Intra-Annual Course of Canopy Parameters and Phenological Patterns for a Mixed and Diverse Deciduous Forest Ecosystem Along the Altitudinal Gradients Within a Dam Reservoir Landscape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Dam Reservoir Landscape Characteristics
2.2. Study Field Characteristics
2.3. Methodology
2.3.1. Hemispherical Photographing, LAI-2200C and Analyses
2.3.2. Meteorological Data of the Dam Reservoir Landscape
2.3.3. Statistics and Correlations with Meteorological Variables
3. Results
4. Discussion
4.1. Air-Soil Temperature and LAI, LT, CO, GF Correlations (Overall Course and Leaf Phenological Stages)
4.2. Precipitation and LAI, LT, CO, GF Correlation (Overall Course and Leaf Phenological Stages)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marsh, W.M. Landscape Planning: Environmental Applications, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Turner, M.G.; Gardner, R.H. Landscape Ecology in Theory and Practice; Pattern and Process, 2nd ed.; Springer Science + Business Media LLC: New York, NY, USA, 2015. [Google Scholar]
- Öztürk, M.; Copty, N.K. Landscape Planning for Sustainable Groundwater Resources. In New Approaches to Spatial Planning and Design; Planning, Design and Applications; Özyavuz, M., Ed.; Peter Lang Publications: Berlin, Germany, 2019; Chapter 23; pp. 325–332. [Google Scholar] [CrossRef]
- Chang, M. Forest Hydrology: An Introduction to Water and Forests, 2nd ed.; CRC, Taylor and Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Bonan, G. Ecological Climatology: Concepts and Applications, 3rd ed.; Cambridge University Press: New York, NY, USA, 2016. [Google Scholar]
- Forman, R.T.T. Land Mosaics; The Ecology of Landscapes and Regions; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Wang, F.; Wang, X.; Zhao, Y.; Yang, Z. Temporal variations of NDVI and correlations between NDVI and hydro-climatological variables at Lake Baiyangdian, China. Int. J. Biometeorol. 2014, 58, 1531–1543. [Google Scholar] [CrossRef] [PubMed]
- Portillo-Quintero, C.; Sanchez-Azofeifa, A.; Calvo-Alvarado, J.; Quesada, M.; do Espirito Santo, M.M. The role of tropical dry forests for biodiversity, carbon and water conservation in the neotropics: Lessons learned and opportunities for its sustainable management. Reg. Environ. Change 2015, 15, 1039–1049. [Google Scholar] [CrossRef]
- Yang, H.; Wang, J.; Xiao, W.; Lu, F.; Wang, Y.; Jarsjö, J. Relationship between hydroclimatic variables and reservoir wetland landscape pattern indices: A case study of the Sanmenxia Reservoir wetland on the Yellow River, China. J. Earth Syst. Sci. 2020, 129, 83. [Google Scholar] [CrossRef]
- Slimane, A.B.; Raclot, D.; Evrard, O.; Sanaa, M.; Lefevre, I.; Bissonais, Y.L. Relative contribution of rill/interrill and gully/channel erosion to small reservoir siltation in Mediterranean environments. Land Degrad. Dev. 2016, 27, 785–797. [Google Scholar] [CrossRef]
- Zhirnova, D.F.; Belokopytova, L.V.; Meko, D.M.; Babushkina, E.A.; Vaganov, E.A. Climate change and tree growth in the Khakass-Minusinsk Depression (South Siberia) impacted by large water reservoirs. Sci. Rep. 2021, 11, 14266. [Google Scholar] [CrossRef]
- Panyushkina, I.P.; Meko, D.M.; Macklin, M.G.; Toonen, W.H.J.; Mukhamadiev, N.S.; Konovalov, V.G.; Ashikbaev, N.Z.; Sagitov, A.O. Runoff variations in Lake Balkhash Basin, Central Asia, 1779–2015, inferred from tree rings. Clim. Dyn. 2018, 51, 3161–3177. [Google Scholar] [CrossRef]
