Diversity of Color in Pleasing Fungus Beetles (Coleoptera: Erotylidae: Erotylinae)
Abstract
:1. Introduction
2. Methods
2.1. Taxon Sampling
2.2. Character Coding: Coloration and Pattern
2.3. Measuring Spectral Data
2.4. Analysis of Spectral Data
2.4.1. Preview Outliers
2.4.2. Peak Wavelength of Color
2.4.3. Visualizing Average Spectral Data
2.4.4. Visualizing Spectral Data by Biogeographical Region
2.4.5. FANOVA
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Briscoe, A.D.; Chittka, L. The evolution of color vision in insects. Annu. Rev. Entomol. 2001, 46, 471–510. [Google Scholar] [CrossRef] [PubMed]
- Endler, J.A.; Westcott, D.A.; Madden, J.R.; Robson, T. Animal visual systems and the evolution of color patterns: Sensory processing illuminates signal evolution. Evolution 2005, 59, 1795–1818. [Google Scholar] [PubMed]
- Martínez-Harms, J.; Vorobyev, M.; Schorn, J.; Shmida, A.; Keasar, T.; Homberg, U.; Schmeling, F.; Menzel, R. Evidence of red sensitive photoreceptors in Pygopleurus israelitus (Glaphyridae: Coleoptera) and its implications for beetle pollination in the southeast Mediterranean. J. Comp. Physiol. A 2012, 198, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Rowland, W.J. The use of color in intraspecific communication. In The Behavioral Significance of Color; Burtt, E.H., Jr., Ed.; Routledge: New York, NY, USA, 2018; pp. 379–426. [Google Scholar]
- Svádová, K.; Exnerová, A.; Štys, P.; Landová, E.; Valenta, J.; Fučíková, A.; Socha, R. Role of different colours of aposematic insects in learning, memory and generalization of naïve bird predators. Anim. Behav. 2009, 77, 327–336. [Google Scholar] [CrossRef]
- Sharkey, C.R.; Fujimoto, M.S.; Lord, N.P.; Shin, S.; McKenna, D.D.; Suvorov, A.; Martin, G.J.; Bybee, S.M. Overcoming the loss of blue sensitivity through opsin duplication in the largest animal group, beetles. Sci. Rep. 2017, 7, 8. [Google Scholar] [CrossRef]
- Van Der Kooi, C.J.; Stavenga, D.G.; Arikawa, K.; Belušič, G.; Kelber, A. Evolution of insect color vision: From spectral sensitivity to visual ecology. Annu. Rev. Entomol. 2021, 66, 435–461. [Google Scholar] [CrossRef]
- Johnston, R.F.; Selander, R.K. House sparrows: Rapid evolution of races in North America. Science 1964, 144, 548–550. [Google Scholar] [CrossRef]
- Stoddard, M.C.; Prum, R.O. How colorful are birds? Evolution of the avian plumage color gamut. Behav. Ecol. 2011, 22, 1042–1052. [Google Scholar] [CrossRef]
- Baker, R.R.; Parker, G.A. The evolution of bird coloration. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1979, 287, 63–130. [Google Scholar]
- Clusella-Trullas, S.; Nielsen, M. The evolution of insect body coloration under changing climates. Curr. Opin. Insect Sci. 2020, 41, 25–32. [Google Scholar] [CrossRef]
- Sharkey, C.R.; Powell, G.S.; Bybee, S.M. Opsin evolution in flower-visiting beetles. Front. Ecol. Evol. 2021, 9, 676369. [Google Scholar] [CrossRef]
- Ohashi, K.; Makino, T.T.; Arikawa, K. Floral colour change in the eyes of pollinators: Testing possible constraints and correlated evolution. Funct. Ecol. 2015, 29, 1144–1155. [Google Scholar] [CrossRef]
