Bacterial Diversity and Composition in the Internal Organs of Taiga Bean Goose, Greater White-Fronted Goose and Willow Ptarmigan as a New Tools in the Arctic Biomonitoring System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Strategy
2.2. DNA Extraction and PCR Amplification
2.3. Sequencing and Data Processing
3. Results and Discussion
3.1. Bacterial Taxa Dominance in Wild Resident and Migratory Birds’ Microbiomes: Similarities and Differences
3.2. Benefit or Threat: Highly Abundant Bacterial Genera in the Intestinal and Lung Microbiome of Arctic Human-Consumed Ptarmigan and Geese
3.3. Next-Generation Biomonitoring as a Tool for Biological Risks Minimisation in the Arctic
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinclair, J.R. Importance of a One Health approach in advancing global health security and the Sustainable Development Goals. Rev. Sci. Tech. 2019, 38, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Ruscio, B.A.; Brubaker, M.; Glasser, J.; Hueston, W.; Hennessy, T.W. One Health–a strategy for resilience in a changing arctic. Int. J. Circumpol. Health 2015, 74, 27913. [Google Scholar] [CrossRef] [PubMed]
- Gardy, J.L.; Loman, N.J. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 2018, 19, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Makiola, A.; Compson, Z.G.; Baird, D.J.; Barnes, M.A.; Boerlijst, S.P.; Bouchez, A.; Brennan, G.; Bush, A.; Canard, E.; Cordier, T.; et al. Key questions for next-generation biomonitoring. Front. Environ. Sci. 2020, 7, 197. [Google Scholar] [CrossRef]
- Michaux, J.; Dyck, M.; Boag, P.; Lougheed, S.; Van Coeverden de Groot, P. New insights on polar bear (Ursus maritimus) diet from faeces based on next-generation sequencing technologies. Arctic 2021, 74, 87–99. [Google Scholar] [CrossRef]
- Chen, Y.; Bell, T.H.; Gourlie, S.; Lei, Y.D.; Wania, F. Contaminant biomagnification in polar bears: Interindividual Differences, Dietary Intake Rate, and the Gut Microbiome. Environ. Sci. Technol. 2024, 58, 10504–10514. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, N.; Aksenov, A.; Sorokina, T.; Chashchin, V.; Ellingsen, D.G.; Nieboer, E.; Varakina, Y.; Veselkina, E.; Kotsur, D.; Thomassen, Y. Essential and non-essential trace elements in fish consumed by indigenous peoples of the European Russian Arctic. Environ. Pollut. 2019, 253, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Waits, A.; Emelyanova, A.; Oksanen, A.; Abass, K.; Rautio, A. Human infectious diseases and the changing climate in the Arctic. Environ. Int. 2018, 121, 703–713. [Google Scholar] [CrossRef]
- Andersen-Ranberg, E.; Nymo, I.H.; Jokelainen, P.; Emelyanova, A.; Jore, S.; Laird, B.; Davidson, R.K.; Ostertag, S.; Bouchard, E.; Fagerholm, F.; et al. Environmental stressors and zoonoses in the Arctic: Learning from the past to prepare for the future. Sci. Total Environ. 2024, 957, 176869. [Google Scholar] [CrossRef]
- Stimmelmayr, R.; Sheffield, G. Traditional conservation methods and food habits in the Arctic. In Arctic One Health: Challenges for Northern Animals and People; Tryland, M., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 469–501. [Google Scholar] [CrossRef]
- 10R Salgado-Flores, A.; Tveit, A.T.; Wright, A.D.; Pope, P.B.; Sundset, M.A. Characterization of the cecum microbiome from wild and captive rock ptarmigans indigenous to Arctic Norway. PLoS ONE 2019, 14, e0213503. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Lee, W.Y. Interspecific comparison of the fecal microbiota structure in three Arctic migratory bird species. Ecol. Evol. 2020, 10, 5582–5594. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, S.; Kidawa, D.; Stempniewicz, L.; Łoś, M.; Łoś, J.M. Environmental DNA as a valuable and unique source of information about ecological networks in Arctic terrestrial ecosystems. Environ. Rev. 2017, 25, 282–291. [Google Scholar] [CrossRef]
