Tridacna maxima ‘Rediscovered’ in the Eastern Indian Ocean
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Collection
2.2. DNA Extraction and Amplifications
2.3. DNA Sequencing and Data Collection
3. Results
3.1. Distribution and Phylogeographic Affinities of T. noae and T. maxima
3.1.1. Tridacna maxima in the Eastern Indian Ocean
3.1.2. Tridacna noae in the Eastern Indian Ocean
3.1.3. Phylogeographic Affinities of Tridacna maxima in the Broader Indo-West Pacific
3.1.4. Phylogeographic Affinities of T. noae in the Indo-Pacific
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Gene | Forward Primer | Reverse Primer | Reference |
---|---|---|---|
Cytochrome c oxidase subunit I | LCO1490 5′GGTCAACAAATCATAAAGATATTGG 3′ | HC02198 5′TAAACTTCAGGGTGACCAAAAAATCA3′ | Folmer et al. [67] |
28S ribosomal RNA | 5′TCAGTAAGCGGAGGAA3′ | 5′CCAGCTATCCTGAGGGAAACTTC3′ | Park and O’Foighil [68] |
WAM Registration | Species | Site | LatDec | LongDec | Depth (m) |
---|---|---|---|---|---|
WAMS68041 | maxima | Rowley Shoals; Mermaid Reef | −17.0726 | 119.6271 | 22 |
WAMS68042 | maxima | Rowley Shoals; Mermaid Reef | −17.0726 | 119.6271 | 14 |
WAMS68043 | maxima | Rowley Shoals; Mermaid Reef | −17.0726 | 119.6271 | 14 |
WAMS68179 | maxima | Rowley Shoals; Imperieuse Reef | −17.5359 | 118.9733 | 20 |
WAMS68248 | maxima | Rowley Shoals; Imperieuse Reef | −17.555 | 118.9651 | 14 |
WAMS68249 | maxima | Rowley Shoals; Imperieuse Reef | −17.5361 | 118.9709 | 0 |
WAMS95499 | maxima | Rowley Shoals; Imperieuse Reef | −17.5479 | 118.9738 | 18 |
WAMS67959 | maxima | Cocos Keeling Islands | −12.1515 | 96.9179 | 1 |
WAMS67960 | maxima | Cocos Keeling Islands | −12.1515 | 96.9179 | 1 |
WAMS67961 | maxima | Cocos Keeling Islands | −12.1515 | 96.9179 | 1 |
WAMS67962 | maxima | Cocos Keeling Islands | −12.1515 | 96.9179 | 1 |
WAMS67964 | maxima | Cocos Keeling Islands | −12.1515 | 96.9179 | 1 |
WAMS67965 | maxima | Cocos Keeling Islands | −12.2037 | 96.8617 | 1 |
WAMS67966 | maxima | Cocos Keeling Islands | −12.2037 | 96.8617 | 1 |
WAMS67967 | maxima | Cocos Keeling Islands | −12.2037 | 96.8617 | 1 |
WAMS67968 | maxima | Cocos Keeling Islands | −12.2037 | 96.8617 | 1 |
WAMS71000 | noae | Montalivet Islands, West Montalivet Island | −14.2861 | 125.2229 | 1 |
WAMS98324 | noae | Eclipse Archipelago, East Holothuria Reef | −13.5825 | 126.0189 | 1 |
WAMS98325 | noae | Eclipse Archipelago, East Holothuria Reef | −13.5825 | 126.0189 | 1 |
WAMS98326 | noae | Eclipse Archipelago, East Holothuria Reef | −13.5825 | 126.0189 | 1 |
WAMS98328 | noae | Eclipse Archipelago, Long Reef | −13.8301 | 125.8328 | 1 |
WAMS98329 | noae | Eclipse Archipelago, Long Reef | −13.8301 | 125.8328 | 1 |
WAMS97233 | noae | Great Sandy Islands, Serrurier island | −21.6262 | 114.6873 | 1 |
WAMS91596 | noae | Kimberley; Ashmore Reef | −12.2077 | 123.1456 | 15 |
