Size and Sex Effects on Storm-Petrels’ Maximum Load-Lift at Takeoff
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Sex Determination
2.4. Maximum Load-Lift at Takeoff
- mb = body mass of the individual;
- ML = added mass.
- L = maximal lifting force;
- ρ = air density;
- r = wing semi-span.
2.5. Takeoff Model
- Mtmus = total muscle mass;
- Po,m = muscle-mass-specific power output (referring to the following constants: aerobic flight performance = 100 W·kg−1; and anaerobic flight performance = 225 W·kg−1).
2.6. Statistical Analysis
3. Results
3.1. Sex Determination of BSP and LSP Individuals
3.2. Carrying Capacity of BSP and LSP Individuals
3.2.1. Maximum Load, Takeoff Lift Force, and Maximum Induced Power
3.2.2. Comparison of the Carrying Capacity Between Females and Males Within Each Species
3.3. Takeoff Model of the BSP and LSP Individuals
3.3.1. Determination of Muscle Mass Proportion in BSP and LSP Individuals
3.3.2. Mass-Specific Lift
3.3.3. Takeoff Model and the Relationship with Bird Sex
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brusca, R.C.; Findley, L.T.; Hastings, P.A.; Hendrickx, M.E.; Cosio, J.T.; Heiden, A.M.V.D. Macrofaunal Diversity in the Gulf of California. In Biodiversity, Ecosystems, and Conservation in Northern Mexico; Cartron, J.-L.E., Ceballos, G., Felger, R.S., Eds.; Oxford University Press: Oxford, UK, 2005. [Google Scholar] [CrossRef]
- The Gulf of California: Biodiversity and Conservation; Brusca, R.C., Ed.; University of Arizona Press: Tucson, AZ, USA, 2010. [Google Scholar] [CrossRef]
- Enríquez-Andrade, R.; Anaya-Reyna, G.; Barrera-Guevara, J.C.; Carvajal-Moreno, M.d.l.Á.; Martínez-Delgado, M.E.; Vaca-Rodríguez, J.; Valdés-Casillas, C. An analysis of critical areas for biodiversity conservation in the Gulf of California Region. Ocean. Coast. Manag. 2005, 48, 31–50. [Google Scholar] [CrossRef]
- Alvarez-Borrego, S. Physical Oceanography. In A new Island Biography of the Sea of Cortes; Chase, T.J., Cody, M.L., Ezcurra, E., Eds.; Oxford University Press: Oxford, UK, 2002; pp. 41–59. [Google Scholar]
- Arizmendi, M.d.C.; Marquez Valdemar, L. Áreas de Importancia para la Conservación de las aves en México; CONABIO: Mexico City, Mexico, 2000; p. 440. [Google Scholar]
- Ortega-Jimenez, V.M.; Alvarez-Borrego, S.; Arriaga-Ramirez, S.; Bridge, E.S.; Renner, M. Maximum Load-carrying During Takeoff of Leach’s Storm-Petrel Oceanodroma leucorhoa and Cassin’s Auklet Ptychoramphus aleuticus. Waterbirds 2011, 34, 102–106. [Google Scholar] [CrossRef]
- Carmona, R.; Guzmán, J.; Ramírez, S.; Fernández, G. Breeding waterbirds of La Paz Bay, Baja California Sur, Mexico. West. Birds 1994, 25, 151–157. [Google Scholar]
