First Virtual Reconstruction of a Mosasaurid Brain Endocast: Description and Comparison of the Endocast of Tethysaurus nopcsai with Those of Extant Squamates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Sampling and Data Acquisition
Suborder | Family | Species | Ab. | Collection Number | Voxel Size (mm) |
---|---|---|---|---|---|
Anguimorpha | Anguidae | Abronia deppii | Ab.d | CAS:herp:143109 * | 0.037 |
Abronia graminea | Ab.g | UTA:uta-r:38831 * | 0.014 | ||
Abronia taeniata | Ab.t | TCWC:herpetology:4911 * | 0.015 | ||
Anguis fragilis | An.f | MVZ:herp:238523 * | 0.044 | ||
Barisia imbricata | Ba.i | TNHC:herpetology:76984 * | 0.014 | ||
Dopasia harti | Do.h | NCSM:herp:80838 * | 0.042 | ||
Elgaria kingii | El.k | UF:herp:74645 * | 0.033 | ||
Gerrhonotus infernalis | Ge.i | TNHC: herpetology:92262 * | 0.026 | ||
Mesaspis moreletii | Me.m | UF:herp:51455 * | 0.022 | ||
Ophisaurus mimicus | Op.m | NCSM:herp:25699 * | 0.021 | ||
Pseudopus apodus | Ps.a | KU:kuh:87837 * | 0.07 | ||
Anniellidae | Anniella grinnelli | An.g | MVZ:herp:257738 * | 0.021 | |
Diploglossidae | Celestus costatus | Ce.c | UF:herp:59382 * | 0.027 | |
Celestus hylaius | Ce.h | UF:herp:75794 * | 0.038 | ||
Diploglossus fasciatus | Di.f | UMMZ:herps:115647 * | 0.058 | ||
Ophiodes striatus | Op.s | YPM:vz:ypm herr 013348.001 * | 0.036 | ||
Xenosauridae | Xenosaurus grandis | Xe.g | FMNH:Amphibians and Reptiles:123702 * | X, Y = 0.027/Z = 0.064 | |
Xenosaurus platyceps | Xe.p | UTA:uta-r:23594 * | X, Y = 0.023/Z = 0.053 | ||
Helodermatidae | Heloderma horridum | He.h | UF:herp:42033 * | 0.047 | |
Varanidae | Varanus acanthurus | Va.a | UTA:uta-r:13015 * | X, Y = 0.023/Z = 0.051 | |
Varanus exanthematicus | Va.e | AH_unnumb | 0.045 | ||
Varanus gouldii | Va.g | TMM:m:1295 * | X, Y = 0.084/Z = 0.21 | ||
Varanus komodoensis | Va.k | TNHC:herpetology:95803 * | 0.163 | ||
Varanus niloticus | Va.n | UF:herp:83764 * | 0.041 | ||
Varanus prasinus | Va.p | UF:herp:71411 * | 0.037 | ||
Varanus salvator | Va.s | FMNH:Amphibians and Reptiles:35144 * | X, Y = 0.088/Z = 0.201 | ||
Varanus timorensis | Va.t | UF:herp:137865 * | 0.058 | ||
Lanthanotidae | Lanthanotus borneensis | La.b | FMNH:Amphibians and Reptiles:148589 * | X, Y = 0.022/Z = 0.046 | |
Shinisauridae | Shinisaurus crocodilurus | Sh.c | FMNH:Amphibians and Reptiles:215541 * | X, Y = 0.029/Z = 0.078 | |
Serpentes | Anomalepididae | Typhlophis squamosus | Ty.s | MNHN 1997.2042 | 0.005 |
Typhlopidae | Acutotyphlops kunuaensis | Ac.k | LSUMZ:herps:93566 * | 0.019 | |
Amerotyphlops brongersmianus | Am.b | FMNH:Amphibians and Reptiles:195928 * | 0.033 | ||
Typhlops arenarius | Ty.a | UMMZ:herps:241854 * | 0.01 | ||
Aniliidae | Anilius scytale | An.s | MNHN 1997.2106 | 0.01 | |
Tropidophiidae | Tropidophis canus | Tr.c | UMMZ:herps:117024 * | 0.017 | |
Boidae | Boa constrictor | Bo.c | FMNH:Amphibians and Reptiles:31182 * | X, Y = 0.078/Z = 0.174 | |
Candoia carinata | Ca.c | LSUMZ:herps:93576 * | 0.035 | ||
Eunectes murinus | Eu.m | UF:herp:84822 * | 0.074 | ||
Sanzinia madagascariensis | Sa.m | KU:kuh:183837 * | 0.055 | ||
Cylindrophiidae | Cylindrophis ruffus | Cy.r | UF:herp:143722 * | 0.040 | |
