Collembola Diversity across Vegetation Types of a Neotropical Island in a River Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Area and Sampling Design
2.2. Collembola Sampling and Taxonomic Identification
2.3. Data Analysis
2.3.1. Environmental Characterization and Species Composition
2.3.2. Abundance and Alpha and Beta Diversity
2.3.3. Effects of Environmental Variables on the Abundance of Collembola
3. Results
3.1. Epiedaphic Collembola Community in the Canárias Island
3.2. Collembola Species Composition and Indicator Species
3.3. Environmental Characterization of Each Vegetation Type and Seasons
3.4. Abundance and Alpha and Beta Diversity of Collembola
3.5. Influence of Environmental Variables on Species Composition
4. Discussion
4.1. First Records of Collembola Fauna from Canárias Island
4.2. Effects of Environmental Variables on Collembola Diversity
4.3. Contributions to Local Conservation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Abbreviations | Morphospecies |
---|---|
Sei_sp3 | Seira sp.3 |
Pro_sp.1.1 | Proisotoma sp.1 |
Bra_sp.1 | Brachystomella sp.1 |
Par_sp.1 | Parasminthurides sp.1 |
Tro_sp.1 | Trogolaphysa sp.1 |
Arle_sp.1 | Arlesia sp.1 |
Cal_sp.2 | Calvatomina sp.1 |
Lep_sp3 | Lepidocyrtus sp.3 |
Dic_sp.1 | Dicranocentrus sp.1 |
Fri_sp.1 | Friesea sp.1 |
Sph_sp.1 | Sphaeridia sp.1 |
Arlm_sp.1 | Arlesminthurus sp.1 |
Ent_sp.1 | Entomobrya sp.1 |
Cyp_sp.1 | Cyphoderus sp.1 |
Sal_sp.1 | Salina sp.1 |
Pro_sp.1 | Prorastriopes sp.1 |
Hem_sp.1 | Hemisotoma sp.1 |
Lep_sp4 | Lepidocyrtus sp4 |
Lep_sp.1 | Lepidocyrtus sp.1 |
Pse_sp.1 | Pseudosinella sp.1 |
Ste_sp.1 | Stenognatriopes sp.1 |
Cyp_sp.2 | Cyphoderus sp.2 |
Sei_sp.1 | Seira sp.1 |
Sei_sp.2 | Seira sp.2 |
Pse_sp.2 | Pseudosinella sp.2 |
Meg_sp.1 | Megacyphoderus sp.1 |
Lep_sp.2 | Lepidocyrtus sp.2 |
Cyp_sp.1 | Cyphoderus sp.1 |
Smi_sp.1 | Sminthurides sp.1 |
Axe_tub | Axelsonia tubífera |
Cal_sp.1 | Calvatomina sp.1 |
Ryn_sp.1 | Rynchocyrtus sp.1 |
Vegetation Types | Season | Biotic and Abiotic Factors | |||||||
---|---|---|---|---|---|---|---|---|---|
pH | Soil_m. (%) | Plant_rich. | Canopy_cov. (%) | Leaf_litt. (cm) | Soil_temp. (°C) | Air_tem. (°C) | Silt (G·kg−1) | ||
riparian forest | dry | 5.45 | 12.3 | 4 | 0 | 0 | 27.6 | 28.4 | 1 |
riparian forest | dry | 5.56 | 25 | 6 | 0 | 0 | 26.9 | 28.1 | 6 |
riparian forest | dry | 6.2 | 56.8 | 8 | 0 | 0 | 27.1 | 27.8 | 11 |
riparian forest | dry | 4.73 | 51.3 | 4 | 90 | 0 | 25.8 | 27.3 | 104 |
riparian forest | dry | 5.34 | 14.7 | 4 | 0 | 0 | 27 | 27.7 | 16 |
riparian forest | rainy | 3.4 | 53.5 | 4 | 0 | 4.6 | 29.4 | 30.4 | 5 |
riparian forest | rainy | 3.91 | 18.6 | 6 | 0 | 5.8 | 29.6 | 30.3 | 3 |
riparian forest | rainy | 2.44 | 53.6 | 8 | 73 | 3 | 17.9 | 29.8 | 60 |
riparian forest | rainy | 4.5 | 82.5 | 4 | 89.4 | 8.3 | 28.5 | 29.1 | 0 |
riparian forest | rainy | 4.55 | 22.7 | 4 | 81.2 | 2.5 | 27.3 | 29.4 | 19 |
mangrove | dry | 5.32 | 11.6 | 1 | 72.8 | 0 | 27.3 | 34.7 | 11 |
mangrove | dry | 5.81 | 11.9 | 2 | 66 | 0 | 26.6 | 32 | 6 |
mangrove | dry | 5.67 | 8.1 | 1 | 80.8 | 0 | 26.7 | 30.8 | 2 |
mangrove | dry | 5.53 | 4 | 3 | 76.6 | 3.5 | 27 | 30.2 | 5 |
mangrove | dry | 6.74 | 4.8 | 1 | 66 | 0 | 26.1 | 30 | 3 |
mangrove | rainy | 5.14 | 2.9 | 1 | 74.7 | 3.9 | 29.1 | 31.2 | 3 |
