Bacterial Community Structure and Patterns of Diversity in the Sediments of Mountain Rock Basins from a National Park
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. DNA Extraction, Sequencing and Bioinformatics
2.3. Statistical Analysis
2.3.1. Global Community Structure: OTU Richness and Abundance
2.3.2. Diversity Analysis
2.3.3. Multivariate Analysis
3. Results
3.1. Global Community Structure: OTU Richness and Abundance
3.2. Taxonomical Description
3.3. Diversity Analysis
3.4. Chemical Analysis
3.5. Multivariate Analysis
Indicator Species Analysis
4. Discussion
4.1. Community Analysis and Bacterial Taxonomy
4.2. Indicator Species
4.3. Bacterial Turnover and Drivers of Beta Diversity
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Twidale, C.R. Granite Landforms; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1982; p. 359. ISBN 0444597646. [Google Scholar]
- Jocque, M.; Vanschoenwinkel, B.; Brendonck, L. Freshwater Rock Pools: A Review of Habitat Characteristics, Faunal Diversity and Conservation Value. Freshw. Biol. 2010, 55, 1587–1602. [Google Scholar] [CrossRef]
- Sel, A.; Binal, A. Does Bacterial Weathering Play a Significant Role in Rock Weathering? Environ. Earth Sci. 2021, 80, 778. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, C.; He, L.; Huang, Z.; Sheng, X. Characterization of Depth-Related Changes in Bacterial Communities Involved in Mineral Weathering along a Mineral-Rich Soil Profile. Geomicrobiol. J. 2014, 31, 431–444. [Google Scholar] [CrossRef]
- Baonza Díaz, J. Vegetación de Las Pilas o Pilancones de La Sierra de Guadarrama y La Serena (España). An. Jard. Bot. Madrid 2009, 66, 109–129. [Google Scholar] [CrossRef]
- Chan, M.A.; Moser, K.; Davis, J.M.; Southam, G.; Hughes, K.; Graham, T. Desert Potholes: Ephemeral Aquatic Microsystems. Aquat. Geochem. 2005, 11, 279–302. [Google Scholar] [CrossRef]
- Timms, B.V. Community Ecology of Aquatic Invertebrates in Gnammas (Rock-Holes) of North-Western Eyre Peninsula, South Australia. Trans. R. Soc. South Aust. 2014, 138, 147–160. [Google Scholar] [CrossRef]
- Troell, S.; Jönsson, K.I. Occurrence of Tardigrades and Morphometric and Chemical Conditions in Rock Pools by the Baltic Sea. Sci. Rep. 2023, 13, 19776. [Google Scholar] [CrossRef]
- Williams, W.D. Biotic Adaptations in Temporary Lentic Waters, with Special Reference to Those in Semi-Arid and Arid Regions. Hydrobiologia 1985, 125, 85–110. [Google Scholar] [CrossRef]
- Jocque, M.; Martens, K.; Riddoch, B.; Brendonck, L. Faunistics of Ephemeral Rock Pools in Southeastern Botswana. Arch. Hydrobiol. 2006, 165, 415–431. [Google Scholar] [CrossRef]
- Heilmeier, H.; Durka, W.; Woitke, M.; Hartung, W. Ephemeral Pools as Stressful and Isolated Habitats for the Endemic Aquatic Resurrection Plant Chamaegigas Intrepidus. Phytocoenologia 2005, 35, 449–468. [Google Scholar] [CrossRef]
- Brendonck, L.; Jocque, M.; Hulsmans, A.; Vanschoenwinkel, B. Pools “on the Rocks”: Freshwater Rock Pools as Model System in Ecological and Evolutionary Research. Limnetica 2010, 29, 25–40. [Google Scholar] [CrossRef]
- Srivastava, D.S.; Kolasa, J.; Bengtsson, J.; Gonzalez, A.; Lawler, S.P.; Miller, T.E.; Munguia, P.; Romanuk, T.; Schneider, D.C.; Trzcinski, M.K. Are Natural Microcosms Useful Model Systems for Ecology? Trends Ecol. Evol. 2004, 19, 379–384. [Google Scholar] [CrossRef] [PubMed]
- De Meester, L.; Declerck, S.; Stoks, R.; Louette, G.; Van De Meutter, F.; De Bie, T.; Michels, E.; Brendonck, L. Ponds and Pools as Model Systems in Conservation Biology, Ecology and Evolutionary Biology. Aquat. Conserv. Mar. Freshw. Ecosyst. 2005, 15, 715–725. [Google Scholar] [CrossRef]