- Öztürk, M.; Bolat, İ.; Ergün, A. Influence of air–soil temperature on leaf expansion and LAI of Carpinus betulus trees in a temperate urban forest patch. Agric. For. Meteorol. 2015, 200, 185–191. [Google Scholar] [CrossRef]
- Song, Z.; Liang, S.; Feng, L.; He, T.; Song, X.-P.; Zhang, L. Temperature changes in Three Gorges Reservoir Area and linkage with Three Gorges Project. J. Geophys. Res. Atmos. 2017, 122, 4866–4879. [Google Scholar] [CrossRef]
- Kellogg, C.H.; Zhou, X. Impact of the construction of a large dam on riparian vegetation cover at different elevation zones as observed from remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 19–34. [Google Scholar] [CrossRef]
- Perry, D.A.; Oren, R.; Hart, S.C. Forest Ecosystems, 2nd ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 2008. [Google Scholar]
- Waring, R.H.; Running, S.W. Forest Ecosystems: Analysis at Multiple Scales, 3rd ed.; Elsevier Academic Press: London, UK, 2007. [Google Scholar]
- Bao, J.; Li, J.; Wang, G.; Tang, Z.; Zhi, J. Branch growth, leaf canopies and photosynthetic responses of Zizyphus jujube cv. “Huizao” to nutrient addition in the arid areas of Northwest China. Diversity 2022, 14, 914. [Google Scholar] [CrossRef]
- Sun, G.; Wei, X.; Hao, L.; Sanchis, M.G.; Hou, Y.; Yousefpour, R.; Tang, R.; Zhang, Z. Forest hydrology modeling tools for watershed management: A review. For. Ecol. Manag. 2023, 530, 120755. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Fournier, R.A. Measurement of forest structure with hemispherical photography. In Hemispherical Photography in Forest Science: Theory, Methods, Applications; Fournier, R.A., Hall, R.J., Eds.; Springer Science+Business Media, B.V.: Dordrecht, The Netherlands, 2017; pp. 53–83. [Google Scholar] [CrossRef]
- Bequet, R.; Campioli, M.; Kint, V.; Vansteenkiste, D.; Muys, B.; Ceulemans, R. Leaf area index development in temperate oak and beech forests is driven by stand characteristics and weather conditions. Trees 2011, 25, 935–946. [Google Scholar] [CrossRef]
- Öztürk, M.; Ağırtaş, L. Canopy parameters for tree and shrub species compositions in differently intervened land uses of an urban park landscape. Build. Environ. 2021, 206, 108340. [Google Scholar] [CrossRef]
- Öztürk, M.; Gökyer, E. Spatio-temporal variation of forest trees surrounding the Bartın-Kirazlıköprü dam reservoir: Landscape evaluation around the concept of tourism and recreation. In Proceedings of the 1st International Conference on Tourism and Architecture, Karabük, Türkiye, 24–27 October 2018. [Google Scholar]
- TSMS (Turkish State Meteorological Service). Meteorological Data of Bartın (Türkiye) Meteorology Station; TSMS: Ankara, Türkiye, 2022.
- Atalay, İ. Climate Atlas of Türkiye; İnkılâp Bookstore Press: İstanbul, Türkiye, 2011. (In Turkish) [Google Scholar]
- TGDF (Turkish General Directorate of Forestry). Forest Management Plans (2006 and 2021) of Yenihan Sub-District of Bartın Forestry Administration Affiliated to the Zonguldak Regional Forest Directorate; TGDF: Ankara, Türkiye, 2021.
- TMAF (Turkish Ministry of Agriculture and Forestry). Digital Soil Maps of Bartın Stream Watershed; TMAF: Ankara, Türkiye, 2005.
- TGDMER (Turkish General Directorate of Mineral Exploration and Research). Digital Geological Maps of Zonguldak E-29 Section; TGDMER: Ankara, Türkiye, 2007.