Uropeltidae | Rhinophis sanguineus | Rh.s | UF:herp:78397 * | 0.022 | |
Pythonidae | Morelia spilota | Mo.s | UMMZ:herps:227833 * | 0.054 | |
Python bivittatus | Py.b | UF:herp:167549 * | 0.086 | ||
Python molurus | Py.m | UF:herp:190353 * | 0.052 | ||
Acrochordidae | Acrochordus javanicus | Ac.j | KU:kuh:318186 * | 0.025 | |
Viperidae | Bitis arietans | Bi.a | UMMZ:herps:61258 * | 0.021 | |
Crotalus molossus | Cr.m | UMMZ:herps:143742 * | 0.017 | ||
Vipera aspis | Vi.a | UMMZ:herps:116957 * | 0.019 | ||
Homalopsidae | Cerberus rynchops | Ce.r | MNHN-RA-1998.8583 | 0.035 | |
Gerarda prevostiana | Ge.p | CAS:herp:204972 * | 0.015 | ||
Homalopsis buccata | Ho.b | ZRC 2.6411 | 0.024 | ||
Atractaspididae | Atractaspis bibronii | At.b | UMMZ:herps:209986 * | 0.012 | |
Elapidae | Aipysurus duboisii | Ai.d | MNHN-RA-1990.4519 | 0.041 | |
Bungarus fasciatus | Bu.f | UMMZ:herps:201916 * | 0.019 | ||
Emydocephalus annulatus | Em.a | UMMZ:herps:93851 * | 0.022 | ||
Hydrophis platurus | Hy.p | AH_MS 64 | 0.032 | ||
Hydrophis schistosus | Hy.s | ZRC 2.2043 | 0.021 | ||
Laticauda colubrina | La.c | UMMZ:herps:65950 * | 0.017 | ||
Naja nigricollis | Na.n | UMMZ:herps:203814 * | 0.025 | ||
Pseudechis porphyriacus | Ps.p | UMMZ:herps:170403 * | 0.026 | ||
Colubridae | Afronatrix anoscopus | Af.a | CAS:herp:230205 * | 0.015 | |
Drymarchon corais | Dr.c | UMMZ:herps:190326 * | 0.018 | ||
Lycodon striatus | Ly.s | UMMZ:herps:123427 * | 0.012 | ||
Tropidonophis picturatus | Tr.p | LSUMZ:herps:96093 * | 0.028 | ||
Iguania | Agamidae | Agama agama | Ag.a | UF:herp:180711 * | 0.02 |
Draco volans | Dr.v | UF:herp:48909 * | 0.018 | ||
Physignathus cocincinus | Ph.c | YPM:vz:ypm herr 014378 * | X, Y = 0.023/Z = 0.055 | ||
Chamaeleonidae | Chamaeleo calyptratus | Ch.c | UF:herp:191369 * | 0.041 | |
Iguanidae | Amblyrhynchus cristatus | Am.c | UF:herp:41558 * | 0.052 | |
Ctenosaura similis | Ct.s | UF:herp:181929 * | 0.061 | ||
Phrynosomatidae | Sceloporus undulatus | Sc.u | NCSM:herp:83600 * | 0.016 | |
Uta stansburiana | Ut.s | FMNH:Amphibians and Reptiles:213914 * | X, Y = 0.014/Z = 0.036 | ||
Dactyloidae | Anolis carolinensis | An.c | UF:herp:102367 * | 0.013 | |
Corytophanidae | Basiliscus basiliscus | Ba.b | FMNH:Amphibians and Reptiles:68188 * | 0.068 | |
Hoplocercidae | Enyalioides heterolepis | En.h | UF:herp:68015 * | 0.021 | |
Leiocephalidae | Leiocephalus carinatus | Le.c | UF:herp:185239 * | 0.029 | |
Tropiduridae | Stenocercus roseiventris | St.r | KU:kuh:214966 * | 0.09 | |
Mosasauria | Mosasauridae | Tethysaurus nopcsai | Te.n | MNHN GOU 1 | 0.0814 |
SMU 76335 | 0.0778 | ||||
SMU 75486 | 0.081 |
2.2. Landmarks and Statistical Analysis
3. Results
3.1. Brain Endocast of Tethysaurus nopcsai
3.2. Statistical Results and Morphospace Distribution
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bardet, N.; Falconnet, J.; Fischer, V.; Houssaye, A.; Jouve, S.; Pereda Suberbiola, X.; Pérez-Garcia, A.; Rage, J.-C.; Vincent, P. Mesozoic marine reptile palaeobiogeography in response to drifting plates. Gondwana Res. 2014, 26, 869–887. [Google Scholar] [CrossRef]