- Hegyi, G.; Garamszegi, L.Z.; Eens, M. The roles of ecological factors and sexual selection in the evolution of white wing patches in ducks. Behav. Ecol. 2008, 19, 1208–1216. [Google Scholar] [CrossRef]
- Sharkey, C.R.; Blanco, J.; Lord, N.P.; Wardill, T.J. Jewel beetle opsin duplication and divergence is the mechanism for diverse spectral sensitivities. Mol. Biol. Evol. 2023, 40, msad023. [Google Scholar] [CrossRef]
- Caro, T.; Ruxton, G. Aposematism: Unpacking the defences. Trends Ecol. Evol. 2019, 34, 595–604. [Google Scholar] [CrossRef]
- Postema, E.G.; Lippey, M.K.; Armstrong-Ingram, T. Color under pressure: How multiple factors shape defensive coloration. Behav. Ecol. 2023, 34, 1–13. [Google Scholar] [CrossRef]
- Sugiura, S. Predators as drivers of insect defenses. Entomol. Sci. 2020, 23, 316–337. [Google Scholar] [CrossRef]
- Allen, W.L.; Moreno, N.; Gamble, T.; Chiari, Y. Ecological, behavioral, and phylogenetic influences on the evolution of dorsal color pattern in geckos. Evolution 2020, 74, 1033–1047. [Google Scholar] [CrossRef]
- Tyrie, E.K.; Hanlon, R.T.; Siemann, L.A.; Uyarra, M.C. Coral reef flounders, Bothus lunatus, choose substrates on which they can achieve camouflage with their limited body pattern repertoire. Biol. J. Linn. Soc. 2015, 114, 629–638. [Google Scholar] [CrossRef]
- Nahmad-Rohen, L.; Qureshi, Y.H.; Vorobyev, M. The Colours of Octopus: Using Spectral Data to Measure Octopus Camouflage. Vision 2022, 6, 59. [Google Scholar] [CrossRef]
- Pembury Smith, M.Q.; Ruxton, G.D. Camouflage in predators. Biol. Rev. 2020, 95, 1325–1340. [Google Scholar] [CrossRef] [PubMed]
- Castillo, M.A.; Tavera, J. Disruptive coloration and behavior facilitate camouflage of blue-spotted cornetfish against complex coral reef bottoms. Mar. Ecol. 2022, 43, e12731. [Google Scholar] [CrossRef]
- Caro, T. The functional significance of coloration in crabs. Biol. J. Linn. Soc. 2018, 124, 1–10. [Google Scholar] [CrossRef]
- Ritland, D.B.; Brower, L.P. The viceroy butterfly is not a Batesian mimic. Nature 1991, 350, 497–498. [Google Scholar] [CrossRef]
- Santos, J.C.; Coloma, L.A.; Cannatella, D.C. Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proc. Natl. Acad. Sci. USA 2003, 100, 12792–12797. [Google Scholar] [CrossRef] [PubMed]
- Brandley, N.; Johnson, M.; Johnsen, S. Aposematic signals in North American black widows are more conspicuous to predators than to prey. Behav. Ecol. 2016, 27, 1104–1112. [Google Scholar] [CrossRef]
- Banci, K.R.; Eterovic, A.; Marinho, P.S.; Marques, O.A. Being a bright snake: Testing aposematism and mimicry in a neotropical forest. Biotropica 2020, 52, 1229–1241. [Google Scholar] [CrossRef]
- Bradler, S.; Buckley, T.R. Biodiversity of Phasmatodea. Insect Biodivers. Sci. Soc. 2018, 2, 281–313. [Google Scholar]
- Bedford, G.O. Biology and ecology of the Phasmatodea. Annu. Rev. Entomol. 1978, 23, 125–149. [Google Scholar] [CrossRef]
- Despland, E. Ontogenetic shift from aposematism and gregariousness to crypsis in a Romaleid grasshopper. PLoS ONE 2020, 15, e0237594. [Google Scholar] [CrossRef]
- Mugleston, J.; Naegle, M.; Song, H.; Bybee, S.M.; Ingley, S.; Suvorov, A.; Whiting, M.F. Reinventing the leaf: Multiple origins of leaf-like wings in katydids (Orthoptera: Tettigoniidae). Invertebr. Syst. 2016, 30, 335–352. [Google Scholar] [CrossRef]
