemények 2019, 25, 34–58. (In Hungarian) [Google Scholar] [CrossRef]
- Bednarz, J.C.; Dinsmore, J.J. Status, habitat use, and management of red-shouldered hawks in Iowa. J. Wildl. Manag. 1981, 45, 236–241. [Google Scholar] [CrossRef]
- Szép, T.; Gibbons, D. Monitoring of common breeding birds in Hungary using a randomised sampling design. Ring 2000, 22, 45–55. [Google Scholar]
- Agresti, A. Categorical Data Analysis, 2nd ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Beyer, H.L. Hawth’s Analysis Tools for ArcGIS. 2004. Available online: www.spatialecology.com/htools (accessed on 1 March 2011).
- Latimer, A.M.; Wu, S.; Gelfand, A.E.; Silander, J.A., Jr. Building statistical models to analyze species distributions. Ecol. Appl. 2006, 16, 33–50. [Google Scholar] [CrossRef]
- Sudipto, B.; Bradley, P.; Gelfand, A.E. Hierarchical Modeling and Analysis for Spatial Data Monographs on Statistics and Applied Probability; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Faraway, J.J. Extending the Linear Model with R; Chapman, Hall/CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Pearce, J.; Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 2000, 133, 225–245. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2007. [Google Scholar]
- Lunn, D.J.; Thomas, A.; Best, N.; Spiegelhalter, D.J. WinBUGS—A Bayesian modeling framework: Concepts, structure and extensibility. Stat. Comput. 2000, 10, 325–337. [Google Scholar] [CrossRef]
- Danko, Š.; Balla, M. Unusual cases of nesting by the Imperial Eagle (Aquila heliaca) in Eastern Slovakia. Slovak Raptor J. 2007, 1, 19–22. [Google Scholar] [CrossRef]
- Bisson, I.A.; Ferrer, M.; Bird, D.M. Factors influencing nest-site selection by Spanish Imperial Eagles. J. Field Ornithol. 2002, 73, 298–302. [Google Scholar] [CrossRef]
- Gonzalez, L.M.; Bustamante, J.; Hiraldo, F. Nesting habitat selection by the Spanish imperial eagle Aquila adalberti. Biol. Conserv. 1992, 59, 45–50. [Google Scholar] [CrossRef]
- Ferrer, M. The Spanish Imperial Eagle; Lynx Edicions: Barcelona, Spain, 2001. [Google Scholar]
- González, L.M.; Margalida, A. Conservation Biology of the Spanish Imperial Eagle; Organismo Autonomo Parques Nacionales, Ministerio de Medio Ambiente y Medio Marino y Rural: Madrid, Spain, 2008. [Google Scholar]
- Gonzalez, L.M.; Bustamante, J.; Hiraldo, F. Factors influencing the present distribution of the Spanish Imperial Eagle Aquila adalberti. Biol. Conserv. 1990, 51, 311–319. [Google Scholar] [CrossRef]
- Gonzalez, L.M.; Arroyo, B.E.; Margalida, A.; Sanchez, R.; Oria, J. Effect of human activities on the behaviour of breeding Spanish imperial eagles (Aquila adalberti): Management implications for the conservation of a threatened species. Anim. Conserv. 2006, 9, 85–93. [Google Scholar] [CrossRef]
- Watson, J.; Whitfield, P. A conservation framework for the golden eagle Aquila chrysaetos in Scotland. J. Rapt. Res. 2002, 36 (Suppl. 1), 41–49. [Google Scholar]
- Blumstein, D.T.; Fernández-Juricic, E.; Zollner, P.A.; Garity, S.C. Inter-specific variation in avian responses to human disturbance. J. Appl. Ecol. 2005, 42, 943–953. [Google Scholar] [CrossRef]
- Donázar, J.A.; Blanco, G.; Hiraldo, F.; Soto-Largo, E.; Oria, J. Effects of forestry and other land-use practices on the conservation of cinereous vultures. Ecol. Appl. 2002, 12, 1445–1456. [Google Scholar] [CrossRef]
- Richardson, C.T.; Miller, C.K. Recommendations for protecting raptors from human disturbance: A review. Wildl. Soc. Bull. 1997, 25, 634–638. [Google Scholar]
- Whitfield, D.P.; Ruddock, M.; Bullman, R. Expert opinion as a tool for quantifying bird tolerance to human disturbance. Biol. Conserv. 2008, 141, 2708–2717. [Google Scholar] [CrossRef]
- Pongrácz, Á.; Horváth, M. Suggested methodology for temporal and long-term spatial restrictions of human activities around the nests of strictly protected raptors, owls and black storks. Heliaca 2012, 8, 104–107. (In Hungarian) [Google Scholar]