- Polcyn, M.J.; Jacobs, L.L.; Araújo, R.; Schulp, A.S.; Mateus, O. Physical drivers of mosasaur evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 400, 17–27. [Google Scholar] [CrossRef]
- Rothschild, B.M.; Martin, L.D. Mosasaur ascending: The phytogeny of bends. Neth. J. Geosci. 2005, 84, 341–344. [Google Scholar] [CrossRef]
- Houssaye, A.; Lindgren, J.; Pellegrini, R.; Lee, A.H.; Germain, D.; Polcyn, M.J. Microanatomical and histological features in the long bones of mosasaurine mosasaurs (Reptilia, Squamata)–implications for aquatic adaptation and growth rates. PLoS ONE 2013, 8, e76741. [Google Scholar] [CrossRef] [PubMed]
- Bell, G.L., Jr. A phylogenetic revision of North American and Adriatic Mosasauroidea. In Ancient Marine Reptiles; Callaway, J.M., Nicholls, E.L., Eds.; Academic Press: London, UK; New York, NY, USA; San Francisco, CA, USA, 1997; pp. 293–332. [Google Scholar]
- Lindgren, J.; Jagt, J.W.; Caldwell, M.W. A fishy mosasaur: The axial skeleton of Plotosaurus (Reptilia, Squamata) reassessed. Lethaia 2007, 40, 153–160. [Google Scholar] [CrossRef]
- Lindgren, J.; Caldwell, M.W.; Konishi, T.; Chiappe, L.M. Convergent evolution in aquatic tetrapods: Insights from an exceptional fossil mosasaur. PLoS ONE 2010, 5, e11998. [Google Scholar] [CrossRef] [PubMed]
- Schulp, A.S.; Vonhof, H.B.; Van der Lubbe, J.H.J.L.; Janssen, R.; Van Baal, R.R. On diving and diet: Resource partitioning in type-Maastrichtian mosasaurs∙. Neth. J. Geosci. 2013, 92, 165–170. [Google Scholar] [CrossRef]
- Bardet, N.; Houssaye, A.; Vincent, P.; Pereda Suberbiola, X.; Amaghzaz, M.; Jourani, E.; Meslouh, S. Mosasaurids (Squamata) from the Maastrichtian phosphates of Morocco: Biodiversity, palaeobiogeography and palaeoecology based on tooth morphoguilds. Gondwana Res. 2015, 27, 1068–1078. [Google Scholar] [CrossRef]
- Holwerda, F.M.; Bestwick, J.; Purnell, M.A.; Jagt, J.W.; Schulp, A.S. Three-dimensional dental microwear in type-Maastrichtian mosasaur teeth (Reptilia, Squamata). Sci. Rep. 2023, 13, 18720. [Google Scholar] [CrossRef]
- Longrich, N.R.; Polcyn, M.J.; Jalil, N.E.; Pereda-Suberbiola, X.; Bardet, N. A bizarre new plioplatecarpine mosasaurid from the Maastrichtian of Morocco. Cretac. Res. 2024, 160, 105870. [Google Scholar] [CrossRef]
- Kear, B.P.; Long, J.A.; Martin, J.E. A review of Australian mosasaur occurrences. Neth. J. Geosci. 2005, 84, 307–313. [Google Scholar] [CrossRef]
- Fernández, M.S.; Talevi, M. An halisaurine (Squamata: Mosasauridae) from the Late Cretaceous of Patagonia, with a preserved tympanic disc: Insights into the mosasaur middle ear. Comptes Rendus Palevol 2015, 14, 483–493. [Google Scholar] [CrossRef]
- Konishi, T.; Ohara, M.; Misaki, A.; Matsuoka, H.; Street, H.P.; Caldwell, M.W. A new derived mosasaurine (Squamata: Mosasaurinae) from south-western Japan reveals unexpected postcranial diversity among hydropedal mosasaurs. J. Syst. Palaeontol. 2023, 21, 2277921. [Google Scholar] [CrossRef]
- Lindgren, J.; Siverson, M. Tylosaurus ivoensis: A giant mosasaur from the early Campanian of Sweden. Trans. Roy. Soc. Edinb Earth Sci. 2002, 93, 73–93. [Google Scholar] [CrossRef]