mangrove | rainy | 5.9 | 7 | 2 | 74 | 1.9 | 28.9 | 30.5 | 4 |
mangrove | rainy | 5.91 | 3.9 | 1 | 88 | 0 | 35.9 | 30.4 | 18 |
mangrove | rainy | 5.3 | 5.6 | 3 | 83.4 | 3.5 | 29.1 | 30.1 | 4 |
mangrove | rainy | 5.29 | 7.7 | 1 | 90 | 1.5 | 29.6 | 29.9 | 7 |
restinga | dry | 5.43 | 0.38 | 5 | 78 | 3.3 | 28.1 | 30.5 | 9 |
restinga | dry | 4.23 | 1 | 5 | 83.5 | 1.2 | 28.1 | 29.8 | 1 |
restinga | dry | 5.47 | 0.27 | 4 | 0 | 2.2 | 30 | 29.8 | 8 |
restinga | dry | 4.56 | 0.14 | 2 | 0 | 0 | 30.6 | 31 | 4 |
restinga | dry | 4.5 | 0.98 | 2 | 53 | 0.9 | 28.5 | 30.3 | 4 |
restinga | rainy | 5.27 | 0.8 | 5 | 84.9 | 2.3 | 28.8 | 31.3 | 10 |
restinga | rainy | 5.33 | 2.3 | 5 | 86.4 | 4.6 | 28.7 | 31.2 | 8 |
restinga | rainy | 5.91 | 0.9 | 4 | 0 | 2 | 30.1 | 33.8 | 10 |
restinga | rainy | 5.23 | 1 | 2 | 0 | 2.5 | 30 | 34.2 | 10 |
restinga | rainy | 3.7 | 23 | 2 | 80 | 2.8 | 27.7 | 32.8 | 6 |
RDA | Eigenvalue | Prop. Exp (%) | F | Pr(>F) |
---|---|---|---|---|
Axis 1 | 0.1513 | 53.5 | 8.8215 | 0.001 |
Axis 2 | 0.05641 | 19.9 | 3.2881 | 0.154 |
Environmental variables | Axis 1 | Axis 2 | R2 (%) | Pr(>r) |
Air temperature | −0.5324 | −0.26721 | 0.3548 | 0.0030 |
Soil temperature | −0.6286 | 0.29791 | 0.4839 | 0.0001 |
Leaf litter | 0.2185 | 0.50569 | 0.3035 | 0.0066 |
pH | −0.1179 | −0.49184 | 0.2558 | 0.0172 |
Soil moisture | 0.9091 | 0.11498 | 0.8396 | 0.0001 |
Silt | 0.4122 | 0.09045 | 0.1781 | 0.0743 |
Canopy cover | −0.1779 | −0.24748 | 0.0929 | 0.2650 |
Plant richness | 0.5249 | 0.54858 | 0.5764 | 0.0002 |
Species | RDA 1 | RDA 2 | ||
Dicranocentrus sp.1 | 0.407447 | 0.181268 | ||
Salina sp.1 | 0.192204 | −0.025743 | ||
Seira sp.1 | −0.129028 | 0.068696 | ||
Seira sp.2 | −0.723128 | 0.204037 | ||
Entomobrya sp.1 | 0.058464 | 0.008867 | ||
Lepidocyrtus sp.1 | 0.008595 | −0.160058 | ||
Lepidocyrtus sp.2 | −0.026549 | −0.290782 | ||
Lepidocyrtus sp.3 | 0.211219 | 0.129210 | ||
Cyphoderus sp.1 | −0.009720 | −0.051714 | ||
Cyphoderus sp.2 | −0.010648 | 0.013956 | ||
Cyphoderus sp.3 | 0.007889 | 0.001139 | ||
Megacyphoderus sp.1 | −0.015555 | 0.009122 | ||
Rynchocyrtus sp.1 | 0.005168 | −0.089422 | ||
Lepidocyrtus sp.4 | 0.061397 | 0.011687 | ||
Trogolaphysa sp.1 | 0.108753 | 0.039725 | ||
Parasminthurides sp.1 | 0.105191 | 0.105027 | ||
Sphaeridia sp.1 | 0.085155 | 0.096742 | ||
Calvatomina sp.1 | −0.016736 | −0.166340 | ||
Sminthurides sp.1 | −0.009720 | −0.051714 | ||
Prorastriopes sp.1 | −0.013293 | 0.055020 | ||
Axelsonia tubífera | −0.009610 | −0.286822 | ||
Proisotoma sp.1 | 0.338163 | 0.077658 | ||
Hemisotoma sp.1 | 0.128938 | 0.040351 | ||
Friesea sp.1 | 0.039509 | −0.004917 | ||
Arlesminthurus sp.1 | 0.050804 | 0.069783 | ||
Calvatomina sp.2 | 0.050804 | 0.069783 | ||
Stenognathriopes sp.1 | −0.010648 | 0.013956 | ||
Arlesia sp.1 | 0.003455 | 0.013956 | ||
Brachystomella sp.1 | 0.052588 | 0.031370 | ||
Pseudosinella sp.1 | −0.171606 | 0.090981 | ||
Pseudosinella sp.2 | −0.005868 | −0.008230 | ||
Seira sp.3 | −0.002150 | −0.009414 |
References
- Hopkin, S.P. Biology of Springtails (Insecta: Collembola), 1st ed.; Oxford University Press: Oxford, MS, USA, 1997; pp. 1–344. [Google Scholar]
- Potapov, A.; Bellini, B.C.; Chown, S.L.; Deharveng, L.; Janssens, F.; Kováč, Ľ.; Kuznetsova, N.; Ponge, J. Towards a global synthesis of Collembola knowledge challenges and potential solutions. Soil Organ. 2020, 92, 161–188. [Google Scholar] [CrossRef]