- Endler, J.A. Progressive background in moths, and a quantitative measure of crypsis. Biol. J. Linn. Soc. 1984, 22, 187–231. [Google Scholar] [CrossRef]
- Mora-Castro, R.; Alfaro-Córdoba, M.; Hernández-Jiménez, M.; Fernández Otárola, M.; Méndez-Rivera, M.; Ramírez-Morales, D.; Rodríguez-Rodríguez, C.E.; Durán-Rodríguez, A.; Hanson, P.E. First evidence for an aposematic function of a very common color pattern in small insects. PLoS ONE 2021, 16, e0237288. [Google Scholar] [CrossRef]
- Schmidt, J.O.; Blum, M.S. Adaptations and responses of Dasymutilla occidentalis (Hymenoptera: Mutillidae) to predators. Entomol. Exp. Appl. 1977, 21, 99–111. [Google Scholar] [CrossRef]
- Bocakova, M.; Bocak, L.; Gimmel, M.L.; Motyka, M.; Vogler, A.P. Aposematism and mimicry in soft-bodied beetles of the superfamily Cleroidea (Insecta). Zool. Scr. 2016, 45, 9–21. [Google Scholar] [CrossRef]
- De Cock, R.; Matthysen, E. Glow-worm larvae bioluminescence (Coleoptera: Lampyridae) operates as an aposematic signal upon toads (Bufo bufo). Behav. Ecol. 2003, 14, 103–108. [Google Scholar] [CrossRef]
- Martin, G.J.; Branham, M.A.; Whiting, M.F.; Bybee, S.M. Total evidence phylogeny and the evolution of adult bioluminescence in fireflies (Coleoptera: Lampyridae). Mol. Phylogenetics Evol. 2017, 107, 564–575. [Google Scholar] [CrossRef]
- Cock, R.D.; Matthysen, E. Aposematism and bioluminescence: Experimental evidence from glow-worm larvae (Coleoptera: Lampyridae). Evol. Ecol. 1999, 13, 619–639. [Google Scholar] [CrossRef]
- Wheeler, C.A.; Millar, J.G.; Cardé, R.T. Multimodal signal interactions in the ladybeetle, Hippodamia convergens, aposematic system. Chemoecology 2015, 25, 123–133. [Google Scholar] [CrossRef]
- Chen, J.; Xie, J.; Wu, Z.; Elbashiry, E.M.A.; Lu, Y. Review of beetle forewing structures and their biomimetic applications in China:(I) On the structural colors and the vertical and horizontal cross-sectional structures. Mater. Sci. Eng. C 2015, 55, 605–619. [Google Scholar] [CrossRef]
- Seago, A.E.; Brady, P.; Vigneron, J.P.; Schultz, T.D. Gold bugs and beyond: A review of iridescence and structural colour mechanisms in beetles (Coleoptera). J. R. Soc. Interface 2009, 6, S165–S184. [Google Scholar] [CrossRef] [PubMed]
- Seago, A.E.; Oberprieler, R.; Saranathan, V.K. Evolution of insect iridescence: Origins of three-dimensional photonic crystals in weevils (Coleoptera: Curculionoidea). Integr. Comp. Biol. 2019, 59, 1664–1672. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Seago, A.E.; Sutherland, T.D.; Weisman, S. Dual structural color mechanisms in a scarab beetle. J. Morphol. 2010, 271, 1300–1305. [Google Scholar] [CrossRef] [PubMed]
- Ando, T.; Niimi, T. Development and evolution of color patterns in ladybird beetles: A case study in Harmonia axyridis. DGD 2019, 61, 73–84. [Google Scholar] [CrossRef]
- Niimi, T.; Ando, T. Evo-devo of wing colour patterns in beetles. Curr. Opin. Genet. 2021, 69, 97–102. [Google Scholar] [CrossRef]
- Ospina-Rozo, L.; Medina, I.; Hugall, A.; Rankin, K.J.; Roberts, N.W.; Roberts, A.; Mitchell, A.; Reid, C.A.M.; Moussalli, A.; Stuart-Fox, D. Polarization and reflectance are linked to climate, size and mechanistic constraints in a group of scarab beetles. Sci. Rep. 2024, 14, 29349. [Google Scholar] [CrossRef]
