Population Structure and Genetic Diversity of Oysters from a Natural Reef on Magu Island, Shandong, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Investigation on the Population Structure of the Reef-Building Oysters on Magu Island
2.2. Investigation on the Population Genetic Diversity of the Reef-Building Oysters on Magu Island
3. Results
3.1. Population Structure of the Reef-Building Oysters on Magu Island
3.2. Population Genetic Diversity of the Reef-Building Oysters on Magu Island
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, J.B.C.; Kirby, M.X.; Berger, W.H.; Bjorndal, K.A.; Botsford, L.W.; Bourque, B.J.; Bradbury, R.H.; Cooke, R.; Eriandson, J.; Estes, J.A.; et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 2001, 293, 629–637. [Google Scholar] [CrossRef]
- Beck, M.W.; Brumbaugh, R.D.; Airoldi, L.; Carranza, A.; Coen, L.D.; Crawford, C.; Defeo, O.; Edgar, G.J.; Hancock, B.; Kay, M.C.; et al. Oysters reefs at risk and recommendations for conservation, restoration, and management. BioScience 2011, 61, 107–116. [Google Scholar] [CrossRef]
- Morgan, L.M.; Rakocinski, C.F. Predominant factors limiting the recovery of the eastern oyster (Crassostrea virginica) in western Mississippi Sound, USA. Estuar. Coast. Shelf Sci. 2022, 264, 107652. [Google Scholar] [CrossRef]
- Lemasson, A.J. Ocean Acidification and Warming Impacts on Native and Non-Native Shellfish: A Multidisciplinary Assessment. Ph.D. Thesis, University of Plymouth, Plymouth, UK, 2018. [Google Scholar]
- Baggett, L.P.; Powers, S.P.; Brumbaugh, R.; Coen, L.D.; De Angelis, B.; Greene, J.; Hancock, B.; Morlock, S. Oyster Habitat Restoration Monitoring and Assessment Handbook; The Nature Conservancy: Arlington, VA, USA, 2014. [Google Scholar]
- Howie, A.H.; Bishop, M.J. Contemporary oyster reef restoration: Responding to a changing world. Front. Ecol. Evol. 2021, 9, 689915. [Google Scholar] [CrossRef]
- Hernández, A.B.; Brumbaugh, R.D.; Frederick, P.; Grizzle, R.; Luckenbach, M.W.; Peterson, C.H.; Angelini, C. Restoring the eastern oyster: How much progress has been made in 53 years? Front. Ecol. Environ. 2018, 16, 463–471. [Google Scholar] [CrossRef]
- Xu, W.; Tao, A.; Zheng, J. Protect oyster reefs in China’s coastal zone. Science 2023, 380, 142. [Google Scholar] [CrossRef]
- Yang, P.; Li, J.; Wang, F.; Hu, Y.; Shi, B.; Wang, W.; Wang, H. Present situation and protection restoration suggestions on the natural oyster reefs in China. Geol. China 2023, 50, 1082–1092. [Google Scholar]
- Weissberger, E.J.; Glibert, P.M. Diet of the eastern oyster, Crassostrea virginica, growing in a eutrophic tributary of Chesapeake Bay, MD, USA. Aquac. Rep. 2021, 20, 100655. [Google Scholar] [CrossRef]
- Brumbaugh, R.D.; Coen, L.D. Contemporary approaches for small-scale oyster reef restoration to address substrate versus recruitment limitation: A review and comments relevant for the Olympia oyster, Ostrea lurida Carpenter 1864. J. Shellfish Res. 2009, 28, 147–161. [Google Scholar] [CrossRef]
- Gillies, C.L.; Castine, S.A.; Alleway, H.K.; Crawford, C.; Fitzsimons, J.A.; Hancock, B.; Koch, P.; McAfee, D.; McLeod, I.M.; zu Ermgassen, P.S.E. Conservation status of the oyster reef ecosystem of Southern and Eastern Australia. Glob. Ecol. Conserv. 2020, 22, e00988. [Google Scholar] [CrossRef]
