Tree Diversity and Microhabitat Structure Drive Harvestmen Assemblages in Amazonian Rainforest
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design
2.3. Sampling Harvestmen and Environmental Data
2.4. Plant Identification
2.5. Harvestmen Identification
2.6. Data Analysis
3. Results
4. Discussion
4.1. Influence of Forest Types and Microhabitat Structure on Harvestmen Diversity
4.2. Harvestmen Microhabitat Specialization and Bioindication
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brussaard, L. Biodiversity and ecosystem functioning in soil. Ambio 1997, 26, 563–570. [Google Scholar]
- Ruiter, P.C.D.; Griffiths, B.; Moore, J.C. Biodiversity and stability in soil ecosystems: Patterns, processes and the effects of disturbance. In Biodiversity and Ecosystem Functioning: Synthesis and Perspectives; Loreau, M., Naeem, S., Inchausti, P., Eds.; Oxford University Press: Oxford, UK, 2002; pp. 102–113. [Google Scholar]
- Lavelle, P.; Decaëns, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F.; Margerie, P.; Mora, P.; Rossi, J.P. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 2006, 42, S3–S15. [Google Scholar] [CrossRef]
- Wall, D.H.; Bardgett, R.D.; Behan-Pelletier, V.; Herrick, J.E.; Jones, T.H.; Ritz, K.; Six, J.; Strong, D.R.; van der Putten, W.H. Soil Ecology and Ecosystem Services; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Yang, L.H.; Gratton, C. Insects as drivers of ecosystem processes. Curr. Opin. Insect Sci. 2014, 2, 26–32. [Google Scholar] [CrossRef]
- Levings, S.C.; Windsor, D.M. Litter moisture content as a determinant of litter arthropod distribution and abundance during the dry season on Barro Colorado Island, Panama. Biotropica 1984, 16, 125–131. [Google Scholar] [CrossRef]
- Koivula, M.; Punttila, P.; Haila, Y.; Niemelä, J. Leaf litter and the small-scale distribution of carabid beetles (Coleoptera, Carabidae) in the boreal forest. Ecography 1999, 22, 424–435. [Google Scholar] [CrossRef]
- Shure, D.J.; Phillips, D.L. Patch size of forest openings and arthropod populations. Oecologia 1991, 86, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Tourinho, A.L.; Lança, L.S.; Baccaro, F.B.; Dias, S.C. Complementarity among sampling method for harvestman assemblages. Pedobiologia 2014, 57, 37–45. [Google Scholar] [CrossRef]
- Salomão, R.P.; Brito, L.C.; Iannuzzi, L.; Lira, A.F.A.; Albuquerque, C.M.R. Effects of environmental parameters on beetle assemblage in a fragmented tropical rainforest of South America. J. Insect Conserv. 2019, 23, 111–121. [Google Scholar] [CrossRef]
- Brito-Almeida, T.R.; Foerster, S.Í.A.; Lima, J.R.; Silva, M.A.; Moura, G.J.B.; Lira, A.F.A. Free pasture of exotic goats reduces diversity and negatively affects body condition in scorpions (Arachnida: Scorpiones) assemblages from Brazilian seasonal dry tropical forest. Ecol. Evol. 2025, 15, e70804. [Google Scholar] [CrossRef]
- Moldenke, A.; Pajutee, M.; Ingham, E. The functional roles of forest soil arthropods: The soil is a lively place. In Proceedings of the California Forest Soils Council Conference on Forest Soils Biology and Forest Management, Sacramento, CA, USA, 23–24 February 2000; 2000; pp. 7–22. [Google Scholar]
- Folgarait, P.J. Ant biodiversity and its relationship to ecosystem functioning: A review. Biodivers. Conserv. 1998, 7, 1221–1244. [Google Scholar] [CrossRef]
- Rainio, J.; Niemelä, J. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 2003, 12, 487–506. [Google Scholar] [CrossRef]