- Cassagne, N.; Gers, C.; Gauquelin, T. Relationships between Collembola, soil chemistry and humus types in forest stands. Biol. Fertil. Soils 2003, 37, 355–361. [Google Scholar] [CrossRef]
- Castaño-Meneses, G.; Palacios-Vargas, J.G.; Cutz-Pool, L.Q. Feeding habits of Collembola and their ecological niche. Anales Inst. Biol. Ser. Zool. 2004, 75, 135–142. [Google Scholar]
- Hoffmann, R.B.; Nascimento, M.S.V.; Diniz, A.A.; Araújo, L.H.A.; Souto, J.S. Diversidade da mesofauna edáfica como bioindicadora para o manejo do solo em Areia, Paraíba, Brasil. Rev. Caatinga 2009, 22, 122–125. [Google Scholar]
- Melo, F.V.; Brown, G.G.; Constantino, R.; Louzada, J.N.C.; Luizão, F.J.; Morais, J.W.; Zanetti, R. A importância da meso e macrofauna do solo na fertilidade e como bioindicadores. Bol. Inf. SBCS 2009, 34, 39–43. [Google Scholar]
- Berude, M.; Galote, J.K.B.; Pinto, P.H.; Amaral, A.A. A mesofauna do solo e sua importância como bioindicadora. Enciclop. Biosfera 2015, 11, 14–28. [Google Scholar]
- Greenslade, P. The potential of Collembola to act as indicators of landscape stress in Australia. Aust. J. Exp. Agric. 2007, 47, 424–434. [Google Scholar] [CrossRef]
- Baretta, D.; Ferreira, C.S.; Sousa, J.P.; Cardoso, E.J.B.N. Colêmbolos (Hexapoda: Collembola) como bioindicadores de qualidade do solo em áreas com Araucaria angustifolia. Rev. Bras. Cienc. Solo 2008, 32, 2693–2699. [Google Scholar] [CrossRef]
- Nakamori, T.; Fujimori, A.; Kinoshita, K.; Ban-nai, T.; Kubota, Y.; Yoshida, S. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolan Folsomia candida. Environ. Pollut. 2010, 158, 1689–1695. [Google Scholar] [CrossRef] [PubMed]
- George, P.B.; Keith, A.M.; Creer, S.; Barrett, G.L.; Lebron, I.; Emmett, B.A.; Jones, D.L. Evaluation of mesofauna communities as soil quality indicators in a national-level monitoring programme. Soil Biol. Bioch. 2017, 115, 537–546. [Google Scholar] [CrossRef]
- Arenhardt, T.C.P.; Vitorino, M.D.; Martins, S.V. Insecta and Collembola as bioindicators of ecological restoration in the Ombrophilous Dense Forest in Southern Brazil. Florest. Ambient. 2021, 28, e20210008. [Google Scholar] [CrossRef]
- Joimel, S.; Chassain, J.; Artru, M.; Faburé, J. Collembola are Among the Most Pesticide-Sensitive Soil Fauna Groups: A Meta-Analysis. Environ. Toxicol. Chem. 2022, 41, 2333–2341. [Google Scholar] [CrossRef] [PubMed]
- Lopes, B.C.H.; Amado, E.M.; Oliveira-Neto, M.A.; Almeida, Z.R.; Zeppelini, D. Multixenobiotic response of Collembola to soil contamination, the phisiological basis for bioindicative environmental monitoring. Chemosphere 2024, 349, 140851. [Google Scholar] [CrossRef] [PubMed]
- Sanders, S.K.; Martínez-De León, G.; Formenti, L.; Thakur, M.P. How will climate change affect the feeding biology of Collembola? Soil Biol. Biochem. 2024, 188, 109244. [Google Scholar] [CrossRef]
- Bellinger, P.F.; Christiansen, K.A.; Janssens, F. Checklist of the Collembola of the World. Available online: http://www.collembola.org (accessed on 10 January 2024).
- Zeppelini, D.; Queiroz, G.C.; Bellini, B.C. Collembola in Catálogo Taxonômico da Fauna do Brasil. PNUD. Available online: http://fauna.jbrj.gov.br/fauna/faunadobrasil/379/ (accessed on 20 January 2024).