- Martin, J.E. Biostratigraphy of the Mosasauridae (Reptilia) from the Cretaceous of Antarctica. Geol. Soc. 2006, 258, 101–108. [Google Scholar] [CrossRef]
- Fernández, M.S.; Gasparini, Z. Campanian and Maastrichtian mosasaurs from Antarctic Peninsula and Patagonia, Argentina. Bull Soc Géol Fr. 2012, 183, 93–102. [Google Scholar] [CrossRef]
- González Ruiz, P.; Fernández, M.S.; Talevi, M.; Leardi, J.M.; Reguero, M.A. A new Plotosaurini mosasaur skull from the upper Maastrichtian of Antarctica. Plotosaurini paleogeographic occurrences. Cretac. Res. 2019, 103, 104–166. [Google Scholar] [CrossRef]
- Polcyn, M.J.; Augusta, B.G.; Zaher, H. Reassessing the morphological foundations of the pythonomorph hypothesis. In The Origin and Early Evolutionary History of Snakes; Gower, D.J., Zaher, H., Eds.; Systematics Association Special Volume Series; Cambridge University Press: Cambridge, UK, 2022; Volume 90, pp. 125–156. [Google Scholar]
- Palci, A.; Caldwell, M.W.; Papazzoni, C.A. A new genus and subfamily of mosasaurs from the Upper Cretaceous of northern Italy. J. Vert. Paleontol. 2013, 33, 599–612. [Google Scholar] [CrossRef]
- Madzia, D.; Cau, A. Inferring ‘weak spots’ in phylogenetic trees: Application to mosasauroid nomenclature. PeerJ 2017, 5, e3782. [Google Scholar] [CrossRef]
- Simões, T.R.; Vernygora, O.; Paparella, I.; Jimenez-Huidobro, P.; Caldwell, M.W. Mosasauroid phylogeny under multiple phylogenetic methods provides new insights on the evolution of aquatic adaptations in the group. PLoS ONE 2017, 12, e0176773. [Google Scholar] [CrossRef]
- Polcyn, M.J.; Bardet, N.; Albright III, L.B.; Titus, A. A new lower Turonian mosasaurid from the Western Interior Seaway and the antiquity of the unique basicranial circulation pattern in Plioplatecarpinae. Cretac. Res. 2023, 151, 105621. [Google Scholar] [CrossRef]
- Cuthbertson, R.S.; Maddin, H.C.; Holmes, R.B.; Anderson, J.S. The braincase and endosseous labyrinth of Plioplatecarpus peckensis (Mosasauridae, Plioplatecarpinae), with functional implications for locomotor behavior. Anat. Rec. 2015, 298, 1597–1611. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Norell, M.A. The burrowing origin of modern snakes. Sci. Adv. 2015, 1, e1500743. [Google Scholar] [CrossRef]
- Yi, H.; Norell, M. The bony labyrinth of Platecarpus (Squamata: Mosasauria) and aquatic adaptations in squamate reptiles. Palaeoworld 2019, 28, 550–561. [Google Scholar] [CrossRef]
- Álvarez–Herrera, G.; Agnolin, F.; Novas, F. A rostral neurovascular system in the mosasaur Taniwhasaurus antarcticus. Sci. Nat. 2020, 107, 19. [Google Scholar] [CrossRef] [PubMed]
- Camp, C.L. California Mosasaurs. In Memoirs of the University of California; University of California Press: Berkeley, CA, USA; Los Angeles, CA, USA, 1942; Volume 13, p. 67. [Google Scholar]
- Allemand, R.; Boistel, R.; Daghfous, G.; Blanchet, Z.; Cornette, R.; Bardet, N.; Vincent, P.; Houssaye, A. Comparative morphology of snake (Squamata) endocasts: Evidence of phylogenetic and ecological signals. J. Anat. 2017, 231, 849–868. [Google Scholar] [CrossRef]