- Ferrer, M.; Negro, J.J.; Casado, E.; Muriel, R.; Madero, A. Human disturbance and the conservation of the Spanish imperial eagle: A response to Gonzalez et al. (2006). Anim. Conserv. 2007, 10, 293–294. [Google Scholar] [CrossRef]
- Ferrer, M.; Hiraldo, F. Evaluation of management techniques for the Spanish imperial eagle. Wildl. Soc. Bull. 1991, 19, 436–442. [Google Scholar]
- Bagyura, J.; Szitta, T.; Sándor, I.; Viszló, L.; Firmánszky, G.; Forgách, B.; Boldogh, S.; Demeter, I. A review of measures taken against bird electrocution in Hungary. In Raptors Worldwide: Proceedings of the VI World Conference on Birds of Prey and Owls; Chancellor, R.D., Meyburg, B.-U., Eds.; WWGBP/MME BirdLife Hungary: Budapest, Hungary, 2004; pp. 423–428. [Google Scholar]
- López-López, P.; Ferrer, M.; Madero, A.; Casado, E.; McGrady, M. Solving man-induced large-scale conservation problems: The Spanish imperial eagle and power lines. PLoS ONE 2011, 6, e17196. [Google Scholar] [CrossRef]
Type (Unit) | Mortality Risk | Disturbance Risk | Minimal Nesting Distance * | Buffer Coverage ** | Density in Occupied (n = 121) | Density in Unoccupied (n = 327) |
---|---|---|---|---|---|---|
Settlement (km2) | high | high | 700 m | 20.74% | 0.018 ± 0.050 | 0.071 ± 0.126 |
Isolated building (number) | medium | medium | 0 m | - | 0.284 ± 0.528 | 0.226 ± 0.354 |
Major paved road (km) | low | medium | 100 m | 0.75% | 0.063 ± 0.147 | 0.084 ± 0.177 |
Minor paved road (km) | medium | high | 250 m | 8.39% | 0.124 ± 0.190 | 0.205 ± 0.211 |
Railway (km) | medium | medium | 0 m | - | 0.055 ± 0.129 | 0.084 ± 0.186 |
Medium-voltage power line (km) | high | low | 100 m | 6.25% | 0.219 ± 0.294 | 0.427 ± 0.425 |
High-voltage power line (km) | low | low | 100 m | 2.71% | 0.137 ± 0.224 | 0.181 ± 0.315 |
Cumulative infrastructural effect (km2) | high | high | - | 33.05% | 0.197 ± 0.191 | 0.380 ± 0.274 |
Model/Random Node | Mean | SD | MC Error | 2.5% | Median | 97.5% |
---|---|---|---|---|---|---|
Multivariate model | ||||||
Settlement | −8.694 | 2.724 | 0.08263 | −14.5 | −8.523 | −3.786 |
Major road | −7.04 × 10−4 | 0.001104 | 1.95 × 10−5 | −0.00293 | −6.82 × 10−4 | 0.001414 |
Minor road | −0.00217 | 9.53 × 10−4 | 2.85 × 10−5 | −0.00417 | −0.00213 | −4.27 × 10−4 |
Railway | −0.00142 | 0.001043 | 2.25 × 10−5 | −0.00355 | −0.00138 | 4.89 × 10−4 |
Medium-voltage power line | −8.66 × 10−4 | 6.91 × 10−4 | 1.45 × 10−5 | −0.00231 | −8.37 × 10−4 | 4.09 × 10−4 |
High-voltage power line | −0.00141 | 5.87 × 10−4 | 1.16 × 10−5 | −0.00262 | −0.00139 | −3.14 × 10−4 |
Deviance | 365.17 | 36.9 | 2.348 | 288.5 | 368.4 | 431.3 |
CIE model | ||||||
CIE | −5.196 | 1.022 | 0.04896 | −7.494 | −5.113 | −3.431 |
Deviance | 371.9 | 34.37 | 2.158 | 296.1 | 375.2 | 429.8 |
Multivariate Model | CIE Model | |||
---|---|---|---|---|
Predicted | Unpredicted | Predicted | Unpredicted | |
Probability | >0.4 | <0.4 | >0.37 | <0.37 |
Occupied | 95 | 26 | 94 | 27 |
Unoccupied | 11 | 316 | 22 | 305 |
Model | AUC | AUC SD | Cohen’s | Lower CI | Upper CI |
---|---|---|---|---|---|
Multivariate | 0.935 | 0.013 | 0.622 | 0.54 | 0.73 |
CIE | 0.932 | 0.014 | 0.578 | 0.5 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horváth, M.; Fehérvári, P.; Szitta, T.; Moskát, C. The Influence of Infrastructure on the Breeding Distribution of a Threatened Top Predator. Diversity 2025, 17, 477. https://doi.org/10.3390/d17070477
Horváth M, Fehérvári P, Szitta T, Moskát C. The Influence of Infrastructure on the Breeding Distribution of a Threatened Top Predator. Diversity. 2025; 17(7):477. https://doi.org/10.3390/d17070477
Chicago/Turabian StyleHorváth, Márton, Péter Fehérvári, Tamás Szitta, and Csaba Moskát. 2025. "The Influence of Infrastructure on the Breeding Distribution of a Threatened Top Predator" Diversity 17, no. 7: 477. https://doi.org/10.3390/d17070477
APA StyleHorváth, M., Fehérvári, P., Szitta, T., & Moskát, C. (2025). The Influence of Infrastructure on the Breeding Distribution of a Threatened Top Predator. Diversity, 17(7), 477. https://doi.org/10.3390/d17070477