- Ribeiro, P.H.; Frizzas, M.R.; Vaz-de-Mello, F.Z.; Gawryszewski, F.M. The evolution of body coloration in dung beetles: Diel activity and sexual dimorphism. Evol. Ecol. 2024, 38, 449–460. [Google Scholar] [CrossRef]
- Sun, J.; Wu, W.; Tian, L.; Li, W.; Zhang, F.; Wang, Y. Investigation of the selective color-changing mechanism of Dynastes tityus beetle (Coleoptera: Scarabaeidae). Sci. Rep. 2021, 11, 808. [Google Scholar] [CrossRef]
- Lord, N.P.; Plimpton, R.L.; Sharkey, C.R.; Suvorov, A.; Lelito, J.P.; Willardson, B.M.; Bybee, S.M. A cure for the blues: Opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae). BMC Evol. Biol. 2016, 16, 107. [Google Scholar] [CrossRef]
- Noh, M.Y.; Muthukrishnan, S.; Kramer, K.J.; Arakane, Y. Cuticle formation and pigmentation in beetles. Curr. Opin. Insect Sci. 2016, 17, 1–9. [Google Scholar] [CrossRef]
- Robertson, J.A.; Ślipiński, A.; Moulton, M.; Shockley, F.W.; Giorgi, A.; Lord, N.P.; Mckenna, D.D.; Tomaszewska, W.; Forrester, J.; Miller, K.B.; et al. Phylogeny and classification of Cucujoidea and the recognition of a new superfamily Coccinelloidea (Coleoptera: Cucujiformia). Sys. Ent. 2015, 40, 745–778. [Google Scholar] [CrossRef]
- Bouchard, P.; Smith, A.B.; Douglas, H.; Gimmel, M.L.; Brunke, A.J.; Kanda, K. Biodiversity of coleoptera. In Insect Biodiversity: Science and Society, 2nd ed.; Foottit, R.G., Adler, P.H., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2017; pp. 337–417. [Google Scholar]
- Wegrzynowicz, P. Morphology, phylogeny and classification of the family Erotylidae based on adult characters (Coleoptera: Cucujoidea). Genus 2002, 13, 435–504. [Google Scholar]
- Leschen, R.A. Erotylidae (Insecta: Coleoptera: Cucujoidea): Phylogeny and review. Fauna N.Z. 2003, 47, 108. [Google Scholar]
- Robertson, J.A.; McHugh, J.V.; Whiting, M.F. A molecular phylogenetic analysis of the pleasing fungus beetles (Coleoptera: Erotylidae): Evolution of colour patterns, gregariousness and mycophagy. Sys. Ent. 2004, 29, 173–187. [Google Scholar] [CrossRef]
- Skelley, P.E. Subgenera of Dacne Latreille, 1797 (Erotylidae: Erotylinae: Dacnini) Given Full Generic Rank. Insecta Mundi 2023, 0971, 1–9. [Google Scholar]
- Leschen, R.A.B.; Skelley, P.E.; McHugh, J.V. Erotylidae Leach, 1815. In Handbook of Zoology: A Natural History of the Phyla of the Animal Kingdom; Leschen, R.A.B., Beutel, R.G., Lawrence, J.F., Eds.; Vol. IV: Arthropoda: Insecta; Part 38: Coleoptera, morphology and systematics (Polyphaga partim); Walter de Gruyter: Berlin, Germany, 2010; pp. 311–319. [Google Scholar]
- de Castro Pecci-Maddalena, I.S.; Skelley, P.E. Toward a Natural Classification of Tritomini: Are There Hidden Tribes within the Genus Tritoma Fabricius (Coleoptera: Erotylidae)? Coleop. Bull. 2021, 75, 629–641. [Google Scholar]
- Skelley, P.E.; Goodrich, M.A.; Leschen, R.A.B. Fungal host records for Erotylidae (Coleoptera: Cucujoidea) of America north of Mexico. Entomol. News 1991, 102, 57–72. [Google Scholar]