- Abrantes, E.A.; Bellini, B.C.; Bernardo, A.N.; Fernandes, L.H.; Mendonça, M.C.; Oliveira, E.P.; Queiroz, G.C.; Sautter, K.D.; Silveira, T.C.; Zeppelini, D. Errata Corrigenda and update for the “Synthesis of Brazilian Collembola: An update to the species list.” ABRANTES et al. (2010) Zootaxa, 2388: 1–22. Zootaxa 2012, 3168, 1–21. [Google Scholar] [CrossRef]
- Joimel, S.; Schwartz, C.; Bonfanti, J.; Hedde, M.; Krogh, P.H.; Pérès, G.; Cortet, J. Functional and taxonomic diversity of Collembola as complementary tools to assess land use effects on soils biodiversity. Front. Ecol. Evol. 2021, 9, 630919. [Google Scholar] [CrossRef]
- Zeppelini, D.; Queiroz, G.C.; Abrantes, E.A.; Bellini, B.C.; Medeiros, E.S.F.; Oliveira, E.P.; Silveira, T.C.; Neves, A.C.R.; Soares, A.F.; Godeiro, N.N.; et al. Diversity of Collembola (Arthropoda: Hexapoda) across different types of vegetation in Brazil. Int. J. Biodivers. Conserv. 2013, 5, 176–184. [Google Scholar]
- Ferreira, A.S.; Bellini, B.C.; Vasconcellos, A. Temporal variations of Collembola (Arthropoda: Hexapoda) in the semiarid Caatinga in northeastern Brazil. Zoologia 2013, 30, 639–644. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Rocha, I.M.D.S.; Bellini, B.C.; Vasconcellos, A. Effects of habitat heterogeneity on epiedaphic Collembola (Arthropoda: Hexapoda) in a semiarid ecosystem in Northeast Brazil. Zoologia 2018, 35, e13653. [Google Scholar] [CrossRef]
- Winck, B.R.; Sá, E.L.S.; Rigotti, V.M.; Chauvat, M. Relationship between land-use types and functional diversity of epigeic Collembola in Southern Brazil. Appl. Soil Ecol. 2017, 109, 49–59. [Google Scholar] [CrossRef]
- Silva, C.D.D.; Bellini, B.C.; Rigotti, V.M.; Nunes, R.C.; Menezes, L.D.S.; Winck, B.R. Diversity Loss of Epigeic Collembola after Grassland Conversion into Eucalyptus Forestry in Brazilian Pampa Domain. Diversity 2022, 14, 490. [Google Scholar] [CrossRef]
- Castro, A.A.J.F. Unidades de planejamento: Uma proposta para o Estado do Piauí com base na dimensão diversidade de ecossistemas. Publicações Avulsas Conserv. Ecossistemas 2007, 18, 1–28. [Google Scholar] [CrossRef]
- ICMBio. Plano de Manejo da Área de Proteção Ambiental do Delta do Parnaíba, 1st ed; Ministério do Meio Ambiente: Brasília, Brazil, 2020; pp. 1–77. [Google Scholar]
- Pereira, L.C.; Silveira, P.C.B. Humanos e caranguejos nos manguezais do Delta do Parnaíba: Histórias da paisagem. Rev. Anth. 2021, 32, 248380. [Google Scholar] [CrossRef]
- Butcher, J.W.; Snider, R.; Snider, R.J. Bioecology of edaphic Collembola and Acarina. Annu. Rev. Entomol. 1971, 16, 249–288. [Google Scholar] [CrossRef]
- Daghighi, E.; Koehler, H.; Kesel, R.; Filser, J. Long-term succession of Collembola communities in relation to climate change and vegetation. Pedobiologia 2017, 64, 25–38. [Google Scholar] [CrossRef]
- Mawan, A.; Hartke, T.R.; Deharveng, L.; Zhang, F.; Buchori, D.; Scheu, S.; Drescher, J. Response of arboreal Collembola communities to the conversion of lowland rainforest into rubber and oil palm plantations. BMC Ecol. Evol. 2022, 22, 144. [Google Scholar] [CrossRef]
- Pompeo, P.N.; Santos, M.A.B.; Biasi, J.P.; Siqueira, S.; Rosa, M.G.; Baretta, C.R.D.M.; Baretta, D. Fauna e sua relação com atributos edáficos em Lages, Santa Catarina-Brasil. Sci. Agrar. 2016, 17, 42–51. [Google Scholar]
- Hasegawa, M.; Ota, A.T.; Kabeya, D.; Okamoto, T.; Saitoh, T.; Nishiyama, Y. The effects of mixed broad-leaved trees on the collembolan community in larch plantations of central Japan. Appl. Soil Ecol. 2014, 83, 125–132. [Google Scholar] [CrossRef]
- Bull, J.C.; Pickup, N.J.; Pickett, B.; Hassell, M.P.; Bonsall, M.B. Metapopulation extinction risk is increased by environmental stochasticity and assemblage complexity. Proc. Roy. Soc. B Biol. Sci. 2007, 274, 87–96. [Google Scholar] [CrossRef]
- Kardol, P.; Reynolds, W.M.; Norby, R.J.; Classen, A.T. Climate change effects on soil microarthropod abundance and community structure. App. Soi. Ecol. 2011, 47, 37–44. [Google Scholar] [CrossRef]
- Heiniger, C.; Barot, S.; Ponge, J.F.; Salmon, S.; Meriguet, J.; Carmignac, D.; Dubs, F. Collembolan preferences for soil and microclimate in forest and pasture communities. Soil Biol. Bioch. 2015, 86, 181–192. [Google Scholar] [CrossRef]
- Yahyapour, E.; Shayanmehr, M.; Miri, B.; Shoushtari, R.V. A study on the relative abundance and biodiversity indicators of Springtails (Hexapoda: Collembola) in two ecosystems in Mazandaran province (Iran). J. Insect Biodivers. Syst. 2022, 8, 131–144. [Google Scholar] [CrossRef]
- Lima, E.C.A.; Zeppelini, D.; Ferreira, A.S.; Brito, R.A.; Oliveira, J.V.L.C.; Medeiros, E.S.F.; Barreto, C. Collembola biocenoses (Arthropoda: Hexapoda) in the archipelago of Fernando de Noronha, Brazil. Eur. J. Soil Biol. 2023, 117, 103496. [Google Scholar] [CrossRef]
- Saraiva, N.A. Caracterização da Unidade e Temas Complementares Reserva Extrativista Marinha do Delta do Parnaíba, 1st ed.; ICMBio, Ministério do Meio Ambiente: Brasília, Brazil, 2009; pp. 1–103. [Google Scholar]