- Davis, P.H. Flora of Turkey and the Aegean Islands; Edinburgh University Press: Edinburgh, UK, 1982; Volumes I, II and VII. [Google Scholar]
- Yaltırık, F. Dendrology, 2nd ed.; İstanbul University, Faculty of Forestry Press: İstanbul, Türkiye, 1993; Volume II, (Angiospermae; I. Amentiferae-II. Floriferae: Apatalae). (In Turkish) [Google Scholar]
- Bréda, N.; Granier, A. Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Ann. For. Sci. 1996, 53, 521–536. [Google Scholar] [CrossRef]
- Ducousso, A.; Guyon, J.P.; Krémer, A. Latitudinal and altitudinal variation of bud burst in western populations of sessile oak (Quercus petraea (Matt) Liebl). Ann. For. Sci. 1996, 53, 775–782. [Google Scholar] [CrossRef]
- Atalay, İ. Ecosystem Ecology and Geography; Meta Press and Printing: Bornova, İzmir, Türkiye, 2008; Volume II. (In Turkish) [Google Scholar]
- Çepel, N. Landscape Ecology; İstanbul University, Faculty of Forestry Press: İstanbul, Türkiye, 1994. (In Turkish) [Google Scholar]
- Anşin, R.; Özkan, Z.C. Seed Plants (Spermatophyte), Ligneous Taxon; Karadeniz Technical University, Faculty of Forestry Press: Trabzon, Türkiye, 1997. (In Turkish) [Google Scholar]
- Saatçioğlu, F. Silviculture I. In Biological Fundamentals and Principles of Silviculture, 2nd ed.; İstanbul University, Faculty of Forestry Press: İstanbul, Türkiye, 1976. (In Turkish) [Google Scholar]
- Schleppi, P.; Conedera, M.; Sedivy, I.; Thimonier, A. Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs. Agric. For. Meteorol. 2007, 144, 236–242. [Google Scholar] [CrossRef]
- Nobis, M.; Hunziker, U. Automatic thresholding for hemispherical canopy photographs based on edge detection. Agric. For. Meteorol. 2005, 128, 243–250. [Google Scholar] [CrossRef]
- Chen, J.M.; Cihlar, J. Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods. IEEE Trans. Geosci. Remote Sens. 1995, 33, 777–787. [Google Scholar] [CrossRef]
- Barry, R.G. Mountain Weather and Climate, 3rd ed.; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Devore, J.; Farnum, N. Applied Statistics for Engineers and Scientists, 1st ed.; Duxbury Press: Grove, CA, USA, 1999. [Google Scholar]
- Urban, J.; Bednářová, E.; Plichta, R.; Gryc, V.; Vavrčík, H.; Hacura, J.; Fajstavr, M.; Kučera, J. Links between phenology and ecophysiology in a European beech forest. iForest-Biogeosci. For. 2014, 8, 438–447. [Google Scholar] [CrossRef]
- Hederová, L.; Macek, M.; Wild, J.; Brůna, J.; Kašpar, V.; Klinerová, T.; Kopecký, M. Ecologically relevant canopy openness from hemispherical photographs. Agric. For. Meteorol. 2023, 330, 109308. [Google Scholar] [CrossRef]
- Kašpar, V.; Hederová, L.; Macek, M.; Müllerová, J.; Prošek, J.; Surový, P.; Wild, J.; Kopecký, M. Temperature buffering in temperate forests: Comparing microclimate models based on ground measurements with active and passive remote sensing. Remote Sens. Environ. 2021, 263, 112522. [Google Scholar] [CrossRef]
- Stagakis, S.; Markos, N.; Vanikiotis, T.; Levizou, E.; Kyparissis, A. Multi-year monitoring of deciduous forests ecophysiology and the role of temperature and precipitation as controlling factors. Plants 2022, 11, 2257. [Google Scholar] [CrossRef] [PubMed]