- Grond, K.; Santo Domingo, J.W.; Lanctot, R.B.; Jumpponen, A.; Bentzen, R.L.; Boldenow, M.L.; Brown, S.C.; Casler, B.; Cunningham, J.A.; Doll, A.C.; et al. Composition and drivers of gut microbial communities in arctic-breeding shorebirds. Front. Microbiol. 2019, 10, 2258. [Google Scholar] [CrossRef] [PubMed]
- Bender, K.M.; Svenning, M.M.; Hu, Y.; Richter, A.; Schückel, J.; Jørgensen, B.; Liebner, S.; Tveit, A.T. Microbial responses to herbivory-induced vegetation changes in a high-Arctic peatland. Polar Biol. 2021, 44, 899–911. [Google Scholar] [CrossRef]
- Prewer, E.; Vilaça, S.T.; Bird, S.; Kutz, S.; Leclerc, L.M.; Kyle, C.J. Metabarcoding of fecal pellets in wild muskox populations reveals negative relationships between microbiome and diet alpha diversity. Ecol. Evol. 2023, 13, e10192. [Google Scholar] [CrossRef]
- Hansen, C.M.; Himschoot, E.A.; Hare, R.F.; Meixell, B.W.; Hemert, C.V.; Hueffer, K. Neisseria arctica sp. nov., isolated from nonviable eggs of greater white-fronted geese (Anser albifrons) in Arctic Alaska. Int. J. Syst. Evol. Micr. 2017, 67, 1115–1119. [Google Scholar] [CrossRef] [PubMed]
- Andersen-Ranberg, E.U.; Barnes, C.J.; Rasmussen, L.; Salgado-Flores, A.; Grøndahl, C.; Mosbacher, J.B.; Hansen, A.J.; Sundset, M.A.; Schmidt, N.M.; Sonne, C. A Comparative study on the faecal bacterial community and potential zoonotic bacteria of muskoxen (Ovibos moschatus) in Northeast Greenland, Northwest Greenland and Norway. Microorganisms 2018, 6, 76. [Google Scholar] [CrossRef]
- Rimoldi, S.G.; Tamoni, A.; Rizzo, A.; Longobardi, C.; Pagani, C.; Salari, F.; Matinato, C.; Vismara, C.; Gagliardi, G.; Cutrera, M.; et al. Evaluation of 16S-based metagenomic NGS as diagnostic tool in different types of culture-negative infections. Pathogens 2024, 13, 743. [Google Scholar] [CrossRef]
- Squires, T.E.; Rödin-Mörch, P.; Formenti, G.; Tracey, A.; Abueg, L.; Brajuka, N.; Jarvis, E.; Halapi, E.C.; Melsted, P.; Höglund, J.; et al. A chromosome-level genome assembly for the Rock Ptarmigan (Lagopus muta). G3 Genes Genomes Genet. 2023, 13, jkad099. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, N.; Nieboer, E.; Aksenov, A.; Sorokina, T.; Chashchin, V.; Ellingsen, D.G.; Varakina, Y.; Plakhina, E.; Kotsur, D.; Kosheleva, A.; et al. Concentration dataset for 4 essential and 5 non-essential elements in fish collected in Arctic and sub-Arctic territories of the Nenets Autonomous and Arkhangelsk regions of Russia. Data Brief. 2019, 27, 104631. [Google Scholar] [CrossRef]
- Sorokina, T.Y.; Zarubina, L.; Gutenev, M.; Kudryashova, E. International interdisciplinary Arctic research: Case study of the Russian Arctic biomonitoring mega-grant project. Polar Rec. 2023, 59, e28. [Google Scholar] [CrossRef]
- Aksenov, A.S.; Kisil, O.Y.; Chervochkina, A.S.; Khrebtova, I.S.; Mantsurova, K.S.; Bespalaya, Y.V.; Aksenova, O.V. Bacterial communities within the freshwater lymnaeid snail Kamtschaticana kamtschatica (Middendorff, 1850) in Northeastern Siberia. Microbiology 2024, 93, 180–183. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Yang, Y.; Wang, A.; Sharshov, K.; Li, Y.; Cao, M.; Mao, P.; Li, L. Comparative analyses of the gut microbiota among three different wild geese species in the genus Anser. J. Basic Microb. 2018, 58, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Yuan, D.; Xu, Z.; Wu, Y.; Chen, Z.; Xiang, X. Significant Differences in Intestinal Bacterial Communities of Sympatric Bean Goose, Hooded Crane, and Domestic Goose. Animals 2024, 14, 1688. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Zhou, D.; Ge, M.; Zhang, Y.; Li, W.; Han, Y.; He, G.; Shi, S. Intestinal Microbiota of Anser fabalis Wintering in Two Lakes in the Middle and Lower Yangtze River Floodplain. Animals 2023, 13, 707. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Zhang, F.; Fu, R.; Yan, S.; Zhou, L. Significant differences in bacterial and potentially pathogenic communities between sympatric hooded crane and greater white-fronted goose. Front. Microbiol. 2019, 10, 163. [Google Scholar] [CrossRef]