- Santos-Filho, F.S.; Almeida-Junior, E.B.D.; Soares, C.J.R.S.; Zickel, C.S. Fisionomias das restingas do delta do Parnaíba, Nordeste, Brasil. Rev. Bras. Geogr. Física 2010, 3, 218–227. [Google Scholar] [CrossRef]
- Meireles, V.J.S.; Meireles, M.P.A.; Lemos, J.R.; Barros, R.F.M.; Campos, J.B. Impactos da extração madeireira sobre a estrutura de um bosque de mangue na APA Delta do Parnaíba. Gaia Sci. 2021, 15, 218–227. [Google Scholar]
- Schuppenhauer, M.M.; Lehmitz, R.; Xylander, W.E.R. Slow-moving soil organisms on a water highway: Aquatic dispersal and survival potential of Oribatida and Collembola in running water. Mov. Ecol. 2019, 7, 20. [Google Scholar] [CrossRef]
- Querner, P.; Bruckner, A.; Drapela, T.; Moser, D.; Zaller, J.G.; Frank, T. Landscape and site effects on Collembola diversity and abundance in winter oilseed rape fields in eastern Austria. Agric. Ecosyst. Environ. 2013, 164, 145–154. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Arlé, R.; Mendonça, M.C. Estudo preliminar das espécies de Dicranocentrus Schött, 1893, ocorrentes no Parque Nacional da Tijuca, Rio de Janeiro (Collembola). Rev. Bras. Biol. 1982, 42, 41–49. [Google Scholar]
- Jordana, R.; Arbea, J.I.; Simón, C.; Luciàñez, M.J. Fauna Iberica. Vol. 8. Collembola Poduromorpha, 1st ed.; Consejo Superior de Investigaciones Cientificas: Madrid, Spain, 1997; pp. 1–807. [Google Scholar]
- Salmon, J.T. An index to the Collembola. R. Soc. N. Z. Bull. 1964, 7, 98–144. [Google Scholar]
- Massoud, Z. Monographie des Neanuridae, Collemboles Poduromorphes apiéces buccales modifiées. In Biologie de l’Amerique Australe, 1st ed.; Delamare Deboutteville, C., Rapoport, E.H., Eds.; Éditions du CNRS: Paris, France, 1967; Volume 3, pp. 7–399. [Google Scholar]
- Betsch, J.M. Éléments pour une monographie des Collemboles Symplyplêones (Hexapodes, Aptérygotes). Mém. Mus. Natl. Hist. Nat. Sér. A Zool. 1980, 116, 1–227. [Google Scholar]
- Christiansen, K.; Bellinger, P. The Collembola of North America North of Rio Grande, A Taxonomy Analysis, 2nd ed.; Grinnell College: Grinnell, IA, USA, 1998; pp. 1–1520. [Google Scholar]
- Christiansen, K.; Bellinger, P. A survey of the genus Seira (Hexapoda: Collembola: Entomobryidae) in the Americas. Caribb. J. Sci. 2000, 36, 39–75. [Google Scholar]
- Bretfeld, G. Synopses on Palaearctic Collembola Volume 2: Symphypleona. Abh. Ber. Nat. Görlitz 1999, 71, 1–318. [Google Scholar]
- Potapov, M. Synopses on Palaeartic Collembola Volume 3: Isotomidae, 1st ed.; Staaliches Museum für Naturkunde Görlitz: Görlitz, Germany, 2001; pp. 1–603. [Google Scholar]
- Nunes, R.C.; Bellini, B.C. Three new species of Entomobryoidea (Collembola: Entomobryomorpha) from Brazilian Caatinga-Cerrado transition, with identification keys to Brazilian Cyphoderus, Pseudosinella and Trogolaphysa species. Zootaxa 2018, 4420, 71–96. [Google Scholar] [CrossRef] [PubMed]
- Nunes, R.C.; Bellini, B.C. A new species of Nothobrya Arlé, 1961 (Collembola: Entomobryidae) from Brazil and notes on key characters for Nothobryinae taxonomy, with an identification key to the species of the subfamily. Zootaxa 2019, 4615, 375–391. [Google Scholar] [CrossRef] [PubMed]
- Nunes, R.C.; Santos-Costa, R.C.; Bellini, B.C. The first Neotropical Capbrya Barra, 1999 (Collembola: Orchesellidae: Nothobryinae) and the reinterpretation of Nothobryinae systematics. Zool. Anz. 2020, 288, 24–42. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 10 September 2023).
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Meth. Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 1998; pp. 1–853. [Google Scholar]
- Oksanen, J.A.R.I.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; Mcglinn, D.; Wagner, H. Vegan: Community Ecology Package. R Package Version 2.5–7. 2020. Available online: https://CRAN.R-project.org/package=vegan (accessed on 15 September 2023).
- Cáceres, M.D.; Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Magurran, A.E. Medindo a Diversidade Biológica, 1st ed.; Editora UFPR: Paraná, Brazil, 2013; pp. 1–235. [Google Scholar]
- Brooks, M.E.; Kristensen, K.; Van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Bolker, B.M. Modeling zero-inflated count data with glmmTMB. BioRxiv 2017, 132753. [Google Scholar] [CrossRef]
- Hartig, F.; Lohse, L. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models; R package version 0.4.6 2022. Available online: https://CRAN.R-project.org/package=DHARMa (accessed on 15 November 2023).
- Whittaker, R.H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 1960, 30, 279–338. [Google Scholar] [CrossRef]
- Koleff, P.; Gaston, K.J.; Lennon, J.J. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 2003, 72, 367–382. [Google Scholar] [CrossRef]
- Herve, M. RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R Package Version 0.9-83-7. 2023. Available online: https://CRAN.R-project.org/package=RVAideMemoire (accessed on 23 July 2024).