- Pearce, J.L.; Venier, L.A. The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: A review. Ecol. Indic. 2006, 6, 780–793. [Google Scholar] [CrossRef]
- Greenslade, P. The potential of Collembola to act as indicators of landscape stress in Australia. Aust. J. Exp. Agric. 2007, 47, 424–434. [Google Scholar] [CrossRef]
- Holt, E.A.; Miller, S.W. Bioindicators: Using organisms to measure environmental impacts. Nat. Educ. Knowl. 2011, 2, 8. [Google Scholar]
- Parmar, T.K.; Rawtani, D.; Agrawal, Y.K. Bioindicators: The natural indicator of environmental pollution. Front. Life Sci. 2016, 9, 110–118. [Google Scholar] [CrossRef]
- Barlow, J.; Overal, W.L.; Araujo, I.S.; Gardner, T.A.; Peres, C.A. The value of primary, secondary and plantation forests for fruit-feeding butterflies in the Brazilian Amazon. J. Appl. Ecol. 2007, 44, 1001–1012. [Google Scholar] [CrossRef]
- Schulze, C.H.; Waltert, M.; Kessler, P.J.A.; Pitopang, R.; Veddeler, D.; Muhlenberg, M.; Gradstein, S.R.; Leuschner, C.; Steffan-Dewenter, I.; Tscharntke, T. Biodiversity indicator groups of tropical land-use systems: Comparing plants, birds, and insects. Ecol. Indic. 2004, 14, 1321–1333. [Google Scholar] [CrossRef]
- Tourinho, A.L.; Benchimol, M.; Porto, W.; Peres, C.A.; Storck-Tonon, D. Marked compositional changes in harvestmen assemblages in Amazonian forest islands induced by a mega dam. Insect Conserv. Divers. 2020, 13, 432–444. [Google Scholar] [CrossRef]
- Tourinho, A.L.; Lo-Man-Hung, N. Standardized sampling methods and protocols for harvestman and spider assemblages. In Measuring Arthropod Biodiversity; Santos, J.C., Fernandes, G.W., Eds.; Springer: Cham, Switzerland, 2021; pp. 365–400. [Google Scholar]
- Lira, A.F.A.; DeSouza, A.M. Microhabitat use of harvestmen (Arachnida: Opiliones) assemblage in the highland Brazilian Atlantic rainforest. Can. J. Zool. 2016, 94, 323–327. [Google Scholar] [CrossRef]
- Porto, W.; Pequeno, P.A.L.; Tourinho, A.L. When less means more: Reduction of both effort and survey methods boosts efficiency and diversity of harvestmen in a tropical forest. Ecol. Indic. 2016, 69, 771–779. [Google Scholar] [CrossRef]
- Andrade, A.R.S.; Lira, A.F.A.; Salomão, R.P.; Alvarado, F.; DeSouza, A.M.; DaSilva, M.B.; Delabie, J.H.C. Environmental drivers of harvestmen assemblages (Arachnida: Opiliones) from Neotropical rainforest landscapes. Austral Entomol. 2022, 61, 4800493. [Google Scholar] [CrossRef]
- Gorneau, J.A.; Cala-Riquelme, F.; Tourinho, A.L.; Esposito, L.A. Biodiversity of Arachnids. In Encyclopedia of Biodiversity; Scheiner, S.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 453–489. [Google Scholar]
- Proud, D.N.; Wade, R.R.; Rock, P.; Townsend, V.R., Jr.; Chavez, D.J. Epizoic cyanobacteria associated with a Neotropical harvestman (Opiliones: Scleromatidae) from Costa Rica. J. Arachnol. 2012, 40, 259–261. [Google Scholar] [CrossRef]
- Rodrigues, A.B.; Colmenares, P.; Abbad, E.L.; Dambros, C.; Tourinho, A.L.; Baccaro, F.B. Vegetation structure and soil composition influence Opiliones diversity across spatial scales in Amazonia. Biotropica 2025, in press. [Google Scholar]
- Burns, J.A.; Hunter, R.K.; Townsend, V.R. Tree Use by Harvestmen (Arachnida: Opiliones) in the Rainforests of Trinidad, W.I. Caribb. J. Sci. 2007, 43, 139–142. [Google Scholar] [CrossRef]
- Vasconcelos, H.L. Effects of litter collection by understory palms on the associated macroinvertebrate fauna in Central Amazonia. Pedobiologia 1990, 34, 157–160. [Google Scholar] [CrossRef]