WAMS110144 | noae | Dampier Islands, West Lewis Island | −20.6047 | 116.5961 | 0 |
WAMS110145 | noae | Dampier Islands, West Lewis Island | −20.6047 | 116.5961 | 0 |
WAMS110146 | noae | Dampier Islands, West Lewis Island | −20.6047 | 116.5961 | 0 |
WAMS58832 | noae | Kimberley, Long Reef | −13.8197 | 125.78 | 0 |
WAMS75437 | noae | Kimberley; Ashmore Reef | −12.2102 | 123.1441 | 1 |
WAMS78500 | noae | Dampier Islands, Legendre Island | −20.352 | 116.85 | 16 |
WAMS78519 | noae | Dampier Islands, Legendre Island | −20.352 | 116.85 | 6 |
WAMS78647 | noae | Dampier Archipelago; Flying Foam Passage near Angel Island | −20.4674 | 116.8278 | 3 |
WAMS78665 | noae | Dampier Archipelago; Flying Foam Passage near Angel Island | −20.4674 | 116.8278 | 2 |
WAMS78737 | noae | Dampier Archipelago; Malus Island | −20.5024 | 116.6808 | 3 |
WAMS78738 | noae | Dampier Archipelago; Malus Island | −20.5024 | 116.6808 | 3 |
WAMS78739 | noae | Dampier Archipelago; Malus Island | −20.5024 | 116.6808 | 3 |
WAMS78910 | noae | Dampier Archipelago; off Goodwin Island | −20.5367 | 116.5441 | 0 |
WAMS78911 | noae | Dampier Archipelago; off Goodwin Island | −20.5367 | 116.5441 | 0 |
WAMS78912 | noae | Dampier Archipelago; off Goodwin Island | −20.5367 | 116.5441 | 0 |
WAMS78917 | noae | Dampier Archipelago; off Goodwin Island | −20.5367 | 116.5441 | 0 |
WAMS78979 | noae | Dampier Archipelago; between Malus Islands and Rosemary Island | −20.52 | 116.672 | 3 |
WAMS92259 | noae | Muiron Islands, Peak Island | −21.6277 | 114.3737 | 11 |
WAMS98701 | noae | Bonaparte Archipelago; Robroy Reefs | −14.4295 | 124.8614 | 15 |
WAMS98786 | noae | Bonaparte Archipelago; North Maret Island | −14.3977 | 124.9591 | 0 |
WAMS98787 | noae | Bonaparte Archipelago; North Maret Island | −14.3977 | 124.9591 | 0 |
WAMS98790 | noae | Bonaparte Archipelago; North Maret Island | −14.3977 | 124.9591 | 0 |
WAMS98803 | noae | Bonaparte Archipelago; East Montalivet Island | −14.2666 | 125.297 | 0 |
WAMS98805 | noae | Bonaparte Archipelago; East Montalivet Island | −14.2666 | 125.297 | 0 |
WAMS98809 | noae | Bonaparte Archipelago; Patricia Island; Northwest Reef | −14.2528 | 125.3068 | 0 |
WAMS98814 | noae | Bonaparte Archipelago; Patricia Island; Northwest Reef | −14.2528 | 125.3068 | 0 |
WAMS98816 | noae | Bonaparte Archipelago; Patricia Island; Northwest Reef | −14.2528 | 125.3068 | 0 |
WAMS98857 | noae | Bonaparte Archipelago; West Montalivet Island | −14.2822 | 125.2219 | 0 |
WAMS98871 | noae | Bonaparte Archipelago; West Montalivet Island | −14.2822 | 125.2219 | 0 |
WAMS98876 | noae | Bonaparte Archipelago; West Montalivet Island | −14.2822 | 125.2219 | 0 |
WAMS98880 | noae | Bonaparte Archipelago; West Montalivet Island | −14.2822 | 125.2219 | 0 |
WAMS98885 | noae | Bonaparte Archipelago; West Montalivet Island | −14.2822 | 125.2219 | 0 |
WAMS98941 | noae | Bonaparte Archipelago; Berthier Island | −14.504 | 124.9821 | 0 |