- Soininen, J.; Meier, S. Phytoplankton Richness Is Related to Nutrient Availability, Not to Pool Size, in a Subarctic Rock Pool System. Hydrobiologia 2014, 740, 137–145. [Google Scholar] [CrossRef]
- Usman Gabi, A.; Matias Peralta, H.M. Plankton Diversity, Physico-Chemical Parameters and Conservation Value of Temporary Freshwater Rock Pools. Int. J. Res. Rev. 2015, 2, 562–573. [Google Scholar]
- Pajunen, V.I.; Pajunen, I. Habitat Characteristics Contributing to Local Occupancy and Habitat Use in Rock Pool Daphnia Metapopulations. Hydrobiologia 2007, 592, 291–302. [Google Scholar] [CrossRef]
- Rosenfeld, S.; Blaustein, L.; Kneitel, J.; Duchet, C.; Horwitz, R.; Rybak, O.; Polevikov, A.; Rahav, E. The Abundance and Larval Performance of Aedes phoeniciae in Supralittoral Rock-Pools. Hydrobiologia 2019, 846, 181–192. [Google Scholar] [CrossRef]
- Brendonck, L.; Lanfranco, S.; Timms, B.; Vanschoenwinkel, B. Invertebrates in Rock Pools BT—Invertebrates in Freshwater Wetlands: An International Perspective on Their Ecology; Batzer, D., Boix, D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 25–53. ISBN 978-3-319-24978-0. [Google Scholar]
- Timms, B.V. A Study on the Pools of a Granitic Mountain Top at Moonbi, New South Wales. Proc. Linn. Soc. New South Wales 2016, 138, 61–68. [Google Scholar]
- Cross, A.T.; Turner, S.R.; Merritt, D.J.; Van Niekerk, A.; Renton, M.; Dixon, K.W.; Mucina, L. Vegetation Patterns and Hydro-Geological Drivers of Freshwater Rock Pool Communities in the Monsoon-Tropical Kimberley Region, Western Australia. J. Veg. Sci. 2015, 26, 1184–1197. [Google Scholar] [CrossRef]
- Anusa, A.; Ndagurwa, H.G.T.; Magadza, C.H.D. The Influence of Pool Size on Species Diversity and Water Chemistry in Temporary Rock Pools on Domboshawa Mountain, Northern Zimbabwe. African J. Aquat. Sci. 2012, 37, 89–99. [Google Scholar] [CrossRef]
- Meier, S.; Soininen, J. Phytoplankton Metacommunity Structure in Subarctic Rock Pools. Aquat. Microb. Ecol. 2014, 73, 81–91. [Google Scholar] [CrossRef]
- Bengtsson, J.; Ebert, D. Distributions and Impacts of Microparasites on Daphnia in a Rockpool Metapopulation. Oecologia 1998, 115, 213–221. [Google Scholar] [CrossRef]
- Allison, S.D. Microbial Drought Resistance May Destabilize Soil Carbon. Trends Microbiol. 2023, 31, 780–787. [Google Scholar] [CrossRef]
- Pérez-Uz, B.; Velasco-González, I.; Murciano, A.; Sanchez-Jimenez, A.; García-Rodríguez, M.; Centeno, J.D.; Montero, E.; Muñoz, B.; Olmedo, C.; Quintela-Alonso, P.; et al. Rain-Fed Granite Rock Pools in a National Park: Extreme Niches for Protists. Limnetica 2021, 40, 1–18. [Google Scholar] [CrossRef]
- Velasco-González, I.; Lara, E.; Singer, D.; de Cos-Gandoy, A.; García-Rodríguez, M.; Murciano, A.; Pérez-Uz, B.; Williams, R.; Sanchez-Jimenez, A.; Martín-Cereceda, M. Diversity of DNA Sequences from Pathogenic and Potentially Pathogenic Eukaryotic Microorganisms in Protected Granite Mountain Rocks. Diversity 2023, 15, 594. [Google Scholar] [CrossRef]
- Velasco-González, I.; Sanchez-Jimenez, A.; Singer, D.; Murciano, A.; Díez-Hermano, S.; Lara, E.; Martín-Cereceda, M. Rain-Fed Granite Rock Basins Accumulate a High Diversity of Dormant Microbial Eukaryotes. Microb. Ecol. 2020, 79, 882–897. [Google Scholar] [CrossRef] [PubMed]
- Langenheder, S.; Ragnarsson, H. The Role of Environmental and Spatial Factors for the Composition of Aquatic Bacterial Communities. Ecology 2007, 88, 2154–2161. [Google Scholar] [CrossRef]