- Franken, E.P.; Baccaro, F.B.; Gasnier, T.R. Is there a refuge for ants in litter accumulated at the base of Attalea attaleoides (barb. Rodr.) Wess. Boer (Arecaceae)? Entomotropica 2013, 28, 27–37. [Google Scholar]
- Curtis, D.J.; Machado, G. Ecology. In Harvestmen: The Biology of Opiliones; Pinto-da-Rocha, R., Machado, G., Giribet, G., Eds.; Harvard University Press: Cambridge, MA, USA, 2007; pp. 280–308. [Google Scholar]
- Castilho, C.V.; Magnusson, W.E.; Araujo, R.N.O.; Luizão, R.C.C.; Luizão, F.J.; Lima, A.P.; Higuchi, N. Variation in aboveground tree live biomass in a central Amazonian forest: Effects of soil and topography. For. Ecol. Manag. 2006, 234, 85–96. [Google Scholar] [CrossRef]
- Schietti, J.; Emilio, T.; Rennó, C.D.; Drucker, D.P.; Costa, F.R.C.; Nogueira, A.; Baccaro, F.B.; Figueiredo, F.; Castilho, C.V.; Kinupp, V.; et al. Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant Ecol. Divers. 2014, 7, 241–253. [Google Scholar] [CrossRef]
- Rodrigues, D.J.; Izzo, T.J.; Battirola, L.D. Descobrindo a Amazônia Meridional: Biodiversidade da Fazenda São Nicolau; Pau e Prosa Comunicacão: Cuiabá, Brazil, 2011; p. 301. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Koppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Vicente, R.E.; Dáttilo, W.; Izzo, T.J. Differential recruitment of Camponotus femoratus (Fabricius) ants in response to ant garden herbivory. Neotrop. Entomol. 2014, 43, 519–525. [Google Scholar] [CrossRef]
- Vicente, R.E.; Dáttilo, W.; Izzo, T.J. New record of a very specialized interaction: Myrcidris epicharis Ward 199- (Pseudomyrmecinae) and its myrmecophyte host Myrcia madida McVaugh (Myrtaceae) in Brazilian Meridional Amazon. Acta Amaz. 2012, 42, 567–570. [Google Scholar] [CrossRef]
- Magnusson, W.E.; Lima, A.P.; Luizão, R.; Luizão, F.; Costa, F.R.C.; Castilho, C.V.; Kinupp, V.F. RAPELD: A modification of the Gentry method for biodiversity surveys in long-term ecological research sites. Biota Neotrop. 2005, 5, 19–24. [Google Scholar] [CrossRef]
- Colmenares, P.; Baccaro, F.B.; Tourinho, A.L. Assessing the relationship between vegetation structure and harvestmen assemblage in an Amazonian upland forest. bioRxiv 2016. [Google Scholar] [CrossRef]
- Angiosperm Phylogeny Group [APG] An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 2009, 161, 105–121. [CrossRef]
- BFG Growing knowledge: An overview of Seed Plant diversity in Brazil. Rodriguesia 2015, 66, 1085–1113. [CrossRef]
- Pinto-da-Rocha, R. Systematic review of the Neotropical family Stygnidae: (Opiliones, Laniatores, Gonyleptoidea). Arq. Zool. 1997, 33, 163–342. [Google Scholar] [CrossRef]
- Pinto-da-Rocha, R. A new species of Fissiphalliidae from Amazon rain forest (Arachnida: Opiliones). Zootaxa 2004, 640, 1–6. [Google Scholar] [CrossRef]
- Colmenares, P.A.; Porto, W.; Tourinho, A.L. Taxonomic notes on the genus Auranus (Opiliones, Laniatores, Stygnidae), with description of two new species. Zootaxa 2016, 4103, 117–129. [Google Scholar] [CrossRef]
- Colmenares, P.A.; Tourinho, A.L. First Amazonian species of Maracaynatum, with comments on the genus (Opiliones: Laniatores: Samoidae). Zootaxa 2016, 4193, 565–572. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- De Cáceres, M.; Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef] [PubMed]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- R Core Team, R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024.
- ChatGPT, Versão GPT-5; OpenAI: San Francisco, CA, USA, 2025. Available online: https://openai.com/chatgpt (accessed on 8 October 2025).