WAMS98942 | noae | Bonaparte Archipelago; Berthier Island | −14.504 | 124.9821 | 0 |
WAMS98943 | noae | Bonaparte Archipelago; Berthier Island | −14.504 | 124.9821 | 0 |
WAMS98952 | noae | Bonaparte Archipelago; Berthier Island | −14.504 | 124.9821 | 0 |
WAMS98804 | noae | Bonaparte Archipelago; East Montalivet Island | −14.2666 | 125.297 | 0 |
WAMS69292 | noae | Bonaparte Archipelago; West Montalivet Island | −20.6331 | 117.1987 | 0 |
WAMS92107 | noae | Ningaloo, Jurabi Marine Park | −21.8483 | 114.0314 | 0 |
WAMS92109 | noae | Ningaloo, Jurabi Marine Park | −21.8483 | 114.0314 | 0 |
WAMS92110 | noae | Ningaloo, Jurabi Marine Park | −21.8483 | 114.0314 | 0 |
WAMS92111 | noae | Ningaloo, Jurabi Marine Park | −21.8483 | 114.0314 | 0 |
WAMS92112 | noae | Ningaloo, Jurabi Marine Park | −21.8483 | 114.0314 | 0 |
WAMS92113 | noae | Ningaloo, Jurabi Marine Park | −21.8483 | 114.0314 | 0 |
WAMS92114 | noae | Ningaloo, Jurabi Marine Park | −21.8483 | 114.0314 | 0 |
WAMS96093 | noae | Montebello Islands, Quandong Islands | −20.4513 | 115.5827 | 7 |
WAMS96173 | noae | Montebello Islands, Ah Chong Islands | −20.5192 | 115.5677 | 11 |
WAMS98789 | noae | Bonaparte Archipelago; North Maret Island | −14.3977 | 124.9591 | 0 |
WAMS92180 | noae | Muiron Islands, South Muiron Island | −21.6936 | 114.3289 | 7 |
WAMS92181 | noae | Muiron Islands, South Muiron Island | −21.6936 | 114.3289 | 7 |
WAMS92182 | noae | Muiron Islands, South Muiron Island | −21.6936 | 114.3289 | 7 |
WAMS96406 | noae | Montebello Islands; Trimouille Island | −20.4055 | 115.5307 | 0 |
WAMS98933 | noae | Bonaparte Archipelago; West Montalivet Island | −14.2877 | 125.2127 | 12 |
WAMS92179 | noae | Muiron Islands, South Muiron Island | −21.6936 | 114.3289 | 7 |
WAMS98923 | noae | Bonaparte Archipelago; West Montalivet Island | −14.2877 | 125.2127 | 12 |
References
- Kirkendale, L.; Paulay, G. Treatise Online no. 89: Part N, Revised, Volume 1, Chapter 9: Photosymbiosis in Bivalvia. Treatise Online 2017, 1, 89. [Google Scholar] [CrossRef]
- Fauvelot, C.; Andréfouët, S.; Grulois, D.; Tiavouane, J.; Wabnitz, C.C.C.; Magalon, H.; Borsa, P. Phylogeography of Noah’s giant clam. Mar. Biodivers. 2019, 49, 521–526. [Google Scholar] [CrossRef]
- ter Poorten, J.J. A Taxonomic Iconography of Living Cardiidae; ConchBooks: Harxheim, Germany, 2024; 600p. [Google Scholar]
- Li, R.; Leiva, C.; Lemer, S.; Kirkendale, L.; Li, J. Photosymbiosis shaped animal genome architecture and gene evolution as revealed in giant clams. Commun. Biol. 2025, 8, 7. [Google Scholar] [CrossRef]
- Jantzen, C.; Wild, C.; El-Zibdah, M.; Roa-Quiaoit, H.A.; Haacke, C.; Richter, C. Photosynthetic performance of giant clams, Tridacna maxima and T. squamosa, Red Sea. Mar. Biol. 2008, 155, 211–221. [Google Scholar] [CrossRef]