- Allemand, R.; López-Aguirre, C.; Abdul-Sater, J.; Khalid, W.; Lang, M.M.; Macrì, S.; Di-Poï, N.; Daghfous, G.; Silcox, M.T. A landmarking protocol for geometric morphometric analysis of squamate endocasts. Anat. Rec. 2023, 306, 2425–2442. [Google Scholar] [CrossRef]
- De Meester, G.; Huyghe, K.; Van Damme, R. Brain size, ecology and sociality: A reptilian perspective. Biol. J. Linn. Soc. 2019, 126, 381–391. [Google Scholar] [CrossRef]
- Macrì, S.; Savriama, Y.; Khan, I.; Di-Poï, N. Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization. Nat. Commun. 2019, 10, 5560. [Google Scholar] [CrossRef]
- Segall, M.; Cornette, R.; Rasmussen, A.R.; Raxworthy, C.J. Inside the head of snakes: Influence of size, phylogeny, and sensory ecology on endocranium morphology. Brain Struct. Funct. 2021, 226, 2401–2415. [Google Scholar] [CrossRef]
- Hopson, J.A. Paleoneurology. In Biology of the Reptilia; Gans, C., Northcutt, R.G., Ulinski, P., Eds.; Academic Press: London, UK; New York, NY, USA; San Francisco, CA, USA, 1979; Volume 9, pp. 39–146. [Google Scholar]
- Starck, D. Cranio-cerebral relations in recent reptiles. In Biology of the Reptilia; Gans, C., Northcutt, R.G., Ulinski, P., Eds.; Academic Press: London, UK; New York, NY, USA; San Francisco, CA, USA, 1979; Volume 9, pp. 1–38. [Google Scholar]
- ten Donkelaar, H.J. Reptiles. In The Central Nervous System of Vertebrates; Nieuwenhuys, R., ten Donkelaar, H.J., Nicholson, C., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 1315–1499. [Google Scholar]
- Kim, R.; Evans, D. Relationships among brain, endocranial cavity, and body sizes in reptiles. In Proceedings of the Society of Vertebrate Paleontology 74th Annual Meeting, Berlin, Germany, 5–8 November 2014. [Google Scholar]
- Triviño, L.N.; Albino, A.M.; Dozo, M.T.; Williams, J.D. First natural endocranial cast of a fossil snake (cretaceous of Patagonia, Argentina). Anat. Rec. 2018, 301, 9–20. [Google Scholar] [CrossRef]
- Perez-Martinez, C.A.; Leal, M. Lizards as models to explore the ecological and neuroanatomical correlates of miniaturization. Behaviour 2021, 158, 1121–1168. [Google Scholar] [CrossRef]
- Allemand, R.; Abdul-Sater, J.; Macrì, S.; Di-Poï, N.; Daghfous, G.; Silcox, M.T. Endocast, brain, and bones: Correspondences and spatial relationships in squamates. Anat. Rec. 2023, 306, 2443–2465. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, J.A.; Kearney, M.; Maisano, J.A.; Rieppel, O.; Behlke, A.D. Assembling the squamate tree of life: Perspectives from the phenotype and the fossil record. Bull. Peabody Mus. Nat. Hist. 2012, 53, 3–308. [Google Scholar] [CrossRef]
- Reeder, T.W.; Townsend, T.M.; Mulcahy, D.G.; Noonan, B.P.; Wood, P.L., Jr.; Sites, J.W., Jr.; Wiens, J.J. Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS ONE 2015, 10, e0118199. [Google Scholar] [CrossRef] [PubMed]
- Simões, T.R.; Caldwell, M.W.; Tałanda, M.; Bernardi, M.; Palci, A.; Vernygora, O.; Bernardini, F.; Mancini, L.; Nydam, R.L. The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature 2018, 557, 706–709. [Google Scholar] [CrossRef]
- Simões, T.R.; Pyron, R.A. The squamate tree of life. Bull. Mus. Comp. Zool. 2021, 163, 47–95. [Google Scholar] [CrossRef]