- Cipola, N.G.; Godeiro, N.N.; Bellini, B.C. New records of Seira dowlingi (Wray, 1953) (Collembola, Entomobryidae, Seirinae) for New World. Entomol. Commun. 2019, 1, ec01003. [Google Scholar] [CrossRef]
- Arlé, R.; Oliveira, M.M. O gênero Temeritas Delamare & Massoud, 1963 na Amazônia (Collembola Symphypleona). Bol. Mus. Para. Emílio Goeldi Zool. 1997, 87, 1–23. [Google Scholar]
- Strenzke, K. Axelsonia tubifera n.sp., ein neuer arthropleoner Collembole mit Geschlechtsdimorphismus aus der brasilianischen Mangrove. Acta Zool. Cracov. 1958, 2, 607–618. [Google Scholar]
- Godeiro, N.N.; Ding, Y.; Cipola, N.G.; Jantarit, S.; Bellini, B.C.; Zhang, F. Phylogenomics and systematics of Entomobryoidea (Collembola): Marker design, phylogeny and classification. Cladistics 2023, 39, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Delamare-Deboutteville, C. Recherches sur les Collemboles termithophiles et myrmécophiles. Arch. Zool. Exp. Gen. 1948, 85, 261–425. [Google Scholar]
- Nicolet, H. Recherches pour servir a l’Histoire des Podurelles. Nouv. Mém. Soc. Helvet Sci. Nat. 1842, 6, 1–88. [Google Scholar]
- Mendonça, M.C.; Fernandes, L.H. Rhynchocyrtus gen. nov. (Collembola, Entomobryidae) from the Southeast and Northeast Brazilian regions. Zootaxa 2007, 1660, 45–51. [Google Scholar] [CrossRef]
- Börner, C. Vorlaufige Mittheilung zur systematik der Sminthuridae Tullb. inbesondere der genus Sminthurinus latr. Zool Anz. 1900, 23, 609–618. [Google Scholar]
- Hunter, M.D.; Price, P.W. Playing chutes and ladders: Heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 1992, 73, 724–732. [Google Scholar] [CrossRef]
- Kagata, H.; Ohgushi, T. Bottom-up trophic cascades and material transfer in terrestrial food webs. Ecol. Res. 2006, 21, 26–34. [Google Scholar] [CrossRef]
- Heath, M.R.; Speirs, D.C.; Steele, J.H. Understanding patterns and processes in models of trophic cascades. Ecol. Lett. 2014, 17, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Lavoir, A.V.; Rodriguez-Saona, C.; Desneux, N. Bottom-up forces in agroecosystems and their potential impact on arthropod pest management. Annu. Rev. Entomol. 2022, 67, 239–259. [Google Scholar] [CrossRef]
- DeLong, J.P.; Gilbert, B.; Shurin, J.B.; Savage, V.M.; Barton, B.T.; Clements, C.F.; O’Connor, M.I. The body size dependence of trophic cascades. Am. Nat. 2015, 185, 354–366. [Google Scholar] [CrossRef]
- Morris, M.G. The effects of structure and its dynamics on the ecology and conservation of arthropods in British grasslands. Biol. Conser. 2000, 95, 129–142. [Google Scholar] [CrossRef]
- Spiller, M.S.; Spiller, C.; Garlet, J. Arthropod bioindicators of environmental quality. Rev. Agro@ Mbiente On-Line 2018, 12, 41–57. [Google Scholar] [CrossRef]
- Zardo, D.C.; Carneiro, A.P.; de Lima, L.G.; Santos Filho, M. Comunidade de artrópodes associada a serrapilheira de cerrado e mata de galeria, na Estação Ecológica Serra das Araras–Mato Grosso, Brasil. Rev. Bras. Multidiscipl. 2010, 13, 105–113. [Google Scholar] [CrossRef]
- Ponge, J.F. Vertical distribution of Collembola (Hexapoda) and their food resources in organic horizons of beech forests. Biol. Fertil. Soils 2000, 32, 508–522. [Google Scholar] [CrossRef]
- Potapov, A.A.; Semenina, E.E.; Korotkevich, A.Y.; Kuznetsova, N.A.; Tiunov, A.V. Connecting taxonomy and ecology: Trophic niches of collembolans as related to taxonomic identity and life forms. Soil Biol. Biochem. 2016, 101, 20–31. [Google Scholar] [CrossRef]
- Salamon, J.A.; Scheu, S.; Schaefer, M. The Collembola community of pure and mixed stands of beech (Fagus sylvatica) and spruce (Picea abies) of different age. Pedobiologia 2008, 51, 385–396. [Google Scholar] [CrossRef]
- Sylvain, Z.A.; Wall, D.H. Linking soil biodiversity and vegetation: Implications for a changing planet. Am. J. Bot. 2011, 98, 517–527. [Google Scholar] [CrossRef]
- Makkonen, M.; Berg, M.P.; Van Hal, J.R.; Callaghan, T.V.; Press, M.C.; Aerts, R. Traits explain the responses of a sub-arctic Collembola community to climate manipulation. Soil Biol. Biochem. 2011, 43, 377–384. [Google Scholar] [CrossRef]
- Rousk, J.; Baath, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Zhao, L.; Xu, S.J.J.R.; Liu, Y.Z.; Liu, H.S.Y.; Cheng, G.D. Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types. J. Appl. Microbiol. 2013, 114, 1054–1065. [Google Scholar] [CrossRef]