- Colsoul, B.; Pouvreau, S.; Poi, C.D.; Pouil, S.; Merk, V.; Peter, C.; Boersma, M.; Pogoda, B. Addressing critical limitations of oyster (Ostrea edulis) restoration: Identification of nature-based substrates for hatchery production and recruitment in the field. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 30, 2101–2115. [Google Scholar] [CrossRef]
- Lau, S.C.Y.; Thomas, M.; Hancock, B.; Russell, B.D. Restoration potential of Asian oysters on heavily developed coastlines. Restor. Ecol. 2020, 28, 1643–1653. [Google Scholar] [CrossRef]
- Lenihan, H.S.; Peterson, C.H. How habitat degradation through fishery disturbance enhances impacts of hypoxia on oyster reefs. Evol. Appl. 1998, 8, 128–140. [Google Scholar] [CrossRef]
- Wang, H.; Guo, X. Identification of Crassostrea ariakensis and related oysters by multiplex species-specific PCR. J. Shellfish Res. 2008, 27, 481–487. [Google Scholar] [CrossRef]
- Salvi, D.; Mariottini, P. Molecular taxonomy in 2D: A novel ITS2 rRNA sequence-structure approach guides the description of the oysters’ subfamily Saccostreinae and the genus Magallana (Bivalvia: Ostreidae). Zool. J. Linn. Soc. 2017, 179, 263–276. [Google Scholar] [CrossRef]
- Liu, S.; Xue, Q.; Xu, H.; Lin, Z. Identification of main oyster species and comparison of their genetic diversity in Zhejiang coast, south of Yangtze River Estuary. Front. Mar. Sci. 2021, 8, 662515. [Google Scholar] [CrossRef]
- Burke, R.; Lipcius, R.N. Population structure, density and biomass of the eastern oyster on artificial oyster reefs in the Rappahannock River, Chesapeake. J. Shellfish Res. 2008, 27, 992. [Google Scholar]
- Gaffney, P.M. The role of genetics in shellfish restoration. Aquat. Living Resour. 2006, 19, 277–282. [Google Scholar] [CrossRef]
- Hare, M.P.; Allen, S.K., Jr.; Bloomer, P.; Camara, M.D.; Carnegie, R.B.; Murfree, J.; Luckenbach, M.; Meritt, D.; Morrison, C.; Paynter, K.; et al. A genetic test for recruitment enhancement in Chesapeake Bay oysters, Crassotrea virginica, after population supplementation with a disease tolerant strain. Conserv. Genet. 2006, 7, 717–734. [Google Scholar] [CrossRef]
- Carlsson, J.; Carnegie, R.B.; Cordes, J.F.; Hare, M.P.; Leggett, A.T.; Reece, K.S. Evaluating recruitment contribution of a selectively bred aquaculture line of the oyster, Crassostrea virginica used in restoration efforts. J. Shellfish Res. 2008, 27, 1117–1124. [Google Scholar] [CrossRef]
- Milbury, C.A.; Meritt, D.W.; Newell, R.I.E.; Gaffney, P.M. Mitochondrial DNA markers allow monitoring of oyster stock enhancement in Chesapeake Bay. Mar. Biol. 2004, 145, 351–359. [Google Scholar] [CrossRef]
- Hornick, K.M.; Plough, L.V. Genome-wide analysis of natural and restored eastern oyster populations reveals local adaptation and positive impacts of planting frequency and broodstock number. Evol. Appl. 2021, 15, 40–59. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y. Remote-Sensed Monitoring and Analysis of Invasive Alien Species Spartina alterniflora in Shandong Province Based on Deep Learning Classification Method. Master’s Thesis, First Institute of Oceanography, MNR, Qingdao, China, 2020. [Google Scholar]
- Wang, H.; Zhang, G.; Liu, X.; Guo, X. Classification of common oysters from north China. J. Shellfish Res. 2008, 27, 495–503. [Google Scholar] [CrossRef]
- Lv, M.; Li, Q. Seasonal variations of gonadal development and biochemical components of Crassostrea gigas in Tianheng Island sea area, Shandong. Period. Ocean Univ. China 2022, 52, 33–40. [Google Scholar]