- Zhao, M.; Cong, P.; Barter, M.; Fox, A.D.; Cao, L.E.I. The changing abundance and distribution of Greater White-fronted Geese Anser albifrons in the Yangtze River floodplain: Impacts of recent hydrological changes. Bird Conserv. Int. 2012, 22, 135–143. [Google Scholar] [CrossRef]
- Carvalho, R.; Carmo, F.; Heloisa, S.; Cordeiro, B.; Vaz, A.; Gimenez, E.; Goulart, L.; Góes-Neto, A.; Loir, Y.L.; Azevedo, V. Metagenomic approaches for investigating the role of the microbiome in gut health and inflammatory diseases. Metagenomics for Gut Microbes. In Metagenomics for Gut Microbes; Kumavath, R.N., Ed.; IntechOpen: London, UK, 2017; p. 55. [Google Scholar] [CrossRef]
- Jennings, A.R. Diseases in wild birds. Bird Study 1955, 2, 69–72. [Google Scholar] [CrossRef]
- Chege, S.M. Opportunistic Infections of Avians. In The Rasputin Effect: When Commensals and Symbionts Become Parasitic: Advances in Environmental Microbiology; Hurst, C., Ed.; Springer International Publishing: Cham, Switzerland, 2022; Volume 3, pp. 221–260. [Google Scholar] [CrossRef]
- Benskin, C.M.H.; Wilson, K.; Jones, K.; Hartley, I.R. Bacterial pathogens in wild birds: A review of the frequency and effects of infection. Biol. Rev. 2009, 84, 349–373. [Google Scholar] [CrossRef] [PubMed]
- Acheson, D.; Allos, B.M. Campylobacter jejuni infections: Update on emerging issues and trends. Clin. Infect. Dis. 2001, 32, 1201–1206. [Google Scholar] [CrossRef]
- Craven, S.E.; Stern, N.J.; Line, E.; Bailey, J.S.; Cox, N.A.; Fedorka-Cray, P. Determination of the incidence of Salmonella spp., Campylobacter jejuni, and Clostridium perfringens in wild birds near broiler chicken houses by sampling intestinal droppings. Avian Dis. 2000, 44, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, I.A.; O’Brien, S.J.; Frost, J.A.; Adak, G.K.; Horby, P.; Swan, A.V.; Painter, M.J.; Neal, K.R.; Campylobacter Sentinel Surveillance System Collaborators. A case-case comparison of Campylobacter coli and Campylobacter jejuni infection: A tool for generating hypotheses. Emerg. Infect. Dis. 2002, 8, 937. [Google Scholar] [CrossRef]
- Lakhmanov, D.; Varakina, Y.; Aksenov, A.; Sorokina, T.; Sobolev, N.; Kotsur, D.; Plakhina, E.; Chashchin, V.; Thomassen, Y. Persistent Organic Pollutants (POPs) in Fish Consumed by the Indigenous Peoples from Nenets Autonomous Okrug. Environments 2020, 7, 3. [Google Scholar] [CrossRef]
- Tryland, M. Arctic One Health: Challenges for Northern Animals and People, 1st ed.; Springer International Publishing: Cham, Switzerland, 2022; 573p. [Google Scholar] [CrossRef]
- Mataragas, M.; Alessandria, V.; Ferrocino, I.; Rantsiou, K.; Cocolin, L. A bioinformatics pipeline integrating predictive metagenomics profiling for the analysis of 16S rDNA/rRNA sequencing data originated from foods. Food Microbiol. 2018, 76, 279–286. [Google Scholar] [CrossRef]
- Freen-van Heeren, J.J. Flow-FISH as a tool for studying bacteria, fungi and viruses. BioTech 2021, 10, 21. [Google Scholar] [CrossRef]
Metrics | Willow Ptarmigan (n 1 = 11) | Greater White-Fronted Goose (n = 7) | Taiga Bean Goose (n = 5) |
---|---|---|---|
Body length, sm | 37.3 ± 10.8 2 | 66.3 ± 3.3 | 71.4 ± 3.2 |