- Černecká, Ľ.; Mihal, I.; Jarčuška, B. Response of ground-dwelling harvestman assemblages (Arachnida: Opiliones) to European beech forest canopy cover. Eur. J. Entomol. 2017, 114, 334–342. [Google Scholar] [CrossRef]
- Stašiov, S.; Diviakova, A.; Svitok, M.; Novikmec, M.; Dovciak, M. Hedgerows support rich communities of harvestmen (Opiliones) in upland agricultural landscape. Basic Appl. Ecol. 2020, 47, 73–82. [Google Scholar] [CrossRef]
- Ganser, D.; Denmead, L.H.; Clough, Y.; Buchori, D.; Tscharntke, T. Local and landscape drivers of arthropod diversity and decomposition processes in oil palm leaf axils. Agric. For. Entomol. 2016, 19, 60–69. [Google Scholar] [CrossRef]
- Holanda, P.M.S.; Souza, J.L.P.; Baccaro, F.B. Seasonal fluctuation of groundwater level influences local litter-dwelling ant richness, composition, and colonization in the Amazon rainforest. Ecol. Entomol. 2021, 46, 220–231. [Google Scholar] [CrossRef]
- Stašiov, S.; Michalková, E.; Lukáčik, I.; Čiliak, M. Harvestmen (Opiliones) communities in an arboretum: Influence of tree species. Biologia 2017, 72, 184–193. [Google Scholar] [CrossRef]
- Noutcha, M.A.E.; Harry, O.T.; Isang, K.O.; Okiwelu, S.N. Arthropod communities in phytotelmata of the Musaceae, Lauraceae and Burseraceae. Public Health Res. 2018, 8, 31–34. [Google Scholar] [CrossRef]
- Daly, D.C.; Harley, M.M.; Martínez-Habibe, M.C.; Weeks, A. Burseraceae. In Flowering Plants. Eudicots. The Families and Genera of Vascular Plants; Kubitzki, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 10. [Google Scholar]
- Dussourd, D.E.; Denno, R.F. Deactivation of plant defense: Correspondence between insect behavior and secretory canal architecture. Ecology 1991, 72, 1383–1396. [Google Scholar] [CrossRef]
- Becerra, J.X. The impact of plant–herbivore coevolution on plant community structure. Proc. Natl. Acad. Sci. USA 2007, 104, 7483–7488. [Google Scholar] [CrossRef] [PubMed]
- Solórzano-Kraemer, M.M.; Delclòs, X.; Clapham, M.E.; Arillo, A.; Peris, D.; Jager, P.; Stebner, F.; Peñalver, E. Arthropods in modern resins reveal if amber accurately recorded forest arthropod communities. Proc. Natl. Acad. Sci. USA 2018, 115, 6739–6744. [Google Scholar] [CrossRef] [PubMed]
- Solórzano-Kraemer, M.M.; Peñalver, E.; Herbert, M.C.M.; Delclòs, X.; Brown, B.V.; Aung, N.N.; Peretti, A.M. Necrophagy by insects in Oculudentavis and other lizard body fossils preserved in Cretaceous amber. Sci. Rep. 2023, 13, 2907. [Google Scholar] [CrossRef] [PubMed]
Harvestmen Species | Microhabitat | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fallen Trunks | Herb | Liana | Litter | Palm | Termite Nest | Shrub | Tree | Total | |
Sclerosomatidae | |||||||||
Geaya sp. | 9 | 5 | 6 | 24 | 18 | 13 | - | 115 | 190 |
Cosmetidae | |||||||||
Eucynortella duapunctata Goodnight & Goodnight, 1943 | 1 | 3 | 1 | 18 | 17 | - | - | 14 | 54 |
Eucynortella sp. | - | - | 3 | 10 | 5 | - | 1 | 36 | 55 |
Gryne sp. | 2 | - | - | 11 | 6 | 1 | - | 8 | 28 |
Manaosbiidae | |||||||||
Manaosbia sp. 1 | 2 | - | - | 6 | 1 | - | - | 1 | 10 |
Manaosbia sp. 2 | 1 | - | - | 2 | 1 | 1 | - | 4 | 9 |
Manaosbia sp. 3 | - | - | - | - | 2 | - | - | - | 2 |
Samoidae | |||||||||
Samoidae sp. | - | - | - | 1 | 1 | - | - | - | 2 |
Stygnidae | |||||||||
Protimesius longipalpis (Roewer, 1943) | 1 | 2 | - | - | 3 | - | - | 9 | 15 |
Sickesia usta (Mello-Leitão, 1941) | - | - | - | 8 | 3 | - | - | 2 | 13 |
Stygnus aff. Marthae | - | - | - | 4 | 1 | - | - | 5 | 10 |
Stygnus sp. | 11 | - | 1 | 23 | 22 | 6 | - | 13 | 76 |
Zalmoxidae | |||||||||
Zalmoxidae sp. 1 | 12 | - | 1 | 11 | 6 | 1 | - | 12 | 43 |
Zalmoxidae sp. 2 | - | - | - | - | - | - | - | 1 | 1 |
Zalmoxidae sp. 3 | - | - | - | - | - | - | - | 1 | 1 |
Total | 39 | 10 | 12 | 118 | 86 | 22 | 1 | 221 | 509 |