- Harmon, L.J.; Braude, S. Conservation of Small Populations: Effective Population Sizes, Inbreeding, and the 50/500 Rule. In An Introduction to Methods and Models in Ecology, Evolution, and Conservation Biology; Braude, S., Low, B.S., Eds.; Princeton University Press: Princeton, NJ, USA, 2010; pp. 125–138. [Google Scholar]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Ranwez, V.; Douzery, E.J.P.; Cambon, C.; Chantret, N.; Delsuc, F. MACSE v2: Toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol. Biol. Evol. 2018, 35, 2582–2584. [Google Scholar] [CrossRef]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer Mata, A.; Sánchez DelBarrio, J.C.; Guirao Rico, S.; Librado, P.; Ramos Onsins, S.E.; Sánchez Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Zhu, Y.; Yan, S.; Ma, P.; Zuo, C.; Ma, X.; Zhang, Z. Complete mitochondrial genomes and population genetic analysis of Brachidontes variabilis (Krauss, 1848) in China. Mar. Biol. 2024, 171, 197. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Wang, H.; Fan, C.; Li, J.; Li, F.; Yan, Y.; Wang, Y.; Zhang, J.; Zhang, Y. Holocene oyster reefs on the northwest coast of the Bohai Bay, China. Geol. Bull. China 2006, 25, 315–331. [Google Scholar]
- Oliver, G.J.H.; Terry, J.P. Relative sea-level highstands in Thailand since the Mid-Holocene based on 14C rock oyster chronology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 517, 30–38. [Google Scholar] [CrossRef]
- Terry, J.P.; Goff, J.; Jankaew, K.; Lhosupasirirat, K.; Li, T.; Oalmann, J.; Oliver, G.J.H.; Parham, P.R. Elevation and age of a raised beach in the upper Gulf of Thailand, as evidence for regional sea level during the Late Holocene. J. Asian Earth Sci. 2024, 273, 106259. [Google Scholar] [CrossRef]
- Wang, H.; von Strydonck, M. Chronology of Holocene cheniers and oyster reefs on the coast of Bohai Bay, China. Quat. Res. 1997, 47, 192–205. [Google Scholar] [CrossRef]
- Alberti, M.; Veiga, S.F.; Chen, B.; Hu, L.; Fang, Z.; Zhou, B.; Pan, Y. The Yangtze River Delta experienced strong seasonality and regular summer upwelling during the warm mid-Holocene. Commun. Earth Environ. 2024, 5, 492. [Google Scholar] [CrossRef]
- Stephenson, T.A.; Stephenson, A. Life Between Tidemarks on Rocky Shores; W. H. Freeman: San Francisco, CA, USA, 1972; pp. 213–215. [Google Scholar]
- Kent, B.W. Making Dead Oysters Talk: Techniques for Analyzing Oysters from Archaeological Sites; Maryland Histrorical & Cultural Publications: Crownville, MD, USA, 1992; pp. 47–60. [Google Scholar]
- Tian, Q.; Wang, Q.; Liu, Y. Geomorphic change in Dingzi Bay, East China since the 1950s: Impacts of human activity and fluvial input. Front. Earth Sci. 2017, 11, 385–396. [Google Scholar] [CrossRef]
- Quan, W.; Zhang, Y.; Qi, Z.; Xu, M.; Fan, R.; Wang, T.; Li, N.; Sun, Z.; Zhou, H.; Li, C.; et al. Distribution and ecological status of natural oyster reefs on the coast of Caofeidian-Leting, Tangshan, Hebei Province. Acta Ecol. Sin. 2022, 42, 1142–1152. [Google Scholar] [CrossRef]
- Quan, W.; Zhou, W.; Ma, C.; Feng, M.; Zhou, Z.; Tang, F.; Wu, Z.; Fan, R.; Wang, Y.; Bao, X.; et al. Ecological status of a natural intertidal oyster reef in Haimen County, Jiangsu Province. Acta Ecol. Sin. 2006, 36, 7749–7757. [Google Scholar]