- Goodrich, M.A.; Skelley, P.E. Fungal host records for species of Tritoma (Coleoptera: Erotylidae) of America north of Mexico. Entomol. News 1994, 105, 289–294. [Google Scholar]
- Skelley, P.E.; McHugh, J.V. Erotylidae Leach 1815. In American Beetles, Volume 2. Polyphaga: Scarabaeoidea through Curculionoidea; Arnett, R.H., Jr., Thomas, M.C., Skelley, P.E., Frank, J.H., Eds.; CRC Press: Boca Raton, FL, USA, 2002; pp. 348–353. [Google Scholar]
- Skvarla, M.J.; Tooker, J.; Murillo-Williams, A. New Information about Lizard Beetles (Coleoptera: Erotylidae: Languria angustata (Beauvois, 1805) and Languria mozardi Latreille, 1807) in Pennsylvania. Coleop. Bull. 2023, 77, 28–31. [Google Scholar] [CrossRef]
- Toki, W.; Chiu, M.C.; Huang, C.G.; Wu, W.J. Larval host plants of two lizard beetles in the genus Tetraphala (Coleoptera, Erotylidae, Languriinae, Languriini) from Taiwan, with a host plant list of Languriini. Entomol. Sci. 2021, 24, 103–108. [Google Scholar] [CrossRef]
- Skelley, P.; Xu, G. Review of Cycadophila Xu, Tang and Skelley (Coleoptera: Erotylidae: Pharaxonothinae) inhabiting Cycas (Cycadaceae) in Asia, with descriptions of a new subgenus and thirteen new species. Zootaxa 2017, 4267, 1–63. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Skelley, P.; Pérez-Farrera, M.A. Ceratophila, a new genus of erotylid beetles (Erotylidae: Pharaxonothinae) inhabiting male cones of the cycad Ceratozamia (Cycadales: Zamiaceae). Zootaxa 2018, 4508, 151–178. [Google Scholar] [CrossRef]
- Tang, W.; Skelley, P.E.; Salzman, S. Review of Pharaxonotha Reitter (Coleoptera: Erotylidae: Pharaxonothinae) inhabiting cones of the cycad Zamia L.(Cycadales) in Panama, with descriptions of five new species. Insecta Mundi 2024, 1043, 1–40. [Google Scholar]
- Leschen, R.A.; Buckley, T.R. Multistate characters and diet shifts: Evolution of Erotylidae (Coleoptera). Syst. Biol. 2007, 56, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, M. Catálogo dos Erotylidae (Coleoptera) Neotropicais. Rev. Bras. De Zool. 1994, 11, 1–175. [Google Scholar] [CrossRef]
- Boyle, W.W. A revision of the Erotylidae of America north of Mexico (Coleoptera). Bull. Am. Mus. Nat. Hist. 1956, 110, 61–172. [Google Scholar]
- Delkeskamp, K. Coleopterorum Catalogus Supplementa: Pars 34. Erotylidae von Afrika und Madagascar; Dr W. Junk.: The Hague, The Netherlands, 1981. [Google Scholar]
- Lawrence, J.F.; Vaurie, P. A Catalog of the Coleoptera of America North of Mexico: Family Languriidae; Agriculture Handbook No. 529-92; Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1983. [Google Scholar]
- Leschen, R.A.B.; Węgrzynowicz, P. Generic catalogue and taxonomic status of Languriidae (Cucujoidea). Ann. Zool. 1998, 48, 221–243. [Google Scholar]
- Slipinski, S.A.; Leschen, R.A.B.; Lawrence, J.F. Order Coleoptera Linnaeus, 1758. In Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness; Zhang, Z.Q., Ed.; Zootaxa: Auckland, New Zealand, 2011; Volume 3148, pp. 203–208. [Google Scholar]
- Vaurie, P.A. Catalog of the Coleoptera of America North of Mexico: Family, Curculionidae, Subfamily, Rhynchophorinae; No. 529; US Department of Agriculture: Washington, DC, USA, 1983. [Google Scholar]