- Bellini, B.C.; Weiner, W.M.; Winck, B.R. Systematics, Ecology and Taxonomy of Collembola: Introduction to the Special Issue. Diversity 2023, 15, 221. [Google Scholar] [CrossRef]
- Bellini, B.C.; Zeppelini, D. A new species of Seira Lubbock (Collembola, Entomobryidae) with a key to the species of Paraíba, Brazil. Rev. Bras. Entomol. 2009, 53, 266–271. [Google Scholar] [CrossRef]
- Duke, N.; Ball, M.; Ellison, J. Factors influencing biodiversity and distributional gradients in mangroves. Glob. Ecol. Biogeogr. Lett. 1998, 7, 27–47. [Google Scholar] [CrossRef]
- Field, C.; Osborn, J.; Hoffman, L.; Polsenberg, J.; Ackerly, D.; Berry, J.; Mooney, H. Mangrove biodiversity and ecosystem function. Glob. Ecol. Biogeogr. Lett. 1998, 7, 3–14. [Google Scholar] [CrossRef]
- Whittaker, R.J.; Willis, K.J.; Field, R. Scale and species richness: Towards a general, hierarchical theory of species diversity. J. Biogeogr. 2001, 28, 453–470. [Google Scholar] [CrossRef]
- Barletta, M.; Barletta-Bergan, A.; Saint-Paul, U.; Hubold, G. The role of salinity in structuring the fish assemblages in a tropical estuary. J. Fish Biol. 2005, 66, 45–72. [Google Scholar] [CrossRef]
- Azevedo, M.C.C.; Cruz-Filho, A.G.; Araújo, F.G. Mangrove habitat use by fishes in Southeastern Brazil: Are there temporal changes in the structure of the community? Mar. Ecol. 2016, 37, 1223–1238. [Google Scholar] [CrossRef]
- Christiansen, K.A.; Bellinger, P.; Janssens, F. Collembola: (Springtails, Snow Fleas). In Encyclopedia of Insects, 2nd ed.; Resh, V.H., Cardé, R.T., Eds.; Academic Press: New York, NY, USA, 2009; pp. 206–210. [Google Scholar]
- Russell, D.J.; Schick, H.; Nährig. Reactions of soil collembolan communities to inundation in floodplain ecosystems of the Upper Rhine Valley. In Wetlands in Central Europe: Soil Organisms, Soil Ecological Processes and Trace Gas Emissions; Springer: Berlin/Heidelberg, Germany, 2002; pp. 35–70. [Google Scholar]
- Franklin, J.F.; Bledsoe, C.S.; Callahan, J.T. Contributions of the long-term ecological research program. BioScience 1990, 40, 509–523. [Google Scholar] [CrossRef]
- Magnuson, J.J. Long-term ecological research and the invisible present. BioScience 1990, 40, 495–501. [Google Scholar] [CrossRef]
- Widenfalk, L.A.; Bengtsson, J.; Berggren, Å.; Zwiggelaar, K.; Spijkman, E.; Huyer-Brugman, F.; Berg, M.P. Spatially structured environmental filtering of collembolan traits in late successional salt marsh vegetation. Oecologia 2015, 179, 537–549. [Google Scholar] [CrossRef]
- Oliveira-Filho, L.C.I.; Klauberg Filho, O.; Baretta, D.; Tanaka, C.A.S.; Sousa, J.P. Collembola Community Structure as a Tool to Assess Land Use Effects on Soil Quality. Rev. Bras. Cienc. Solo 2016, 40, e0150432. [Google Scholar] [CrossRef]
- Santos, M.A.B.; Oliveira Filho, L.C.I.; Pompeo, P.N.; Ortiz, D.C.; Mafra, Á.L.; Klauberg Filho, O.; Baretta, D. Morphological diversity of springtails in land use systems. Rev. Bras. Cienc. Solo 2018, 42, e0170277. [Google Scholar] [CrossRef]
- Machado, J.D.S.; Oliveira Filho, L.C.I.; Santos, J.C.P.; Paulino, A.T.; Baretta, D. Morphological diversity of springtails (Hexapoda: Collembola) as soil quality bioindicators in land use systems. Biota Neotrop. 2019, 19, e20180618. [Google Scholar] [CrossRef]
- Mcgeoch, M.A. The selection, testing and application of terrestrial insects as bioindicators. Biol. Rev. 1998, 73, 181–201. [Google Scholar]
Family/Species/Morphospecies | Vegetation Types | Abundance/ Season | Total Abundance | ||||||
---|---|---|---|---|---|---|---|---|---|
Mangrove | Riparian Forest | Restinga | |||||||
Seasons | Dry | Rainy | Dry | Rainy | Dry | Rainy | Dry | Rainy | |
Order Entomobryomorpha | |||||||||
Orchesellidae | |||||||||
Dicranocentrus sp.1 | 0 | 0 | 39 | 71 | 0 | 0 | 39 | 71 | 110 |
Entomobryidae | |||||||||
Cyphoderus sp.1 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 |
Cyphoderus sp.2 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 3 | 3 |
Cyphoderus sp.3 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 2 |
Entomobrya sp.1 | 0 | 0 | 12 | 0 | 0 | 0 | 12 | 0 | 12 |