- Searles, A.R.; Gipson, E.E.; Walters, L.J.; Cook, G.S. Oyster reef restoration facilitates the recovery of macroinvertebrate abundance, diversity, and composition in estuarine communities. Sci. Rep. 2022, 12, 8163. [Google Scholar] [CrossRef]
- Crawfor, C.; Edgar, G.; Glillies, C.L.; Heller-Wagner, G. Relationship of biological communities to habitat structure on the largest remnant flat oyster reef (Ostrea angasi) in Australia. Mar. Freshw. Res. 2019, 71, 972–983. [Google Scholar] [CrossRef]
- Zuo, T.; Zhang, B.; Wang, J.; Zuo, M.; Wang, A. Population structure of oysters in the natural oyster reef near the mouth of the Xiaodaohe River, southwest of the Yellow River Estuary. Acta Ecol. Sin. 2024, 44, 3086–3097. [Google Scholar]
- Fan, C.; Pei, Y.; Wang, H.; Li, Y. Relationship among the form, growth rate and living environment of oyster shells in west coast of Bohai Bay. Mar. Sci. Bull. 2010, 29, 526–533. [Google Scholar]
- Wheaton, F. Review of the properties of Eastern oysters, Crassostrea virginica Part I. Physical properties. Aquacult. Eng. 2007, 37, 3–13. [Google Scholar] [CrossRef]
- Wang, W.; Fan, C.; Song, Z.; Wang, H.; Wang, F. Pacific oyster (Crassostrea gigas) shell growth duration in a year in Bohai Bay and implication for its carbon sink potential. China Geol. 2024, 7, 653–660. [Google Scholar] [CrossRef]
- Chi, Y.; Jiang, G.; Liang, Y.; Xu, C.; Li, Q. Selective breeding for summer survival in Pacific oyster (Crassostrea gigas): Genetic parameters and response to selection. Aquaculture 2022, 556, 738271. [Google Scholar] [CrossRef]
- Schulte, D.; Ray, G.; Shafer, D. Use of Alternative Materials for Oyster Reef Construction: ERDC TN-EMRRP-ER-12; Engineer Research and Development Center (U.S.): Vicksburg, MS, USA, 2009. [Google Scholar]
- George, L.M.; De Santiago, K.; Palmer, T.A.; Pollack, J.B. Oyster reef restoration: Effect of alternative substrates on oyster recruitment and nekton habitat use. J. Coast. Conserv. 2015, 19, 13–22. [Google Scholar] [CrossRef]
- Matsubara, T.; Yamaguchi, M.; Abe, K.; Onitsuka, G.; Abo, K.; Okamura, T.; Sato, T.; Mizuno, K.; Lagarde, R.; Hamaguchi, M. Factors driving the settlement of Pacific oyster Crassostrea gigas larvae in Hiroshima Bay, Japan. Aquaculture 2023, 563, 738911. [Google Scholar] [CrossRef]
- O’Beirn, F.X.; Luckenbach, M.W.; Nestlerode, J.A.; Coates, G.M. Toward design criteria in constructed oyster reefs: Oyster recruitment as a function of substrate type and tidal height. J. Shellfish Res. 2000, 19, 387–395. [Google Scholar]
- Hornick, K.M.; Plough, L.V. Tracking genetic diversity in a large-scale oyster restoration program: Effects of hatchery propagation and initial characterization of diversity on restored vs. wild reefs. Heredity 2019, 123, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Strickland, A.; Brown, B. Population genomics of eastern oysters, Crassostrea virginica, in a well-mixed estuarine system: Advancement and implications for restoration strategies. BMC Genom. 2024, 25, 1171. [Google Scholar] [CrossRef] [PubMed]
- O’Hare, J.A.; Momigliano, P.; Raftos, D.; Stow, A.J. Genetic structure and effective population size of Sydney rock oysters in eastern Australia. Conserv. Genet. 2021, 22, 427–442. [Google Scholar] [CrossRef]
- Yan, S.; Ma, P.; Zuo, C.; Zhu, Y.; Ma, X.; Zhang, Z. Genetic analysis based on mitochondrial nad2 gene reveals a recent population expansion of the invasive mussel, Mytella strigata, in China. Genes 2023, 14, 2038. [Google Scholar] [CrossRef]