Plant Species | Harvestmen Species | Total | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ||
Anacardiaceae | ||||||||||||||||
Thyrsodium sp. | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Annonaceae | ||||||||||||||||
Anaxagorea sp. | - | - | 3 | - | - | - | - | - | - | - | - | - | - | - | - | 3 |
Xylopia benthamii | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Xylopia cf. brasiliensis | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Xylopia sp. | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Arecaceae | ||||||||||||||||
Astrocaryum aculeatum | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Attalea maripa | 17 | 5 | 12 | 6 | 1 | 1 | 2 | 3 | 1 | 1 | 1 | 22 | 5 | - | - | 77 |
Attalea speciosa | - | 1 | 5 | - | - | - | - | - | 2 | - | - | - | 1 | - | - | 9 |
Iriartella sp. | - | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | 2 |
Burseraceae | ||||||||||||||||
Protium sp. | - | - | 1 | 1 | - | - | - | - | - | - | 1 | - | - | - | - | 3 |
Protium cf. heptaphyllum | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | 1 |
Protium heptaphyllum | - | - | 5 | - | - | - | - | - | - | - | - | - | - | - | - | 5 |
Protium spruceanum | - | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | 2 |
Protium unifoliatum | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Tetragastris altissima | 4 | - | 50 | 3 | - | - | - | - | - | - | 3 | 5 | 3 | - | 1 | 69 |
Trattinnickia glaziovii | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Chrysobalanaceae | ||||||||||||||||
Hirtella gracilipes | - | - | 4 | - | - | - | - | 1 | - | - | - | - | - | - | - | 5 |
Elaeocarpaceae | ||||||||||||||||
Sloanea sp. | - | - | 4 | - | - | - | - | - | - | - | - | - | - | - | - | 4 |
Erythroxylaceae | ||||||||||||||||
Erythroxylon sp. | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Fabaceae | ||||||||||||||||
Fabaceae sp. | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Hymenolobium isp. | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Inga cf. macrophylla | - | - | 2 | - | - | - | - | - | - | - | - | - | 2 | - | - | 4 |
Inga cf. marginata | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Inga cordoalata | - | - | 3 | - | - | - | - | - | - | - | - | - | - | - | - | 3 |
Inga macrophylla | - | - | 6 | 2 | - | - | - | - | - | - | - | - | - | - | - | 8 |
Sclerobium sp. | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Hypericaceae | ||||||||||||||||
Vismia sp. | - | - | - | - | - | - | - | 2 | - | - | - | - | - | - | - | 2 |
Lacistemataceae | ||||||||||||||||
Lacistema aggregatum | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Lamiaceae | ||||||||||||||||
Tectona grandis | 2 | 24 | - | - | 1 | 1 | - | - | - | - | - | 6 | 3 | - | - | 37 |
Vitex triflora | - | - | - | - | - | - | - | 6 | - | - | - | - | 1 | - | - | 7 |
Lauraceae | ||||||||||||||||
Aniba sp. | - | - | 4 | - | - | - | - | - | - | - | - | - | - | - | - | 4 |
Ocotea cf. longifolia | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Ocotea longifolia | - | - | 3 | - | - | - | - | - | - | - | - | - | - | - | - | 3 |
Malvaceae | ||||||||||||||||
Pseudobombax sp. | - | - | 2 | 1 | - | - | - | - | - | - | - | - | - | - | - | 3 |
Theobroma speciosum | - | - | 3 | - | - | - | - | - | - | - | - | - | - | - | - | 3 |
Moraceae | ||||||||||||||||
Brosimum guianensis | - | - | 3 | - | - | - | - | - | - | - | - | - | - | - | - | 3 |
Ficus sp. | 1 | 3 | - | - | - | 1 | - | - | - | - | - | - | - | - | - | 5 |
Moraceae | ||||||||||||||||
Moraceae sp. | - | 1 | 1 | - | - | 1 | - | - | 1 | - | - | 1 | 1 | - | - | 6 |
Myristicaceae | ||||||||||||||||
Virola sebifera | - | - | - | - | - | - | - | - | - | - | - | - | 2 | - | - | 2 |
Myrtaceae | ||||||||||||||||