- Madsen, M. Patterns of Microbial Diversity and Community Composition in Slot Canyons, Rock Pools, and Other Ephemeral and Perennial Aquatic Habitats. Ph.D. Thesis, Utah State University, Logan, UT, USA, 2020. [Google Scholar]
- Horner-Devine, M.C.; Carney, K.M.; Bohannan, B.J.M. An Ecological Perspective on Bacterial Biodiversity. Proc. R. Soc. B Biol. Sci. 2004, 271, 113–122. [Google Scholar] [CrossRef]
- Hayer, M.; Wymore, A.S.; Hungate, B.A.; Schwartz, E.; Koch, B.J.; Marks, J.C. Microbes on Decomposing Litter in Streams: Entering on the Leaf or Colonizing in the Water? ISME J. 2022, 16, 717–725. [Google Scholar] [CrossRef]
- Hayatsu, M.; Katsuyama, C.; Tago, K. Overview of Recent Researches on Nitrifying Microorganisms in Soil. Soil Sci. Plant Nutr. 2021, 67, 619–632. [Google Scholar] [CrossRef]
- Song, W.; Ogawa, N.; Oguchi, C.T.; Hatta, T.; Matsukura, Y. Effect of Bacillus subtilis on Granite Weathering: A Laboratory Experiment. Catena 2007, 70, 275–281. [Google Scholar] [CrossRef]
- Olsson-Francis, K.; Pearson, V.K.; Schofield, P.F.; Oliver, A.; Summers, S. A Study of the Microbial Community at the Interface between Granite Bedrock and Soil Using a Culture-Independent and Culture-Dependent Approach. Adv. Microbiol. 2016, 06, 233–245. [Google Scholar] [CrossRef]
- Kumar, A.; Ng, D.H.P.; Wu, Y.; Cao, B. Microbial Community Composition and Putative Biogeochemical Functions in the Sediment and Water of Tropical Granite Quarry Lakes. Microb. Ecol. 2019, 77, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Ogawa, N.; Oguchi, C.T.; Hatta, T.; Matsukura, Y. Expérimentation En Laboratoire de La Météorisation Du Granite et de Ses Minéraux Constituants. Geomorphol. Reli. Process. Environ. 2010, 327–336. [Google Scholar] [CrossRef]
- Ortega-Calvo, J.J.; Ariño, X.; Hernandez-Marine, M.; Saiz-Jimenez, C. Factors Affecting the Weathering and Colonization of Monuments by Phototrophic Microorganisms. Sci. Total Environ. 1995, 167, 329–341. [Google Scholar] [CrossRef]
- Bennett, P.C.; Rogers, J.R.; Choi, W.J.; Hiebert, F.K. Silicates, Silicate Weathering, and Microbial Ecology. Geomicrobiol. J. 2001, 18, 3–19. [Google Scholar] [CrossRef]
- Székely, A.J.; Langenheder, S. The Importance of Species Sorting Differs between Habitat Generalists and Specialists in Bacterial Communities. FEMS Microbiol. Ecol. 2014, 87, 102–112. [Google Scholar] [CrossRef]
- Domínguez Villar, D. Análisis Morfométrico de Pilancones: Consideraciones Genéticas, Evolutivas y Paleoambientales; UCM: Madrid, Spain, 2007. [Google Scholar]
- Edgar, R.C. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Chen, H.; Boutros, P.C. VennDiagram: A Package for the Generation of Highly-Customizable Venn and Euler Diagrams in R. BMC Bioinform. 2011, 12, 35. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.; Szoecs, E.; et al. Vegan: Community Ecology Package; R Package Version 2.6-4; R Foundation of the Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Hsieh, T.C.; Ma, K.H.; Chao, A. NEXT: INterpolation and EXTrapolation for Species Diversity; R Package Version 3.0.1; R Foundation of the Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- De Cáceres, M.; Legendre, P. Associations between Species and Groups of Sites: Indices and Statistical Inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef]
- R Core. Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2024; Available online: http://www.rstudio.com/ (accessed on 7 August 2024).