- Mancilla-Morales, M.D.; Romero-Fernández, S.; Contreras-Rodríguez, A.; Flores-Martínez, J.J.; Sánchez-Cordero, V.; Herrera M, L.G.; López, M.F.; Ruiz, E.A. Diverging Genetic Structure of Coexisting Populations of the Black Storm-Petrel and the Least Storm-Petrel in the Gulf of California. Trop. Conserv. Sci. 2020, 13, 1940082920949177. [Google Scholar] [CrossRef]
- Marden, J.H. Maximum Lift Production during Takeoff in Flying Animals. J. Exp. Biol. 1987, 130, 235–258. [Google Scholar] [CrossRef]
- Marden, J.H. From damselflies to pterosaurs: How burst and sustainable flight performance scale with size. Am. J. Physiol. 1994, 266, R1077–R1084. [Google Scholar] [CrossRef]
- Samaniego-Herrera, A.; Peralta-García, A.; Valdez Villavicencio, J.H.; Luna Mendóza, L.; Aguirre Muñoz, A. Vertebrados de las Islas del Pacífico de Baja California. Guia de Campo; Samaniego-Herrera, A., Peralta-García, A., Aguirre Muñoz, A., Eds.; Grupo de Ecología y Conservación de las Islas, A.C.: Mexico City, Mexico, 2007; p. 178. [Google Scholar]
- Pacheco-Ruiz, I.; Zertuche-González, J.; Espinosa-Ávalo, J.; Riosmena-Rodríguez, R.; Galindo-Bect, J.; Gálves-Télles, A.; Meling-López, A.; Orduña-Rojas, J. Macroalgas. In Bahía de los Ángeles: Recursos Naturales y Comunidad Línea Base 2007; Danemann, G.D., Ezcurra, E., Eds.; Secretaría de Medio Ambiente y Recursos Naturales, Tlalpan, México D.F.: Mexico City, Mexico, 2008; pp. 181–213. [Google Scholar]
- Cody, M.; Moran, R.; Rebman, J.; Thompson, H. Plants. In A New Island Biogeography of the Sea of Cortés; Case, T.J., Cody, M.L., Ezcurra, E., Eds.; Oxford University Press: Oxford, UK; New York, NY, USA, 2002; pp. 63–110. [Google Scholar]
- Fridolfsson, A.K.; Ellegren, H. A simple and universal method for molecular sexing of non-ratit birds. J. Avian Biol. 1999, 30, 116–121. [Google Scholar] [CrossRef]
- Ruiz, E.A.; Contreras-Rodríguez, A.; Araiza, O.; Aguilera-Arreola, M.G.; Hernández-García, J.A.; Flores-Martínez, J.J.; Sánchez-Cordero, V.; Gomez-Lunar, Z. Bacterial Community of Heermann’s Gull (Larus heermanni): Insights into Their Most Common Species and Their Functional Role during the Breeding Season in the Gulf of California. Diversity 2024, 16, 617. [Google Scholar] [CrossRef]
- Longmire, L.J.; Maltbie, M.; Baker, J.R. Use of “Lysis Buffer” in DNA Isolation and Its Implication for Museum Collections; Museum of Texas Tech University: Lubbock, TX, USA, 1997; pp. 1–3. [Google Scholar]
- Marden, J.H. Maximum Load-Lifting and Induced Power Output of Harris Hawks Are General Functions of Flight-Muscle Mass. J. Exp. Biol. 1990, 149, 511–514. [Google Scholar] [CrossRef]
- Corporation, M. Microsoft Excel, Version 16.0; Microsoft Corporation: Redmond, WA, USA, 2022. [Google Scholar]
- Sausner, J.; Torres-Mura, J.C.; Robertson, J.; Hertel, F. Ecomorphological differences in foraging and pattering behavior among storm-petrels in the eastern Pacific Ocean. Auk 2016, 133, 397–414+318. [Google Scholar] [CrossRef]