Lepidocyrtus sp.1 | 4 | 9 | 9 | 1 | 0 | 0 | 13 | 10 | 23 |
Lepidocyrtus sp.2 | 35 | 7 | 1 | 1 | 2 | 2 | 38 | 10 | 48 |
Lepidocyrtus sp.3 | 0 | 0 | 76 | 26 | 0 | 3 | 76 | 29 | 105 |
Lepidocyrtus sp.4 | 2 | 13 | 8 | 8 | 0 | 0 | 10 | 21 | 31 |
Megacyphoderus sp.1 | 0 | 0 | 0 | 0 | 4 | 1 | 4 | 1 | 5 |
Pseudosinella sp.1 | 0 | 17 | 0 | 0 | 0 | 130 | 0 | 147 | 147 |
Pseudosinella sp.2 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 5 | 5 |
Rhynchocyrtus sp.1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Salina sp.1 | 0 | 0 | 13 | 12 | 0 | 0 | 13 | 12 | 25 |
Seira sp.1 | 1 | 12 | 7 | 2 | 231 | 194 | 239 | 208 | 447 |
Seira sp.2 | 3 | 1262 | 56 | 5 | 696 | 1130 | 755 | 2397 | 3152 |
Seira sp.3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
Trogolaphysa sp.1 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 7 | 7 |
Isotomidae | |||||||||
Axelsonia tubifera Strenzke, 1958 | 12 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 12 |
Hemisotoma sp.1 | 0 | 0 | 88 | 14 | 2 | 0 | 90 | 14 | 104 |
Proisotoma sp.1 | 1 | 0 | 802 | 30 | 0 | 34 | 803 | 64 | 867 |
Order Symphypleona | |||||||||
Sminthurididae | |||||||||
Parasminthurides sp.1 | 0 | 3 | 63 | 36 | 0 | 1 | 63 | 40 | 103 |
Sphaeridia sp.1 | 0 | 5 | 7 | 33 | 0 | 0 | 7 | 38 | 45 |
Sminthurides sp.1 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 |
Bourletiellidae | |||||||||
Arlesminthurus sp.1 | 0 | 2 | 0 | 12 | 0 | 3 | 0 | 17 | 17 |
Prorastriopes sp.1 | 0 | 0 | 0 | 2 | 0 | 3 | 0 | 5 | 5 |
Stenognathriopes sp.1 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 3 | 3 |
Dicyrtomidae | |||||||||
Calvatomina sp.1 | 17 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | 17 |
Calvatomina sp.2 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 8 | 8 |
Order Poduromorpha | |||||||||
Neanuridae | |||||||||
Arlesia sp.1 | 0 | 0 | 0 | 3 | 0 | 2 | 0 | 5 | 5 |
Friesea sp.1 | 0 | 0 | 10 | 1 | 0 | 2 | 10 | 3 | 13 |
Brachystomellidae | |||||||||
Brachystomella sp.1 | 0 | 0 | 0 | 19 | 0 | 0 | 0 | 19 | 19 |
Total Abundance by vegetation type/Season | 80 | 1335 | 1193 | 291 | 935 | 1512 | 2208 | 3138 | 5346 |
Total richness | 11 | 10 | 15 | 19 | 5 | 15 | 20 | 24 | 32 |
Indicator Species | Vegetation Type/Season | IndVal % | p-Value |
---|---|---|---|
Dicranocentrus sp.1 | riparian forest | 90.00 | 0.001 |
Lepidocyrtus sp.3 | riparian forest | 87.42 | 0.001 |
Proisotoma sp.1 | riparian forest | 67.17 | 0.008 |
Sphaeridia sp.1 | riparian forest | 53.33 | 0.004 |
Salina sp.1 | riparian forest | 51.47 | 0.004 |
Entomobrya sp.1 | riparian forest | 40.00 | 0.023 |
Trogolaphysa sp.1 | riparian forest | 40.00 | 0.035 |
Hemisotoma sp.1 | riparian forest | 39.23 | 0.038 |
Friesea sp.1 | riparian forest | 38.44 | 0.050 |
Lepidocyrtus sp.2 | mangrove | 52.50 | 0.024 |
Seira sp.1 | restinga | 66.55 | 0.024 |
Pseudosinella sp.1 | restinga | 44.21 | 0.043 |
Dicranocentrus sp.1 | dry | 90.00 | 0.001 |
Lepidocyrtus sp.3 | dry | 87.42 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, M.G.d.M.; da Silva, B.M.; Nunes, R.C.; Marques, A.d.O.; Medeiros, G.d.S.; Freire, F.A.d.M.; Silva, C.D.D.d.; Winck, B.; Bellini, B.C. Collembola Diversity across Vegetation Types of a Neotropical Island in a River Delta. Diversity 2024, 16, 445. https://doi.org/10.3390/d16080445
Lima MGdM, da Silva BM, Nunes RC, Marques AdO, Medeiros GdS, Freire FAdM, Silva CDDd, Winck B, Bellini BC. Collembola Diversity across Vegetation Types of a Neotropical Island in a River Delta. Diversity. 2024; 16(8):445. https://doi.org/10.3390/d16080445
Chicago/Turabian StyleLima, Maria Geovana de Mesquita, Bruna Maria da Silva, Rudy Camilo Nunes, Alexandre de Oliveira Marques, Gleyce da Silva Medeiros, Fúlvio Aurélio de Morais Freire, Clécio Danilo Dias da Silva, Bruna Winck, and Bruno Cavalcante Bellini. 2024. "Collembola Diversity across Vegetation Types of a Neotropical Island in a River Delta" Diversity 16, no. 8: 445. https://doi.org/10.3390/d16080445
APA StyleLima, M. G. d. M., da Silva, B. M., Nunes, R. C., Marques, A. d. O., Medeiros, G. d. S., Freire, F. A. d. M., Silva, C. D. D. d., Winck, B., & Bellini, B. C. (2024). Collembola Diversity across Vegetation Types of a Neotropical Island in a River Delta. Diversity, 16(8), 445. https://doi.org/10.3390/d16080445