- Neo, M.L.; Wabnitz, C.C.C.; Braley, R.D.; Heslinga, G.A.; Fauvelot, C.; van Wynsberge, S.; Andrefouet, S.; Waters, C.; Shau-Hwai, T.A.; Gomez, E.D.; et al. Giant clams (Bivalvia: Cardiidae: Tridacninae): A comprehensive update of species and their distribution, current threats and conservation status. Oceanogr. Mar. Biol. Annu. Rev. 2017, 55, 2–303. [Google Scholar]
- Fitt, W.K.; Trench, R.K. Spawning, development and acquisition of zooxanthellae by Tridacna squamosa (Mollusca: Bivalvia). Biol. Bull. 1981, 161, 213–235. [Google Scholar] [CrossRef]
- Andréfouët, S.; Friedman, K.; Gilbert, A.; Remoissenet, G. A comparison of two surveys of invertebrates at Pacific Ocean islands: The giant clam at Raivavae Island, Australes Archipelago, French Polynesia. ICES J. Mar. Sci. 2009, 66, 1825–1836. [Google Scholar] [CrossRef]
- Gilbert, A.; Yan, L.; Remoissenet, G.; Andréfouët, S.; Payri, C.; Chancerelle, Y. Extraordinarily high giant clam density under protection in Tatakoto Atoll (eastern Tuamotu Archipelago, French Polynesia). Coral Reefs 2005, 24, 495. [Google Scholar] [CrossRef]
- Lee, L.K.; Neo, M.L.; Hii, K.S.; Gu, H.; Chen, C.A.; Lim, P.T.; Leaw, C.P. Vanishing giants: An assessment on the population status of giant clams across Malaysia. Reg. Stud. Mar. Sci. 2024, 74, 103546. [Google Scholar] [CrossRef]
- Appeltans, W.; Ahyong, S.T.; Anderson, G.; Angel, M.V.; Artois, T.; Bailly, N.; Bamber, R.; Barber, A.; Bartsch, I.; Berta, A.; et al. The magnitude of global marine species diversity. Curr. Biol. 2012, 22, 2189–2202. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.P. Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversification patterns in the tropics. Biol. J. Linn. Soc. 2003, 79, 401–459. [Google Scholar] [CrossRef]
- Meyer, C.P.; Geller, J.B.; Paulay, G. Fine scale endemism on coral reefs: Archipelagic differentiation in turbinid gastropods. Evolution 2005, 59, 113–125. [Google Scholar]
- Cheng, S.; Anderson, F.E.; Bergman, A.; Mahardika, G.; Muchlisin, Z.; Dang, B.; Calumpong, H.P.; Mohamed, K.S.; Sasikumar, G.; Venkatesan, V.; et al. Molecular evidence for co-occurring cryptic lineages within the Sepioteuthis cf. lessoniana species complex in the Indian and Indo-West Pacific Oceans. Hydrobiologia 2014, 725, 165–188. [Google Scholar] [CrossRef]
- Lemer, S.; Planes, S. Effects of habitat fragmentation on the genetic structure and connectivity of the black-lipped pearl oyster Pinctada margaritifera populations in French Polynesia. Mar. Biol. 2014, 161, 2035–2049. [Google Scholar] [CrossRef]
- Amor, M.D.; Hart, A.M. Octopus djinda (Cephalopoda: Octopodidae): A new member of the Octopus vulgaris group from southwest Australia. Zootaxa 2021, 5061, 145–156. [Google Scholar] [CrossRef]
- Neo, M.L.; Eckman, W.; Vicentuan-Cabaitan, K.; Teo, S.L.-M.; Todd, P.A. The ecological significance of giant clams in coral reef ecosystems. Biol. Conserv. 2015, 181, 111–123. [Google Scholar] [CrossRef]