- Nezval, O.; Krejza, J.; Světlík, J.; Šigut, L.; Horáček, P. Comparison of traditional ground-based observations and digital remote sensing of phenological transitions in a floodplain forest. Agric. For. Meteorol. 2020, 291, 108079. [Google Scholar] [CrossRef]
- Zahnd, C.; Arend, M.; Kahmen, A.; Hoch, G. Microclimatic gradients cause phenological variations within temperate tree canopies in autumn but not in spring. Agric. For. Meteorol. 2023, 331, 109340. [Google Scholar] [CrossRef]
- Macek, M.; Kopecký, M.; Wild, J. Maximum air temperature controlled by landscape topography affects plant species composition in temperate forests. Landscape Ecol. 2019, 34, 2541–2556. [Google Scholar] [CrossRef]
- Soudani, K.; Delpierre, N.; Berveiller, D.; Hmimina, G.; Pontailler, J.-Y.; Seureau, L.; Vincent, G.; Dufrêne, É. A survey of proximal methods for monitoring leaf phenology in temperate deciduous forests. Biogeosciences 2021, 18, 3391–3408. [Google Scholar] [CrossRef]
- Gill, A.L.; Gallinat, A.S.; Sanders-DeMott, R.; Rigden, A.J.; Short Gianotti, D.J.; Mantooth, J.A.; Templer, P.H. Changes in autumn senescence in northern hemisphere deciduous trees: A meta-analysis of autumn phenology studies. Ann. Bot. 2015, 116, 875–888. [Google Scholar] [CrossRef]
- Chen, L.; Huang, J.-G.; Ma, Q.; Hänninen, H.; Tremblay, F.; Bergeron, Y. Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species. Global Change Biol. 2019, 25, 997–1004. [Google Scholar] [CrossRef]
- Bréda, N.J.J. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. J. Exp. Bot. 2003, 54, 2403–2417. [Google Scholar] [CrossRef]
- Meier, I.C.; Leuschner, C. Leaf size and leaf area index in Fagus sylvatica forests: Competing effects of precipitation, temperature, and nitrogen availability. Ecosystems 2008, 11, 655–669. [Google Scholar] [CrossRef]
- Bequet, R.; Kint, V.; Campioli, M.; Vansteenkiste, D.; Muys, B.; Ceulemans, R. Influence of stand, site and meteorological variables on the maximum leaf area index of beech, oak and Scots pine. Eur. J. For. Res. 2012, 131, 283–295. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, M.; Lian, J. Spatial distributions of optimal plant coverage for the dominant tree and shrub species along a precipitation gradient on the central Loess Plateau. Agric. For. Meteorol. 2015, 206, 69–84. [Google Scholar] [CrossRef]
LAI (m2 m−2) | LT (%) | CO (%) | GF (%) | |
---|---|---|---|---|
Air Temperature (°C) | r = 0.894 ** p = 0.000 | r = −0.935 ** p = 0.000 | r = −0.935 ** p = 0.000 | r = −0.887 ** p = 0.000 |
Soil Temperature (°C, −5 cm) | r = 0.930 ** p = 0.000 | r = −0.969 ** p = 0.000 | r = −0.969 ** p = 0.000 | r = −0.923 ** p = 0.000 |
Soil Temperature (°C, −10 cm) | r = 0.922 ** p = 0.000 | r = −0.968 ** p = 0.000 | r = −0.968 ** p = 0.000 | r = −0.922 ** p = 0.000 |
Soil Temperature (°C, −20 cm) | r = 0.913 ** p = 0.000 | r = −0.962 ** p = 0.000 | r = −0.962 ** p = 0.000 | r = −0.922 ** p = 0.000 |
Soil Temperature (°C, −50 cm) | r = 0.862 ** p = 0.000 | r = −0.926 ** p = 0.000 | r = −0.926 ** p = 0.000 | r = −0.899 ** p = 0.000 |
Soil Temperature (°C, −1 m) | r = 0.749 ** p = 0.000 | r = −0.821 ** p = 0.000 | r = −0.821 ** p = 0.000 | r = −0.836 ** p = 0.000 |
Precipitation (mm, full-2020–2021) | r = −0.162 p = 0.484 | r = 0.079 p = 0.733 | r = 0.079 p = 0.733 | r = 0.047 p = 0.840 |