- Liu, J.; Xu, H.; Wang, Z.; Li, P.; Yan, Z.; Bai, M.; Li, J. Phylogenetics, Molecular Species Delimitation and Geometric Morphometrics of All Reddish-Brown Species in the Genus Neotriplax Lewis, 1887 (Coleoptera: Erotylidae: Tritomini). Insects 2024, 15, 508. [Google Scholar] [CrossRef]
- Skelley, P.E. Revision of the genus Ischyrus Lacordaire (1842) of North America (Coleoptera: Erotylidae: Tritominae). Occas. Pap. Fla. State Collect. Arthropods 1998, 9, 1–134. [Google Scholar]
- Leschen, R.A. Ecological and behavioral correlates among mycophagous Coleoptera. Folia Entomol. Mex. 1994, 92, 9–19. [Google Scholar]
- Chaboo, C.S.; McHugh, J.V. Maternal care by a species of Pselaphacus percheron (Coleoptera: Erotylidae: Erotylinae) from Peru. Coleop. Bull. 2010, 64, 116–118. [Google Scholar] [CrossRef]
- Huang, Z.Z.; Yang, X.K.; Ge, S.Q. A new genus of Languriinae from Mexico (Coleoptera, Erotylidae), with comments on the potential mimic phenomenon of some languriines. ZooKeys 2020, 935, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Drilling, K.; Dettner, K. First insights into the chemical defensive system of the erotylid beetle, Tritoma bipustulata. Chemoecology 2010, 20, 243–253. [Google Scholar] [CrossRef]
- Badiane, A.; Perez i de Lanuza, G.; García-Custodio, M.D.C.; Carazo, P.; Font, E. Colour patch size and measurement error using reflectance spectrophotometry. Methods Ecol. Evol. 2017, 8, 1585–1593. [Google Scholar] [CrossRef]
- Maia, R.; Gruson, H.; Endler, J.A.; White, T.E. pavo 2: New tools for the spectral and spatial analysis of colour in R. Methods Ecol. Evol. 2019, 10, 1097–1107. [Google Scholar] [CrossRef]
- Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation, R package version 1.1.4; [Computer Software]. 2023. Available online: https://cran.r-project.org/web/packages/dplyr/index.html (accessed on 26 May 2025).
- Gorecki, T.; Smaga, L. fdANOVA: Analysis of Variance for Univariate and Multivariate Functional Data, R package version 0.1.2; [Computer Software]. 2018. Available online: https://cran.r-project.org/web/packages/fdANOVA/fdANOVA.pdf (accessed on 26 May 2025).
- Goczał, J.; Beutel, R.G. Beetle elytra: Evolution, modifications and biological functions. Biol. Lett. 2023, 19, 20220559. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutherland, R.J.; Driggs, E.J.; Sutherland, L.N.; Skelley, P.E.; Bybee, S.M.; Powell, G.S. Diversity of Color in Pleasing Fungus Beetles (Coleoptera: Erotylidae: Erotylinae). Diversity 2025, 17, 394. https://doi.org/10.3390/d17060394
Sutherland RJ, Driggs EJ, Sutherland LN, Skelley PE, Bybee SM, Powell GS. Diversity of Color in Pleasing Fungus Beetles (Coleoptera: Erotylidae: Erotylinae). Diversity. 2025; 17(6):394. https://doi.org/10.3390/d17060394
Chicago/Turabian StyleSutherland, Rachel J., Eva J. Driggs, Laura N. Sutherland, Paul E. Skelley, Seth M. Bybee, and Gareth S. Powell. 2025. "Diversity of Color in Pleasing Fungus Beetles (Coleoptera: Erotylidae: Erotylinae)" Diversity 17, no. 6: 394. https://doi.org/10.3390/d17060394
APA StyleSutherland, R. J., Driggs, E. J., Sutherland, L. N., Skelley, P. E., Bybee, S. M., & Powell, G. S. (2025). Diversity of Color in Pleasing Fungus Beetles (Coleoptera: Erotylidae: Erotylinae). Diversity, 17(6), 394. https://doi.org/10.3390/d17060394