- Grant, W.S.; Bowen, B.W. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. J. Hered. 1998, 89, 415–426. [Google Scholar] [CrossRef]
- Lee, H.J.; Boulding, E.G. Mitochondrial DNA variation in space and time in the northeastern Pacific gastropod, Littorina keenae. Mol. Ecol. 2007, 16, 3084–3103. [Google Scholar] [CrossRef]
- Li, S.; Li, Q.; Yu, H.; Kong, L.; Liu, S. Genetic variation and population structure of the Pacific oyster Crassostrea gigas in the northwestern Pacific inferred from mitochondrial COI sequences. Fish. Sci. 2015, 81, 1071–1082. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Xu, C.; Li, Q. Comparative analysis of genetic diversity and structure among four shell color strains of the Pacific oyster Crassostrea gigas based on the mitochondrial COI gene and microsatellites. Aquaculture 2023, 563, 738990. [Google Scholar] [CrossRef]
- Ridlon, A.D.; Grosholz, E.D.; Hancock, B.; Miller, M.W.; Bickel, A.; Froehlich, H.E.; Lirman, D.; Pollock, F.J.; Putnam, H.M.; Tlusty, M.F.; et al. Culturing for conservation: The need for timely investments in reef aquaculture. Front. Mar. Sci. 2023, 10, 1069494. [Google Scholar] [CrossRef]
Survey Date | Mean Density/ind·m−2 | Mean Biomass/g·m−2 | Mean Shell Length/mm | Mean Shell Height/mm |
---|---|---|---|---|
October 2023 | 3097.60 a | 30,137.44 a | 18.94 a | 43.54 a |
April 2024 | 3260.80 a | 25,209.38 a | 21.48 b | 52.51 a |
Protein-Coding Gene | Length | Ka | Ks | Ka/Ks |
---|---|---|---|---|
cox1 | 1614 bp | 0.00000 | 0.00822 | 0.00000 |
cox2 | 699 bp | 0.00075 | 0.00000 | - |
cox3 | 873 bp | 0.00071 | 0.01205 | 0.05892 |
cytb | 1236 bp | 0.00000 | 0.00891 | 0.00000 |
nad1 | 933 bp | 0.00000 | 0.00182 | 0.00000 |
nad2 | 996 bp | 0.00105 | 0.00516 | 0.20349 |
nad3 | 348 bp | 0.00015 | 0.00491 | 0.30550 |
nad4 | 1350 bp | 0.00039 | 0.00686 | 0.05685 |
nad4l | 282 bp | 0.00000 | 0.01154 | 0.00000 |
nad5 | 1668 bp | 0.00192 | 0.01007 | 0.19067 |
nad6 | 474 bp | 0.00000 | 0.00351 | 0.00000 |
atp6 | 681 bp | 0.00077 | 0.00731 | 0.10534 |
atp8 | 117 bp | 0.00000 | 0.02439 | 0.00000 |
Marker | Length | N | Dis | h | Hd | Pi | k |
---|---|---|---|---|---|---|---|
cox1 | 724 bp | 50 | 0.0083 | 12 | 0.425 | 0.00083 | 0.598 |
cox3 | 826 bp | 50 | 0.0082 | 15 | 0.513 | 0.00082 | 0.677 |
nad2 | 765 bp | 50 | 0.0077 | 10 | 0.481 | 0.00077 | 0.590 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Pu, S.; Zhang, L.; Ji, Y.; Feng, J.; Ma, P.; Wang, L. Population Structure and Genetic Diversity of Oysters from a Natural Reef on Magu Island, Shandong, China. Diversity 2025, 17, 693. https://doi.org/10.3390/d17100693
Liu Y, Pu S, Zhang L, Ji Y, Feng J, Ma P, Wang L. Population Structure and Genetic Diversity of Oysters from a Natural Reef on Magu Island, Shandong, China. Diversity. 2025; 17(10):693. https://doi.org/10.3390/d17100693
Chicago/Turabian StyleLiu, Yumeng, Sichao Pu, Liang Zhang, Yinglu Ji, Jie Feng, Peizhen Ma, and Lan Wang. 2025. "Population Structure and Genetic Diversity of Oysters from a Natural Reef on Magu Island, Shandong, China" Diversity 17, no. 10: 693. https://doi.org/10.3390/d17100693
APA StyleLiu, Y., Pu, S., Zhang, L., Ji, Y., Feng, J., Ma, P., & Wang, L. (2025). Population Structure and Genetic Diversity of Oysters from a Natural Reef on Magu Island, Shandong, China. Diversity, 17(10), 693. https://doi.org/10.3390/d17100693