- Elliott, K.H.; Jacobs, S.R.; Ringrose, J.; Gaston, A.J.; Davoren, G.K. Is mass loss in Brünnich’s guillemots Uria lomvia an adaptation for improved flight performance or improved dive performance? J. Avian Biol. 2008, 39, 619–628. [Google Scholar] [CrossRef]
- Santoso, A.; Mcphaden, M.J.; Cai, W. The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Niño. Rev. Geophys. 2017, 55, 1079–1129. [Google Scholar] [CrossRef]
- Páez-Osuna, F.; Sanchez-Cabeza, J.A.; Ruiz-Fernández, A.C.; Alonso-Rodríguez, R.; Piñón-Gimate, A.; Cardoso-Mohedano, J.G.; Flores-Verdugo, F.J.; Carballo, J.L.; Cisneros-Mata, M.A.; Álvarez-Borrego, S. Environmental status of the Gulf of California: A review of responses to climate change and climate variability. Earth-Sci. Rev. 2016, 162, 253–268. [Google Scholar] [CrossRef]
- Pennycuick, C.J. The Flight of Petrels and Albatrosses (Procellariiformes), Observed in South Georgia and its Vicinity. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1982, 300, 75–106. [Google Scholar]
- Rayner, J.M.V. A New Approach to Animal Flight Mechanics. J. Exp. Biol. 1979, 80, 17–54. [Google Scholar] [CrossRef]
- Thomas, A.L.R. On the Tails of Birds. BioScience 1997, 47, 215–225. [Google Scholar] [CrossRef]
- Gatesy, S.M.; Dial, K.P. Tail Muscle Activity Patterns in Walking and Flying Pigeons (Columba livia). J. Exp. Biol. 1993, 176, 55–76. [Google Scholar] [CrossRef]
- Alexander, R.M. The work that muscles can do. Nature 1992, 357, 360–361. [Google Scholar] [CrossRef]
- Marsh, R.L. How muscles deal with real-world loads: The influence of length trajectory on muscle performance. J. Exp. Biol. 1999, 202, 3377–3385. [Google Scholar] [CrossRef]
- Roberts, T.J.; Marsh, R.L.; Weyand, P.G.; Taylor, C.R. Muscular force in running turkeys: The economy of minimizing work. Science 1997, 275, 1113–1115. [Google Scholar] [CrossRef]
- Dial, K.P.; Biewener, A.A. Pectoralis Muscle Force and Power Output During Different Modes of Flight in Pigeons (Columba livia). J. Exp. Biol. 1993, 176, 31–54. [Google Scholar] [CrossRef]
- Ricklefs, R.E.; Susan, C.W.; Cullen, J. Energetics of Postnatal Growth in Leach’s Storm-Petrel. Auk 1980, 97, 566–575. [Google Scholar]
- Pennycuick, C.J. Mechanics of flight. In Avian Biology; Farner, D.S., King, J.R., Eds.; Academic Press: Cambridge, MA, USA, 1975; Volume 5, pp. 1–75. [Google Scholar]
Parameter (Units) | LSP | BSP | |||||
---|---|---|---|---|---|---|---|
Mean | SD | n | Mean | SD | n | p | |
mb (g) | 18.928 | 3.493 | 49 | 54.804 | 6.612 | 23 | <<0.001 * |
ML (g) | 25.979 | 4.465 | 49 | 71.587 | 6.678 | 23 | <<0.001 * |
L (N) | 0.254 | 0.043 | 49 | 0.702 | 0.065 | 23 | <<0.001 * |
Pind (W) | 0.278 | 0.072 | 49 | 0.844 | 0.133 | 23 | <<0.001 * |
Species | Sex | mb (g) | ML (g) | L(N) | Pind (W) | |||||
---|---|---|---|---|---|---|---|---|---|---|
n | mean | SD | mean | SD | mean | SD | mean | SD | ||
LSP | females | 22 | 19.357 | 3.013 | 26.714 | 4.331 | 0.261 | 0.042 | 0.288 | 0.069 |