- Tang, Y. The Systematic Status of Tridacna maxima (Bivalvia: Tridacnidae) Based on Morphological and Molecular Evidence. Master’s Thesis, National Taiwan Ocean University, Keelung, Taiwan, 2005. [Google Scholar]
- Huelsken, T.; Keyse, J.; Liggins, L.; Penny, S.; Treml, E.A.; Riginos, C. A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean. PLoS ONE 2013, 8, e80858. [Google Scholar] [CrossRef]
- Richter, C.; Roa-Quiaoit, H.; Jantzen, C.; Al-Zibdah, M.; Kochzius, M. Collapse of a new living species of giant clam in the Red Sea. Curr. Biol. 2008, 18, 1349–1354. [Google Scholar] [CrossRef]
- Fauvelot, C.; Zuccon, D.; Borsa, P.; Grulois, D.; Magalon, H.; Riquet, F.; Andréfouët, S.; Berumen, M.L.; Sinclair-Taylor, T.H.; Gélin, P.; et al. Phylogeographical patterns and a cryptic species provide new insights into western Indian Ocean giant clams phylogenetic relationships and colonization history. J. Biogeogr. 2020, 47, 1086–1105. [Google Scholar] [CrossRef]
- Velkeneers, X.; Dissanayake, P.A.K.N.; Huyghe, F.; Nehemia, A.; Ratsimbazafy, H.A.; Kochzius, M. DNA barcoding validates new sightings of Tridacna elongatissima in Tanzania and Mozambique (Western Indian Ocean). Coral Reefs 2022, 41, 837–842. [Google Scholar] [CrossRef]
- Ma, H.; Yu, D.; Li, J.; Qin, Y.; Zhang, Y.; Xiang, Z.; Zhang, Y.; Yu, Z. Molecular phylogeny and divergence time estimates for native giant clams (Cardiidae: Tridacninae) in the Asia-Pacific: Evidence from mitochondrial genomes and nuclear 18S rRNA genes. Front. Mar. Sci. 2022, 9, 964202. [Google Scholar] [CrossRef]
- Benzie, J.A.H.; Williams, S.T. Genetic structure of giant clam (Tridacna maxima) populations in the West Pacific is not consistent with dispersal by present-day ocean currents. Evolution 1997, 51, 768–783. [Google Scholar] [CrossRef]
- Gardner, J.P.A.; Boesche, C.; Meyer, J.M.; Wood, A.R. Analyses of DNA obtained from shells and brine-preserved meat of the giant clam Tridacna maxima From the central Pacific Ocean. Mar. Ecol. Prog. Ser. 2012, 453, 297–301. [Google Scholar] [CrossRef]
- Su, Y.; Hung, J.-H.; Kubo, H.; Liu, L.-L. Tridacna noae (Röding, 1798)—A valid giant clam species separated from T. maxima (Röding, 1798) by morphological and genetic data. Raffles Bull. Zool. 2014, 62, 124–135. [Google Scholar]
- Riquet, F.; Horaud, M.; Dubousquet, V.; Tiavouane, J.; Lopes, C.; Raharivelomanana, P.; Berteaux-Lecellier, V.; Planes, S.; Grulois, D.; Andréfouët, S.; et al. Insights into the genetic makeup of French Polynesian peripheral populations of the small giant clam Tridacna maxima. Aquat. Conserv. Mar. Freshw. Ecosyst. 2023, 33, 1514–1534. [Google Scholar] [CrossRef]
- Nuryanto, A.; Kochzius, M. Highly restricted gene flow and deep evolutionary lineages in the giant clam Tridacna maxima. Coral Reefs 2009, 28, 607–619. [Google Scholar] [CrossRef]