Precipitation (mm, full-2021–2022) | r = −0.230 p = 0.316 | r = 0.148 p = 0.522 | r = 0.148 p = 0.522 | r = 0.088 p = 0.703 |
Precipitation (mm, early spring-2020) | r = 0.600 p = 0.285 | r = −0.600 p = 0.285 | r = −0.600 p = 0.285 | r = −0.600 p = 0.285 |
Precipitation (mm, early spring-2021) | r = 0.700 p = 0.188 | r = −0.700 p = 0.188 | r = −0.700 p = 0.188 | r = −0.700 p = 0.188 |
Date | DOY | Mean Air Tempt. (°C) | Mean Soil Tempt. (−10 cm, °C) | Avg. LAI (Hem.) (m2 m−2) | Avg. LAI (2200C) (m2 m−2) | Avg. LT (Hem.) (%) | Avg. CO (Hem.) (%) | Avg. GF (Hem.) (%) |
---|---|---|---|---|---|---|---|---|
11 March 2021 | 70 | 5.1 | 5.1 | 0.51 | 64.4 | 65.3 | 18.4 | |
19 March 2021 | 78 | 7.8 | 6.9 | 0.60 | 63.2 | 64.2 | 18.0 | |
25 March 2021 | 84 | 6.9 | 7.3 | 0.72 | 61.6 | 62.5 | 17.3 | |
1 April 2021 | 91 | 5.6 | 6.3 | 0.89 | 60.9 | 62.0 | 13.9 | |
8 April 2021 | 98 | 11.0 | 9.0 | 1.19 | 1.66 | 59.7 | 61.0 | 11.5 |
19 April 2021 | 109 | 9.0 | 8.9 | 1.59 | 1.70 | 50.5 | 51.1 | 8.7 |
22 April 2021 | 112 | 12.5 | 12.0 | 2.04 | 1.83 | 26.0 | 26.5 | 7.5 |
29 April 2021 | 119 | 13.0 | 13.1 | 2.48 | 2.09 | 19.8 | 20.1 | 5.3 |
6 May 2021 | 126 | 18.3 | 16.7 | 2.88 | 2.58 | 14.3 | 14.7 | 2.7 |
12 May 2021 | 132 | 13.7 | 16.0 | 3.18 | 2.94 | 13.2 | 13.6 | 2.1 |
21 May 2021 | 141 | 17.4 | 17.6 | 3.41 | 3.44 | 12.4 | 12.7 | 1.4 |
27 May 2021 | 147 | 16.6 | 17.7 | 3.56 | 3.94 | 11.7 | 12.2 | 1.1 |
17 June 2021 | 168 | 17.7 | 18.1 | 3.60 | 4.04 | 9.0 | 9.4 | 1.4 |
14 July 2021 | 195 | 23.2 | 22.7 | 3.43 | 3.63 | 9.5 | 9.6 | 1.6 |
30 August 2021 | 242 | 24.0 | 24.7 | 3.08 | 2.28 | 9.6 | 9.7 | 1.6 |
20 September 2021 | 263 | 19.4 | 20.9 | 2.62 | 1.81 | 11.2 | 11.0 | 1.9 |
19 October 2021 | 292 | 14.5 | 16.1 | 2.02 | 14.2 | 14.4 | 2.2 | |
16 November 2021 | 320 | 10.0 | 11.2 | 1.38 | 1.52 | 36.2 | 36.7 | 8.4 |
17 December 2021 | 351 | 9.4 | 8.3 | 0.85 | 1.42 | 65.4 | 66.3 | 11.5 |
20 January 2022 | 385 | 3.9 | 3.6 | 0.57 | 70.7 | 71.4 | 12.2 | |
23 February 2022 | 419 | 3.5 | 2.3 | 0.50 | 74.1 | 74.7 | 14.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Öztürk, M.; Biricik, T.; Ağlarcı, A.V. Intra-Annual Course of Canopy Parameters and Phenological Patterns for a Mixed and Diverse Deciduous Forest Ecosystem Along the Altitudinal Gradients Within a Dam Reservoir Landscape. Diversity 2025, 17, 331. https://doi.org/10.3390/d17050331
Öztürk M, Biricik T, Ağlarcı AV. Intra-Annual Course of Canopy Parameters and Phenological Patterns for a Mixed and Diverse Deciduous Forest Ecosystem Along the Altitudinal Gradients Within a Dam Reservoir Landscape. Diversity. 2025; 17(5):331. https://doi.org/10.3390/d17050331
Chicago/Turabian StyleÖztürk, Melih, Turgay Biricik, and Ali Vasfi Ağlarcı. 2025. "Intra-Annual Course of Canopy Parameters and Phenological Patterns for a Mixed and Diverse Deciduous Forest Ecosystem Along the Altitudinal Gradients Within a Dam Reservoir Landscape" Diversity 17, no. 5: 331. https://doi.org/10.3390/d17050331
APA StyleÖztürk, M., Biricik, T., & Ağlarcı, A. V. (2025). Intra-Annual Course of Canopy Parameters and Phenological Patterns for a Mixed and Diverse Deciduous Forest Ecosystem Along the Altitudinal Gradients Within a Dam Reservoir Landscape. Diversity, 17(5), 331. https://doi.org/10.3390/d17050331