males | 26 | 18.314 | 3.825 | 25.444 | 4.505 | 0.249 | 0.044 | 0.271 | 0.072 | |
BSP | females | 8 | 55.812 | 7.279 | 73.062 | 5.253 | 0.716 | 0.051 | 0.861 | 0.122 |
males | 15 | 54.266 | 6.427 | 70.8 | 7.374 | 0.693 | 0.072 | 0.834 | 0.141 |
Species | mb (g) | ML (g) | L(N) | Pind (W) |
---|---|---|---|---|
LSP | 0.29 | 0.32 | 0.32 | 0.4 |
BSP | 0.62 | 0.4 | 0.4 | 0.64 |
Groups | mb (g) | ML (g) | mf (g) | Mtmus (g) | %mf/Mtmus | %mf/mb |
---|---|---|---|---|---|---|
BSP mean (n = 5) | 0.059 | 0.072 | 0.006 | 0.009 | 72.21 | 11.81 |
SD | 0.01 | 0.328 | 0.0005 | 0.0008 | 3.73 | 2.72 |
LSP mean (n = 5) | 0.016 | 0.025 | 0.002 | 0.002 | 75.87 | 13.46 |
SD | 0.004 | 0.005 | 0.0001 | 0.0001 | 4.24 | 3.62 |
Species | ID | Sex | FMR | L/Pind | Lmb (N·Kg−1) | ||
---|---|---|---|---|---|---|---|
Aerobic | Anaerobic | ||||||
LSP | LSP38 | female | 0.096 | 0.82 | 7.926 | 17.834 | |
LSP40 | male | 0.09 | 0.882 | 8.004 | 18.01 | ||
LSP44 | male | 0.138 | 1.068 | 14.839 | 33.388 | ||
LSP49 | male | 0.122 | 1.031 | 12.649 | 28.46 | ||
LSP51 | male | 0.091 | 0.924 | 8.482 | 19.086 | ||
mean | 0.11 | 0.95 | 10.38 | 23.36 | |||
SD | 0.02 | 0.10 | 3.17 | 7.14 | |||
BSP | BSP28 | female | 0.125 | 0.844 | 10.585 | 23.816 | |
BSP30 | male | 0.145 | 0.71 | 10.307 | 23.192 | ||
BSP31 | female | 0.167 | 0.914 | 15.295 | 34.413 | ||
BSP32 | male | 0.1 | 0.762 | 7.622 | 17.149 | ||
BSP35 | female | 0.128 | 0.765 | 9.872 | 22.211 | ||
mean | 0.13 | 0.80 | 10.74 | 24.16 | |||
SD | 0.02 | 0.08 | 2.80 | 6.31 |
Parameter/Variable | This Study BSP: LSP | Ortega-Jiménez et al. [6] Cassin’s Auklet: Leach’s Storm-Petrel |
---|---|---|
mb | 2.8:1 | 3.8:1 |
ML | 2.75:1 | 3.6:1 |
L | 2.8:1 | 3.6:1 |
Pind | 3.11:1 | 6.54:1 |
Wingspan | 1.5:1 | 1.1:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cano-Franco, A.; Mancilla-Morales, M.D.; Contreras-Rodríguez, A.; Flores-Martínez, J.J.; Gomez-Lunar, Z.; Ruiz, E.A. Size and Sex Effects on Storm-Petrels’ Maximum Load-Lift at Takeoff. Diversity 2025, 17, 417. https://doi.org/10.3390/d17060417
Cano-Franco A, Mancilla-Morales MD, Contreras-Rodríguez A, Flores-Martínez JJ, Gomez-Lunar Z, Ruiz EA. Size and Sex Effects on Storm-Petrels’ Maximum Load-Lift at Takeoff. Diversity. 2025; 17(6):417. https://doi.org/10.3390/d17060417
Chicago/Turabian StyleCano-Franco, Alejandra, Misael Daniel Mancilla-Morales, Araceli Contreras-Rodríguez, José Juan Flores-Martínez, Zulema Gomez-Lunar, and Enrico Alejandro Ruiz. 2025. "Size and Sex Effects on Storm-Petrels’ Maximum Load-Lift at Takeoff" Diversity 17, no. 6: 417. https://doi.org/10.3390/d17060417
APA StyleCano-Franco, A., Mancilla-Morales, M. D., Contreras-Rodríguez, A., Flores-Martínez, J. J., Gomez-Lunar, Z., & Ruiz, E. A. (2025). Size and Sex Effects on Storm-Petrels’ Maximum Load-Lift at Takeoff. Diversity, 17(6), 417. https://doi.org/10.3390/d17060417