- Hui, M.; Kraemer, W.E.; Seidel, C.; Nuryanto, A.; Joshi, A.; Kochzius, M. Comparative genetic population structure of three endangered giant clams (Cardiidae: Tridacna species) throughout the Indo-West Pacific: Implications for divergence, connectivity and conservation. J. Molluscan Stud. 2016, 82, 403–414. [Google Scholar] [CrossRef]
- Van Wynsberge, S.; Andréfouët, S.; Gaertner-Mazouni, N.; Tiavouane, J.; Grulois, D.; Lefèvre, J.; Pinsky, M.L.; Fauvelot, C. Considering reefscape configuration and composition in biophysical models advance seascape genetics. PLoS ONE 2017, 12, e0178239. [Google Scholar] [CrossRef]
- Keyse, J.; Treml, E.A.; Huelsken, T.; Barber, P.H.; DeBoer, T.; Kochzius, M.; Nuryanto, A.; Gardner, J.P.A.; Liu, L.-L.; Penny, S.; et al. Historical divergences associated with intermittent land bridges overshadow isolation by larval dispersal in co-distributed species of Tridacna giant clams. J. Biogeogr. 2018, 45, 848–858. [Google Scholar] [CrossRef]
- Liggins, L.; Carvajal, J.I. Genomic Diversity and Connectivity of Small Giant Clam (Tridacna maxima) Populations Across the Cook Islands. Report for the Ministry of Marine Resources, Government of the Cook Islands. 2021; p. 18. Available online: https://environment.gov.ck/wp-content/uploads/2022/06/21.-MMR-Paua-Research-Report-2021.pdf (accessed on 15 February 2025).
- Pappas, M.K.; He, S.; Hardenstine, R.S.; Kanee, H.; Berumen, M.L. Genetic diversity of giant clams (Tridacna spp.) and their associated Symbiodinium in the central Red Sea. Mar. Biodivers. 2017, 47, 1209–1222. [Google Scholar] [CrossRef]
- Burke, L.; Reytar, K.; Spalding, M.; Perry, A. Reefs at Risk Revisited; World Resources Institute: Washington, DC, USA, 2011. [Google Scholar]
- Wilson, N.G.; Kirkendale, L.A. Putting the ‘Indo’ back into the Indo-Pacific: Resolving marine phylogeographic gaps. Invertebr. Syst. 2016, 30, 86–94. [Google Scholar] [CrossRef]
- Neo, M.L.; Low, J.K.Y. First observations of Tridacna noae (Roding, 1798) (Bivalvia: Heterodonta: Cardiidae) in Christmas Island (Indian Ocean). Mar. Biodivers. 2017, 48, 2183–2185. [Google Scholar] [CrossRef]
- Black, R.; Johnson, M.; Prince, J.; Brearley, A.; Bond, T. Evidence of large, local variations inrecruitment and mortality in the small giant clam, Tridacna maxima, at Ningaloo Marine Park, Western Australia. Mar. Freshw. Res. 2011, 62, 1318–1326. [Google Scholar] [CrossRef]
- Penny, S.S.; Willan, R.C. Description of a new species of giant clam (Bivalvia: Tridacnidae) from Ningaloo Reef, Western Australia. Molluscan Res. 2014, 34, 201–211. [Google Scholar] [CrossRef]
- Johnson, M.S.; Prince, J.; Brearley, A.; Rosser, N.L.; Black, R. Is Tridacna maxima (Bivalvia: Tridacnidae) at Ningaloo Reef, Western Australia? Molluscan Res. 2016, 36, 264–270. [Google Scholar] [CrossRef]
- iNaturalist Australia ALA. Available online: https://inaturalist.ala.org.au/ (accessed on 16 March 2025).