- Filippidou, S.; Price, A.; Spencer-Jones, C.; Scales, A.; Macey, M.C.; Franchi, F.; Lebogang, L.; Cavalazzi, B.; Schwenzer, S.P.; Olsson-Francis, K. Diversity of Microbial Mats in the Makgadikgadi Salt Pans, Botswana. Microorganisms 2024, 12, 147. [Google Scholar] [CrossRef] [PubMed]
- Santini, T.C.; Gramenz, L.; Southam, G.; Zammit, C. Microbial Community Structure Is Most Strongly Associated with Geographical Distance and PH in Salt Lake Sediments. Front. Microbiol. 2022, 13, 56. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.A. Bacterial Communities and Their Influence on the Formation and Development of Potholes in Sandstone Surfaces of the Semi-Arid Colorado Plateau. Electron. Thesis Diss. Repos. 2012, 543, 215. Available online: https://ir.lib.uwo.ca/etd/543 (accessed on 7 August 2024).
- Savaglia, V.; Lambrechts, S.; Tytgat, B.; Vanhellemont, Q.; Elster, J.; Willems, A.; Wilmotte, A.; Verleyen, E.; Vyverman, W. Geology Defines Microbiome Structure and Composition in Nunataks and Valleys of the Sør Rondane Mountains, East Antarctica. Front. Microbiol. 2024, 15, 6633. [Google Scholar] [CrossRef]
- Soina, V.S.; Mulyukin, A.L.; Demkina, E.V.; Vorobyova, E.A.; El-Registan, G.I. The Structure of Resting Bacterial Populations in Soil and Subsoil Permafrost. Astrobiology 2004, 4, 345–358. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-H.; Gao, L.; Jiang, H.-C.; Fang, B.-Z.; Huang, Y.; Li, L.; Li, S.; Abdugheni, R.; Lian, W.-H.; Zhang, J.-Y.; et al. Response of Microbial Diversity and Function to the Degradation of Barkol Saline Lake. Front. Microbiol. 2024, 15, 1358222. [Google Scholar] [CrossRef]
- Uroz, S.; Picard, L.; Turpault, M.-P. Recent Progress in Understanding the Ecology and Molecular Genetics of Soil Mineral Weathering Bacteria. Trends Microbiol. 2022, 30, 882–897. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Cui, X.; Xue, K.; Zhang, Y.; Yu, Z. Habitat Filtering Shapes the Differential Structure of Microbial Communities in the Xilingol Grassland. Sci. Rep. 2019, 9, 19326. [Google Scholar] [CrossRef]
- Panda, A.K.; Bisht, S.S.; DeMondal, S.; Senthil Kumar, N.; Gurusubramanian, G.; Panigrahi, A.K. Brevibacillus as a Biological Tool: A Short Review. Antonie Van Leeuwenhoek 2014, 105, 623–639. [Google Scholar] [CrossRef]
- Bigurra-Quintero, U.; Mendoza-Villarreal, R.; Robledo-Torres, V.; Paredes-Jácome, J.R. Cinética de Crecimiento in Vitro de Brevibacillus Brevisen Diferentes Medios de Cultivo Kinetics of in Vitro Growth of Brevibacillus Brevisin Different Culture Media. Ecosistemas Recur. Agropecu. 2020, 7, 2310. [Google Scholar] [CrossRef]
- Steenhoudt, O.; Vanderleyden, J. Azospirillum, a Free-Living Nitrogen-Fixing Bacterium Closely Associated with Grasses: Genetic, Biochemical and Ecological Aspects. FEMS Microbiol. Rev. 2000, 24, 487–506. [Google Scholar] [CrossRef] [PubMed]
- Jara-Servin, A.; Mejia, G.; Romero, M.F.; Peimbert, M.; Alcaraz, L.D. Unraveling the Genomic and Environmental Diversity of the Ubiquitous Solirubrobacter. bioRxiv 2023, 44. [Google Scholar] [CrossRef]
- Miralles, I.; Ortega, R.; del Carmen Montero-Calasanz, M. Functional and Biotechnological Potential of Microbiome Associated with Soils Colonised by Cyanobacteria in Drylands. Appl. Soil Ecol. 2023, 192, 105076. [Google Scholar] [CrossRef]