Wing length, sm | 20.5 ± 0.7 | 39.6 ± 2.0 | 42.7 ± 2.6 |
Wingspan, sm | 66.8 ± 2.6 | 130.6 ± 6.7 | 135.2 ± 3.9 |
Tail length, sm | 9.4 ± 5.6 | 12.3 ± 0.9 | 13.9 ± 0.9 |
Beak length, sm | 1.6 ± 0.4 | 3.1 ± 0.3 | 4.1 ± 0.8 |
Tarsometatarsus length, sm | 4.1 ± 0.3 | 7.1 ± 0.4 | 7.0 ± 0.3 |
Weight, kg | 0.7 ± 0.1 | 2.0 ± 0.2 | 2.9 ± 0.4 |
Bacterial Phylum | Relative Abundance, % | |||
---|---|---|---|---|
Willow Ptarmigan, Intestine (n 1 = 11) | Greater White-Fronted Goose, Intestine (n = 7) | Taiga Bean Goose, Intestine (n = 5) | Willow Ptarmigan, Lungs (n = 9) | |
Bacillota | 30.7 ± 25.9 2 | 36.2 ± 24.1 | 23.3 ± 16.8 | 28.0 ± 23.5 |
Pseudomonadota | 24.4 ± 30.4 | 0.5 ± 0.4 | 1.0 ± 1.2 | 15.9 ± 13.1 |
Actinomycetota | 9.1 ± 6.5 | 1.1 ± 1.2 | 0.6 ± 0.7 | 14.6 ± 8.8 |
Campylobacterota | 3.4 ± 8.1 | 10.8 ± 14.1 | 5.6 ± 7.1 | 3.0 ± 6.7 |
Bacteroidota | 0.8 ± 0.9 | 14.8 ± 13.9 | 8.3 ± 11.5 | 1.7 ± 4.3 |
Fusobacteriota | 0.1 ± 0.3 | 3.3 ± 6.7 | 1.0 ± 1.5 | <0.1 |
Deferribacterota | <0.1 | 0.6 ± 1.3 | 0.1 ± 0.2 | <0.1 |
Desulfobacterota | <0.1 | <0.1 | 0.1 ± 0.1 | <0.1 |
Genus | Willow Ptarmigan, Intestine (n 1 = 11) | Greater White-Fronted Goose, Intestine (n = 7) | Taiga Bean Goose, Intestine (n = 5) | Willow Ptarmigan, Lungs (n = 9) | ||||
---|---|---|---|---|---|---|---|---|
RA, % | DF, % | RA, % | DF, % | RA, % | DF, % | RA, % | DF, % | |
Streptococcus | 19 | 27 2 | - | - | - | - | 56 | 22 |
Staphylococcus | 17 | 18 | - | - | - | - | - | - |
Ensifer | 32 | 45 | - | - | - | - | - | - |
Rikenellaceae RC9 gut group | 1 | 54 | - | - | - | - | 8 | 22 |
Cutibacterium | 5 | 45 | - | - | - | - | 9 | 78 |
Methylobacterium- Methylorubrum | - | - | - | - | - | - | 5 | 44 |
Sphingomonas | - | - | - | - | - | - | 6 | 44 |
Corynebacterium | - | - | - | - | - | - | 4 | 22 |
Actinomyces | 2 | 54 | - | - | - | - | - | - |
Helicobacter | 13 | 27 | 13 | 86 | 5 | 100 | 9 | 33 |
Olsenella | 3 | 36 | 1 | 57 | 0 | 20 | 9 | 33 |
Subdoligranulum | - | - | 9 | 100 | 2 | 60 | - | - |
Campylobacter | - | - | - | - | 1 | 20 | - | - |
Faecalibacterium | - | - | 2 | 86 | 1 | 60 | - | - |
Megamonas | - | - | 7 | 86 | 15 | 60 | - | - |
Sutterella | - | - | 1 | 86 | - | - | - | - |
Bacteroides | - | - | 14 | 86 | 8 | 80 | - | - |
Fusobacterium | - | - | 8 | 43 | 1 | 40 | - | - |
Lactobacillus | - | - | 4 | 86 | 6 | 100 | - | - |
Clostridium sensu stricto 2 | - | - | - | - | 3 | 60 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durnova, E.; Karmanova, E.; Sorokina, T.; Mayorova, K.; Aksenov, A. Bacterial Diversity and Composition in the Internal Organs of Taiga Bean Goose, Greater White-Fronted Goose and Willow Ptarmigan as a New Tools in the Arctic Biomonitoring System. Diversity 2025, 17, 101. https://doi.org/10.3390/d17020101
Durnova E, Karmanova E, Sorokina T, Mayorova K, Aksenov A. Bacterial Diversity and Composition in the Internal Organs of Taiga Bean Goose, Greater White-Fronted Goose and Willow Ptarmigan as a New Tools in the Arctic Biomonitoring System. Diversity. 2025; 17(2):101. https://doi.org/10.3390/d17020101
Chicago/Turabian StyleDurnova, Evdokia, Elena Karmanova, Tatiana Sorokina, Ksenia Mayorova, and Andrey Aksenov. 2025. "Bacterial Diversity and Composition in the Internal Organs of Taiga Bean Goose, Greater White-Fronted Goose and Willow Ptarmigan as a New Tools in the Arctic Biomonitoring System" Diversity 17, no. 2: 101. https://doi.org/10.3390/d17020101
APA StyleDurnova, E., Karmanova, E., Sorokina, T., Mayorova, K., & Aksenov, A. (2025). Bacterial Diversity and Composition in the Internal Organs of Taiga Bean Goose, Greater White-Fronted Goose and Willow Ptarmigan as a New Tools in the Arctic Biomonitoring System. Diversity, 17(2), 101. https://doi.org/10.3390/d17020101