- Augusta, B.G.; Zaher, H.; Polcyn, M.J.; Fiorillo, A.R.; Jacobs, L.L. A review of non-mosasaurid (dolichosaur and aigialosaur) mosasaurians and their relationships to snakes. In The Origin and Early Evolutionary History of Snakes; Gower, D.J., Zaher, H., Eds.; Systematics Association Special Volume Series; Cambridge University Press: Cambridge, UK, 2022; Volume 90, pp. 157–179. [Google Scholar]
- Zaher, H.; Augusta, B.G.; Rabinovich, R.; Polcyn, M.; Tafforeau, P. A review of the skull anatomy and phylogenetic affinities of marine pachyophiid snakes. In The Origin and Early Evolutionary History of Snakes; Gower, D.J., Zaher, H., Eds.; Systematics Association Special Volume Series; Cambridge University Press: Cambridge, UK, 2022; Volume 90, pp. 180–206. [Google Scholar]
- Zaher, H.; Mohabey, D.M.; Grazziotin, F.G.; Wilson Mantilla, J.A. The skull of Sanajeh indicus, a Cretaceous snake with an upper temporal bar, and the origin of ophidian wide-gaped feeding. Zool. J. Linn. Soc. 2023, 197, 656–697. [Google Scholar] [CrossRef]
- Bardet, N.; Pereda Suberbiola, X.; Jalil, N.E. A new mosasauroid (Squamata) from the Late Cretaceous (Turonian) of Morocco. Comptes Rendus Palevol 2003, 2, 607–616. [Google Scholar] [CrossRef]
- Boyer, D.M.; Gunnell, G.F.; Kaufman, S.; McGeary, T.M. Morphosource: Archiving and sharing 3-D digital specimen data. Pal Soc. Pap. 2016, 22, 157–181. [Google Scholar] [CrossRef]
- Pyron, R.A.; Burbrink, F.T.; Wiens, J.J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol 2013, 13, 93. [Google Scholar] [CrossRef]
- Zheng, Y.; Wiens, J.J. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol Phylogenet Evol 2016, 94, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.; Colston, T.J.; Grundler, M.R.; Smith, S.A.; Costa, G.C.; Colli, G.R.; Moritz, C.; Pyron, R.A.; Rabosky, D.L. Congruence and conflict in the higherlevel phylogenetics of squamate reptiles: An expanded phylogenomic perspective. Syst. Biol. 2021, 70, 542–557. [Google Scholar] [CrossRef] [PubMed]
- Baken, E.K.; Collyer, M.L.; Kaliontzopoulou, A.; Adams, D.C. Geomorph v4.0 and gmShiny: Enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol. Evol. 2021, 2, 2355–2363. [Google Scholar] [CrossRef]
- Adams, D.C. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst. Biol. 2014, 63, 685–697. [Google Scholar] [CrossRef]
- Adams, D.C.; Collyer, M.L. Multivariate comparative methods: Evaluations, comparisons, and recommendations. Syst. Biol. 2018, 67, 14–31. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Statistics and Computing Springer: New York, NY, USA, 2002; p. 498. [Google Scholar]
- Watanabe, A.; Gignac, P.M.; Balanoff, A.M.; Green, T.L.; Kley, N.J.; Norell, M.A. Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny? J. Anat. 2019, 234, 291–305. [Google Scholar] [CrossRef]
- Russell, D.A. Systematics and morphology of American mosasaurs (Reptilia, Sauria). Bull. Peabody Mus. Nat. Hist. 1967, 23, 241. [Google Scholar]
- Smith, K.T.; Bhullar, B.A.S.; Köhler, G.; Habersetzer, J. The only known jawed vertebrate with four eyes and the bauplan of the pineal complex. Curr. Biol. 2018, 28, 1101–1107. [Google Scholar] [CrossRef]