- Vogel, M.L.; Hoeksema, B.W. The role of aquaculture in the International trade of giant clams (Tridacninae) for the aquarium industry (2001–2019). Aquaculture 2024, 583, 740563. [Google Scholar] [CrossRef]
- Available online: https://www.Geneious.com (accessed on 30 October 2024).
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 2008, 25, 1253–1256. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Bandelt, H.J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. Popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Nevatte, R.J.; Gillings, M.R.; Morejohn, K.; Ainley, L.; Liggins, L.; Pratchett, M.S.; Hoey, A.S.; Doll, P.C.; Pasisi, B.; Williamson, J.E. Of clams and clades: Genetic diversity and connectivity of small giant clams (Tridacna maxima) in the southern Pacific Ocean. Ecol Evol. 2024, 14, 10. [Google Scholar] [CrossRef] [PubMed]
- Morrison, P.; O’Leary, M.; McDonald, J. The evolution of Australian island geographies and the emergence and persistence of Indigenous maritime cultures. Quat. Sci. Rev. 2023, 308, 108071. [Google Scholar] [CrossRef]
- van Herwerden, L.; Aspden, W.J.; Newman, S.J.; Pegg, G.G.; Briskey, L.; Sinclair, W. A comparison of the population genetics of Lethrinus miniatus and Lutjanus sebae from the east and west coasts of Australia: Evidence for panmixia and isolation. Fish. Res. 2009, 100, 148–155. [Google Scholar] [CrossRef]
- Sinclair, W.; Newman, S.J.; Vianna, G.M.S.; Williams, S.; Aspden, W.J. Spatial subdivision and genetic diversity in populations on the east and west coasts of Australia: The multi-faceted case of Nautilus pompilius (Mollusca, Cephalopoda). Rev. Fish. Sci. Aquacult. 2010, 19, 52–61. [Google Scholar] [CrossRef]
- Barord, G.J.; Combosch, D.J.; Giribet, G.; Landman, N.; Lemer, S.; Veloso, J.; Ward, P.D. Three new species of Nautilus Linnaeus, 1758 (Mollusca, Cephalopoda) from the Coral Sea and South Pacific. ZooKeys 2023, 1143, 51–69. [Google Scholar] [CrossRef]
- WoRMS. Available online: https://www.marinespecies.org/aphia.php?p=taxdetails&id=342238 (accessed on 24 March 2025).
- Feng, M.; Zhang, N.; Liu, Q.; Wijffels, S. The Indonesian throughflow, its variability and centennial change. Geosci. Lett. 2018, 5, 3. [Google Scholar] [CrossRef]
- Commonwealth of Australia. Ashmore Reef National Nature Reserve and Cartier Island Marine Reserve (Commonwealth Waters) Management Plans; Environment Australia: Canberra, Australia, 2002. [Google Scholar]
- Marra-Biggs, P.; Fatherree, J.; Green, A.; Toonen, R.J. Range expansion and first observation of Tridacna noae (Cardiidae: Tridacninae) in American Sāmoa. Ecol. Evol. 2022, 12, e9635. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Neo, M.L.; Liu, L.L.; Huang, D.; Soong, K. Thriving populations with low genetic diversity in giant clam species, Tridacna maxima and Tridacna noae, at Dongsha Atoll, South China Sea. Reg. Stud. Mar. Sci. 2018, 24, 278–287. [Google Scholar] [CrossRef]
- Militz, T.A.; Kinch, J.; Southgate, P.C. Population demographics of Tridacna noae (Röding, 1798) in New Ireland, Papua New Guinea. J. Shellfish Res. 2015, 34, 329–335. [Google Scholar] [CrossRef]