- Kaur, C.; Selvakumar, G.; Ganeshamurthy, A.N. Exploring the Utility of Aneurinibacillus as a Bioinoculant for Sustainable Crop Production and Environmental Applications BT—Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol; Islam, M.T., Rahman, M.M., Pandey, P., Boehme, M.H., Haesaert, G., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 2, pp. 135–141. ISBN 978-3-030-15175-1. [Google Scholar]
- Song, D.; Chen, X.; Xu, M. Characteristics and Functional Analysis of the Secondary Chromosome and Plasmids in Sphingomonad. Int. Biodeterior. Biodegrad. 2022, 171, 105402. [Google Scholar] [CrossRef]
- Eberspächer, J.; Lingens, F. The Genus Phenylobacterium BT—The Prokaryotes: Proteobacteria: Alpha and Beta Subclasses; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; Volume 5, pp. 250–256. ISBN 978-0-387-30745-9. [Google Scholar]
- Brescia, F.; Pertot, I.; Puopolo, G. Beneficial Microbes in Agro-Ecology: Bacteria and Fungi; Amaresan, N., Kumar, M.S., Annapurna, K., Kumar, K., Sankaranarayanan, A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 313–338. ISBN 0128235586. [Google Scholar]
- da Rosa, D.F.; Macedo, A.J. The Genus Anoxybacillus: An Emerging and Versatile Source of Valuable Biotechnological Products. Extremophiles 2023, 27, 22. [Google Scholar] [CrossRef]
- van Bruggen, A.H.C.; Francis, I.M.; Jochimsen, K.N. Non-Pathogenic Rhizosphere Bacteria Belonging to the Genera Rhizorhapis and Sphingobium Provide Specific Control of Lettuce Corky Root Disease Caused by Species of the Same Bacterial Genera. Plant Pathol. 2014, 63, 1384–1394. [Google Scholar] [CrossRef]
- Rosenberg, E. The Family Chitinophagaceae BT—The Prokaryotes: Other Major Lineages of Bacteria and The Archaea; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 493–495. ISBN 978-3-642-38954-2. [Google Scholar]
- Touzel, J.P.; O’Donohue, M.; Debeire, P.; Samain, E.; Breton, C. Thermobacillus Xylanilyticus Gen. Nov., Sp. Nov., a New Aerobic Thermophilic Xylan-Degrading Bacterium Isolated from Farm Soil. Int. J. Syst. Evol. Microbiol. 2000, 50 Pt 1, 315–320. [Google Scholar] [CrossRef]
- Bondoso, J.; Albuquerque, L.; Nobre, M.F.; Lobo-da-Cunha, A.; da Costa, M.S.; Lage, O.M. Aquisphaera Giovannonii Gen. Nov., Sp. Nov., a Planctomycete Isolated from a Freshwater Aquarium. Int. J. Syst. Evol. Microbiol. 2011, 61, 2844–2850. [Google Scholar] [CrossRef]
- Kumar, G.; Lhingjakim, K.L.; Uppada, J.; Ahamad, S.; Kumar, D.; Kashif, G.M.; Sasikala, C.; Ramana, C.V. Aquisphaera insulae sp. nov., a New Member in the Family Isosphaeraceae, Isolated from the Floating Island of Loktak Lake and Emended Description of the Genus Aquisphaera. Antonie Van Leeuwenhoek 2021, 114, 1465–1477. [Google Scholar] [CrossRef]
- Moura, J.B.; Delforno, T.P.; Do Prado, P.F.; Duarte, I.C. Extremophilic Taxa Predominate in a Microbial Community of Photovoltaic Panels in a Tropical Region. FEMS Microbiol. Lett. 2021, 368, fnab105. [Google Scholar] [CrossRef]
- Falagán, C.; Johnson, D.B. Acidibacter ferrireducens Gen. Nov., Sp. Nov.: An Acidophilic Ferric Iron-Reducing Gammaproteobacterium. Extremophiles 2014, 18, 1067–1073. [Google Scholar] [CrossRef]