- Jirak, D.; Janacek, J. Volume of the crocodilian brain and endocast during ontogeny. PLoS ONE 2017, 12, e0178491. [Google Scholar] [CrossRef]
- Hu, K.; King, J.L.; Romick, C.A.; Dufeau, D.L.; Witmer, L.M.; Stubbs, T.L.; Rayfield, E.J.; Benton, M.J. Ontogenetic endocranial shape change in alligators and ostriches and implications for the development of the non-avian dinosaur endocranium. Anat. Rec. 2021, 304, 1759–1775. [Google Scholar] [CrossRef] [PubMed]
- Roese-Miron, L.; Jones, M.E.H.; Ferreira, J.D.; Hsiou, A.S. Virtual endocasts of Clevosaurus brasiliensis and the tuatara: Rhynchocephalian neuroanatomy and the oldest endocranial record for Lepidosauria. Anat. Rec. 2023, 307, 1366–1389. [Google Scholar] [CrossRef]
- Giffin, E.B. Pachycephalosaur paleoneurology (Archosauria: Ornithischia). J. Vertebr. Paleontol. 1989, 9, 67–77. [Google Scholar] [CrossRef]
- Lautenschlager, S.; Hübner, T. Ontogenetic trajectories in the ornithischian endocranium. J. Evol. Biol. 2013, 26, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, M.; Koch, N.M.; Pritchard, A.C.; Hanson, M.; Hoffman, E.; Bever, G.S.; Balanoff, A.M.; Morris, Z.S.; Field, D.J.; Camacho, J.; et al. The skull roof tracks the brain during the evolution and development of reptiles including birds. Nat. Ecol. Evol. 2017, 1, 1543–1550. [Google Scholar] [CrossRef]
- Sheldon, A. Ontogeny, Ecology and Evolution of North American Mosasaurids (Clidastes, Platecarpus and Tylosaurus): Evidence from Bone Microstructure. Ph.D. Dissertation, University of Rochester, New York, NY, USA, 1995. [Google Scholar]
- Houssaye, A.; Bardet, N. A baby mosasauroid (Reptilia, Squamata) from the Turonian of Morocco—Tethysaurus ‘junior’ discovered? Cretac. Res. 2013, 46, 208–215. [Google Scholar] [CrossRef]
- Zietlow, A.R. Craniofacial ontogeny in Tylosaurinae. PeerJ 2020, 8, e10145. [Google Scholar] [CrossRef] [PubMed]
- Bardet, N.; Pereda Suberbiola, X.; Iarochene, M.; Bouya, B.; Amaghzaz, M. A new species of Halisaurus from the Late Cretaceous phosphates of Morocco, and the phylogenetical relationships of the Halisaurinae (Squamata: Mosasauridae). Zool. J. Linn. Soc. 2005, 143, 447–472. [Google Scholar] [CrossRef]
- Polcyn, M.J.; Bell, G.L., Jr. Russellosaurus coheni n. gen., n. sp., a 92 million-year-old mosasaur from Texas (U.S.A.), and the definition of the parafamily Russellosaurina. Neth. J. Geosci. 2005, 84, 321–333. [Google Scholar] [CrossRef]
- Páramo-Fonseca, M.E. Eonatator coellensis nov. sp. (Squamata: Mosasauridae), a new species from the Upper Cretaceous of Colombia. Revista Acad. Colomb. Ci Exact. 2013, 37, 499–518. [Google Scholar]
- Konishi, T.; Caldwell, M.W.; Nishimura, T.; Sakurai, K.; Tanoue, K. A new halisaurine mosasaur (Squamata: Halisaurinae) from Japan: The first record in the western Pacific realm and the first documented insights into binocular vision in mosasaurs. J. Syst. Palaeontol. 2015, 14, 809–839. [Google Scholar] [CrossRef]
- Connolly, A. Exploring the Relationship between Paleobiogeography, Deep-Diving Behavior, and Size Variation of the Parietal Eye in Mosasaurs. Master’s Thesis, University of Kansas, Lawrence, KS, USA, 2016. [Google Scholar]