- Liyanaarachchige, P.T.A.W.; Fisher, R.; Thompson, H.; Menendez, P.; Gilmour, J.; McGree, J.M. Adaptive monitoring of coral health at Scott Reef where data exhibit nonlinear and disturbed trends over time. Ecol. Evol. 2022, 12, e9233. [Google Scholar] [CrossRef]
- Abdo, D.A.; Bellchambers, L.M.; Evans, S.N. Turning up the heat: Increasing temperature and coral bleaching at the high latitude coral reefs of the Houtman Abrolhos Islands. PLoS ONE 2012, 7, e43878. [Google Scholar] [CrossRef]
- Kawaguti, S. Electron microscopy on the mantle of the giant clam with special references to zooxanthelar and iridophores. Biol. J. Okayama Univ. 1966, 12, 81–92. [Google Scholar]
- Kamishima, Y. Organization and development of reflecting platelets in iridophores of the giant clam, Tridacna crocea Lamarck. Zool. Sci. 1990, 1, 63–72. [Google Scholar]
- Li, J.; Lemer, S.; Kirkendale, L.; Bieler, R.; Cavanaugh, C.; Giribet, G. Shedding light: A phylotranscriptomic perspective illuminates the origin of photosymbiosis in marine bivalves. BMC Evol. Biol. 2020, 20, 50. [Google Scholar] [CrossRef]
- Richards, Z.T.; Garcia, R.; Moore, G.; Fromont, J.; Kirkendale, L.; Bryce, M.; Bryce, C.; Hara, A.; Ritchie, J.; Gomez, O.; et al. A tropical Australian refuge for photosymbiotic benthic fauna. Coral Reefs 2019, 38, 669–676. [Google Scholar] [CrossRef]
- Militz, T.A.; Braley, R.D.; Southgate, P.C. Captive hybridization of the giant clams Tridacna maxima (Röding, 1798) and Tridacna noae (Röding, 1798). J. Shellfish. Res. 2017, 36, 585–591. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Park, J.K.; O’Foighil, D. Sphaeriid and corbiculid clams represent separate heterodont bivalve radiations into freshwater environments. Mol. Phylogenet. Evol. 2000, 14, 75–88. [Google Scholar] [CrossRef] [PubMed]
Population One | Population Two | Kxy | Dxy | Da |
---|---|---|---|---|
Indian Ocean, China Seas | West Pacific | 31.6163 | 0.0749 | 0.0613 |
Indian Ocean, China Seas | French Polynesia | 32.4980 | 0.0770 | 0.0599 |
Indian Ocean, China Seas | Red Sea | 15.5268 | 0.0368 | 0.0249 |
West Pacific | French Polynesia | 38.1162 | 0.0903 | 0.0783 |
West Pacific | Red Sea | 34.1280 | 0.0809 | 0.0741 |
French Polynesia | Red Sea | 36.0151 | 0.0853 | 0.0750 |
Hd (St. Dev.) | Pi | |
---|---|---|
French Polynesia | 1.0 (0.003) | 0.0149 |
Indian Ocean, China Seas | 0.9517 (0.0086) | 0.01855 |
Red Sea | 0.896 (0.017) | 0.00597 |
West Pacific | 0.936 (0.013) | 0.00851 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirkendale, L.; Middelfart, P.; Amor, M. Tridacna maxima ‘Rediscovered’ in the Eastern Indian Ocean. Diversity 2025, 17, 384. https://doi.org/10.3390/d17060384
Kirkendale L, Middelfart P, Amor M. Tridacna maxima ‘Rediscovered’ in the Eastern Indian Ocean. Diversity. 2025; 17(6):384. https://doi.org/10.3390/d17060384
Chicago/Turabian StyleKirkendale, Lisa, Peter Middelfart, and Michael Amor. 2025. "Tridacna maxima ‘Rediscovered’ in the Eastern Indian Ocean" Diversity 17, no. 6: 384. https://doi.org/10.3390/d17060384
APA StyleKirkendale, L., Middelfart, P., & Amor, M. (2025). Tridacna maxima ‘Rediscovered’ in the Eastern Indian Ocean. Diversity, 17(6), 384. https://doi.org/10.3390/d17060384