- Grady, E.N.; MacDonald, J.; Liu, L.; Richman, A.; Yuan, Z.-C. Current Knowledge and Perspectives of Paenibacillus: A Review. Microb. Cell Fact. 2016, 15, 203. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhang, Y.; He, D.; Gu, J.D.; Guo, Q.; Liu, X.; Duan, Y.; Zhao, J.; Wang, W.; Feng, H. Community Structures of Bacteria and Archaea Associated with the Biodeterioration of Sandstone Sculptures at the Beishiku Temple. Int. Biodeterior. Biodegrad. 2021, 164, 105290. [Google Scholar] [CrossRef]
- Carlton, J.D.; Langwig, M.V.; Gong, X.; Aguilar-Pine, E.J.; Vázquez-Rosas-Landa, M.; Seitz, K.W.; Baker, B.J.; De Anda, V. Expansion of Armatimonadota through Marine Sediment Sequencing Describes Two Classes with Unique Ecological Roles. ISME Commun. 2023, 3, 64. [Google Scholar] [CrossRef] [PubMed]
- Aghnatios, R.; Drancourt, M. Gemmata Species: Planctomycetes of Medical Interest. Future Microbiol. 2016, 11, 659–667. [Google Scholar] [CrossRef]
- Foesel, B.U.; Mayer, S.; Luckner, M.; Wanner, G.; Rohde, M.; Overmann, J. Occallatibacter riparius gen. nov., sp. nov. and Occallatibacter savannae sp. nov., Acidobacteria Isolated from Namibian Soils, and Emended Description of the Family Acidobacteriaceae. Int. J. Syst. Evol. Microbiol. 2016, 66, 219–229. [Google Scholar] [CrossRef]
- Truu, M.; Nõlvak, H.; Ostonen, I.; Oopkaup, K.; Maddison, M.; Ligi, T.; Espenberg, M.; Uri, V.; Mander, Ü.; Truu, J. Soil Bacterial and Archaeal Communities and Their Potential to Perform N-Cycling Processes in Soils of Boreal Forests Growing on Well-Drained Peat. Front. Microbiol. 2020, 11, 591358. [Google Scholar] [CrossRef]
- Lindström, E.S.; Langenheder, S. Local and Regional Factors Influencing Bacterial Community Assembly. Environ. Microbiol. Rep. 2012, 4, 1–9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Cos-Gandoy, A.; Serrano-Bellón, A.; Macías-Daza, M.; Pérez-Uz, B.; Williams, R.A.J.; Sanchez-Jimenez, A.; Martín-Cereceda, M. Bacterial Community Structure and Patterns of Diversity in the Sediments of Mountain Rock Basins from a National Park. Diversity 2024, 16, 544. https://doi.org/10.3390/d16090544
de Cos-Gandoy A, Serrano-Bellón A, Macías-Daza M, Pérez-Uz B, Williams RAJ, Sanchez-Jimenez A, Martín-Cereceda M. Bacterial Community Structure and Patterns of Diversity in the Sediments of Mountain Rock Basins from a National Park. Diversity. 2024; 16(9):544. https://doi.org/10.3390/d16090544
Chicago/Turabian Stylede Cos-Gandoy, Amaya, Andrea Serrano-Bellón, María Macías-Daza, Blanca Pérez-Uz, Richard A. J. Williams, Abel Sanchez-Jimenez, and Mercedes Martín-Cereceda. 2024. "Bacterial Community Structure and Patterns of Diversity in the Sediments of Mountain Rock Basins from a National Park" Diversity 16, no. 9: 544. https://doi.org/10.3390/d16090544
APA Stylede Cos-Gandoy, A., Serrano-Bellón, A., Macías-Daza, M., Pérez-Uz, B., Williams, R. A. J., Sanchez-Jimenez, A., & Martín-Cereceda, M. (2024). Bacterial Community Structure and Patterns of Diversity in the Sediments of Mountain Rock Basins from a National Park. Diversity, 16(9), 544. https://doi.org/10.3390/d16090544