- Jiménez-Huidobro, P.; Caldwell, M.W. Reassessment and reassignment of the early Maastrichtian mosasaur Hainosaurus bernardi Dollo, 1885, to Tylosaurus Marsh, 1872. J Vertebr Paleontol 2016, 36, e1096275. [Google Scholar] [CrossRef]
- Holloway, W.L.; Claeson, K.M.; O’keefe, F.R. A virtual phytosaur endocast and its implications for sensory system evolution in archosaurs. J. Vert. Paleontol. 2013, 33, 848–857. [Google Scholar] [CrossRef]
- Holmes, R.B. Evaluation of the photosensory characteristics of the lateral and pineal eyes of Plioplatecarpus (Squamata, Mosasauridae) based on an exceptionally preserved specimen from the Bearpaw Shale (Campanian, Upper Cretaceous) of southern Alberta. J. Vertebr. Paleontol. 2023, 43, e2335174. [Google Scholar] [CrossRef]
- Ralph, C.L.; Firth, B.T.; Turner, J.S. The role of the pineal body in ectotherm thermoregulation. Am. Zool. 1979, 19, 273–293. [Google Scholar] [CrossRef]
- Labra, A.; Voje, K.L.; Seligmann, H.; Hansen, T.F. Evolution of the third eye: A phylogenetic comparative study of parietal-eye size as an ecophysiological adaptation in Liolaemus lizards. Biol. J. Linn. Soc. 2010, 101, 870–883. [Google Scholar] [CrossRef]
- Pyron, R.A. Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Syst. Biol. 2017, 66, 38–56. [Google Scholar] [CrossRef]
- Caldwell, M.W.; Simões, T.R.; Palci, A.; Garberoglio, F.F.; Reisz, R.R.; Lee, M.S.; Nydam, R.L. Tetrapodophis amplectus is not a snake: Re-assessment of the osteology, phylogeny and functional morphology of an Early Cretaceous dolichosaurid lizard. J. Syst. Palaeontol. 2021, 19, 893–952. [Google Scholar] [CrossRef]
Models | Df | SS | MS | Rsq | F | Z | p |
---|---|---|---|---|---|---|---|
Procrustes allometric regression | |||||||
log(GPA$Csize) | 1 | 0.21119 | 0.211185 | 0.13804 | 12.011 | 4.972 | 0.0001 |
Procrustes ANOVA | |||||||
Clades | 2 | 0.35638 | 0.178188 | 0.27024 | 13.702 | 6.3235 | 0.0001 |
d | UCL (95%) | Z | Pr > d | |
---|---|---|---|---|
Anguimorphs:Iguanians | 0.1027768 | 0.06384204 | 3.395855 | 0.0002 |
Anguimorphs:Snakes | 0.1032785 | 0.04825282 | 4.346074 | 0.0001 |
Iguanians:Snakes | 0.1666223 | 0.06216106 | 5.140798 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allemand, R.; Polcyn, M.J.; Houssaye, A.; Vincent, P.; López-Aguirre, C.; Bardet, N. First Virtual Reconstruction of a Mosasaurid Brain Endocast: Description and Comparison of the Endocast of Tethysaurus nopcsai with Those of Extant Squamates. Diversity 2024, 16, 548. https://doi.org/10.3390/d16090548
Allemand R, Polcyn MJ, Houssaye A, Vincent P, López-Aguirre C, Bardet N. First Virtual Reconstruction of a Mosasaurid Brain Endocast: Description and Comparison of the Endocast of Tethysaurus nopcsai with Those of Extant Squamates. Diversity. 2024; 16(9):548. https://doi.org/10.3390/d16090548
Chicago/Turabian StyleAllemand, Rémi, Michael J. Polcyn, Alexandra Houssaye, Peggy Vincent, Camilo López-Aguirre, and Nathalie Bardet. 2024. "First Virtual Reconstruction of a Mosasaurid Brain Endocast: Description and Comparison of the Endocast of Tethysaurus nopcsai with Those of Extant Squamates" Diversity 16, no. 9: 548. https://doi.org/10.3390/d16090548