Eugenia sp. | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Syzygium sp. | 6 | 7 | - | - | - | 1 | - | - | - | - | 1 | 1 | - | - | - | 16 |
Quinaceae | ||||||||||||||||
Quinaceae sp. | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Rubiaceae | ||||||||||||||||
Faramea capillipes | - | - | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - | 2 |
Psychotria erecta | - | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | 2 |
Salicaceae | ||||||||||||||||
Casearia sp. | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Sapindaceae | ||||||||||||||||
Toulicia guianensis | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Response Variable | Predictors Variables | AIC | p-Value | Std Error |
---|---|---|---|---|
Species richness | NULL | 70.48 | 0.000 | 0.479 |
Tree Richness (RichTree) | 0.392 | 0.006 | ||
Palm Richness (RichPalm) | 0.728 | 0.109 | ||
Tree abundance (TreeAb) | 0.813 | 0.001 | ||
Palm Abundance (PalmAb) | 0.789 | 0.001 | ||
Litter | 0.888 | 0.160 | ||
TreeAb + RichPalm + Litter | 0.837 | 0.163 | ||
Species Abundance | NULL | 127.65 | 0.005 | 4.568 |
Palm Richness (RichPalm) | 0.009 | 1.679 | ||
Tree abundance (TreeAb) | 0.037 | 0.515 | ||
RichTree + RichPalm | 0.007 | 0.0342 | ||
TreeAb + PalmAb + RichPalm | 0.023 | 0.000 | ||
RichArv + RichPalm + Litter | 0.023 | 0.023 | ||
Species Composition | NULL | 112.08 | 0.103 | 10.444 |
Tree abundance (TreeAb) | 0.007 | 0.034 | ||
Tree Richness (RichTree) | 0.012 | 0.142 | ||
Palm Abundance (PalmAb) | 0.024 | 2.656 |
Harvestmen Species | Forest Type Association | IndVal | * p-Value | Number of Plots | Class |
---|---|---|---|---|---|
Geaya sp. | Primary Forest | 0.917 | 0.002 | 12 | Strong |
Eucynortella duapunctata | Primary Forest & Planted Forest | 0.762 | 1 | 16 | Strong |
Gryne sp. | Primary Forest | 0.669 | 0.010 | 11 | Moderate |
Stygnus sp. | Primary Forest & Planted Forest | 0.667 | 1 | 14 | Moderate |
Zalmoxidae sp. 1 | Primary Forest & Planted Forest | 0.667 | 1 | 14 | Moderate |
Manaosbia sp. 1 | Planted Forest | 0.450 | 0.078 | 8 | Moderate |
Sickesia usta | Primary Forest | 0.291 | 0.192 | 5 | Weak |
Eucynortella sp. | Primary Forest & Planted Forest | 0.286 | 1 | 6 | Weak |
Manaosbia sp. 2 | Primary Forest & Planted Forest | 0.286 | 1 | 6 | Weak |
Stygnus aff marthae | Primary Forest & Planted Forest | 0.286 | 1 | 6 | Weak |
Eucynortella sp. | Primary Forest & Planted Forest | 0.238 | 1 | 5 | Absent |
Samoidae sp. | Primary Forest | 0.182 | 0.252 | 2 | Absent |
Protimesius longipalpis | Primary Forest & Planted Forest | 0.143 | 1 | 3 | Absent |
Zalmoxidae sp. 3 | Primary Forest | 0.091 | 0.505 | 1 | Absent |
Manaosbia sp. 3 | Primary Forest | 0.091 | 0.508 | 1 | Absent |
Zalmoxidae sp. 2 | Primary Forest | 0.091 | 0.524 | 1 | Absent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tourinho, A.L.; Fagner, I.F.; Almeida, G.; Neyra, M.C.; Lira, A.F.A. Tree Diversity and Microhabitat Structure Drive Harvestmen Assemblages in Amazonian Rainforest. Diversity 2025, 17, 737. https://doi.org/10.3390/d17100737
Tourinho AL, Fagner IF, Almeida G, Neyra MC, Lira AFA. Tree Diversity and Microhabitat Structure Drive Harvestmen Assemblages in Amazonian Rainforest. Diversity. 2025; 17(10):737. https://doi.org/10.3390/d17100737
Chicago/Turabian StyleTourinho, Ana Lúcia, Ivanildo F. Fagner, Gabriel Almeida, Milton C. Neyra, and André F. A. Lira. 2025. "Tree Diversity and Microhabitat Structure Drive Harvestmen Assemblages in Amazonian Rainforest" Diversity 17, no. 10: 737. https://doi.org/10.3390/d17100737
APA StyleTourinho, A. L., Fagner, I. F., Almeida, G., Neyra, M. C., & Lira, A. F. A. (2025). Tree Diversity and Microhabitat Structure Drive Harvestmen Assemblages in Amazonian Rainforest. Diversity, 17(10), 737. https://doi.org/10.3390/d17100737