Genetic Differentiation and Population Structure of Two Bulgarian Local Goat Breeds Using Microsatellite Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Welfare and Ethical Statement
2.2. Samples Collection
2.3. DNA Isolation
2.4. Microsatellite Markers
2.5. PCR Amplification and Fragment Analysis
2.6. Statistical Analysis
3. Results
3.1. Polymorphism of Microsatellite Markers
3.2. Genetic Variability between and within the Kalofer Long-Haired and Bulgarian Screw-Horned Long-Haired Goat Breeds
3.3. Genetic Variability within and among the Flocks of Kalofer Long-Haired and Bulgarian Screw-Horned Long-Haired Goat Breeds
3.4. Admixture Analysis and Genetic Differentiation
4. Discussion
4.1. Total Genetic Diversity of the Bulgarian Goat Populations
4.2. Genetic Differentiation within and between Bulgarian Local Breeds
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Amills, M.; Capote, J.; Tosser-Klopp, G. Goat domestication and breeding: A jigsaw of historical, biological and molecular data with missing pieces. Anim. Genet. 2017, 48, 631–644. [Google Scholar] [CrossRef] [PubMed]
- Celozzi, S.; Battini, M.; Prato-Previde, E.; Mattiello, S. Humans and goats: Improving knowledge for a Better Relationship. Animals 2022, 12, 774. [Google Scholar] [CrossRef] [PubMed]
- Pogorevc, N.; Dotsev, A.; Upadhyay, M.; Sandoval-Castellanos, E.; Hannemann, E.; Simčič, M.; Antoniou, A.; Papachristou, D.; Koutsouli, P.; Rahmatalla, S.; et al. Whole-genome SNP genotyping unveils ancestral and recent introgression in wild and domestic goats. Mol. Ecol. 2024, 33, e17190. [Google Scholar] [CrossRef] [PubMed]
- Daly, K.G.; Mattiangeli, V.; Hare, A.J.; Davoudi, H.; Fathi, H.; Doost, S.B.; Amiri, S.; Khazaeli, R.; Decruyenaere, D.; Nokandeh, J.; et al. Herded and hunted goat genomes from the dawn of domestication in the Zagros Mountains. Proc. Natl. Acad. Sci. USA 2021, 118, e2100901118. [Google Scholar] [CrossRef] [PubMed]
- Nanaei, H.; Cai, Y.; Alshawi, A.; Wen, J.; Hussain, T.; Fu, W.W.; Xu, N.Y.; Essa, A.; Lenstra, J.A.; Wang, X.; et al. Genomic analysis of indigenous goats in Southwest Asia reveals evidence of ancient adaptive introgression related to desert climate. Zool. Res. 2023, 44, 20. [Google Scholar] [CrossRef]
- Horwitz, L. Temporal and spatial variation in Neolithic Caprine exploitation strategies: A case study of Fauna from the Site of Yiftah’el (Israel). Paleorient 2003, 29, 19–58. [Google Scholar] [CrossRef]
- Zeder, M.A. Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proc. Natl. Acad. Sci. USA 2008, 105, 11597–11604. [Google Scholar] [CrossRef]
- Bogucki, P. The spread of early farming in Europe. Am. Sci. 1996, 84, 242–253. [Google Scholar]
- MacHugh, D.E.; Bradley, D.G. Livestock genetic origins: Goats buck the trend. Proc. Natl. Acad. Sci. USA 2001, 98, 5382–5384. [Google Scholar] [CrossRef]
- Chebii, V.J.; Mpolya, E.A.; Muchadeyi, F.C.; Domelevo Entfellner, J.-B. Genomics of Adaptations in Ungulates. Animals 2021, 11, 1617. [Google Scholar] [CrossRef]
- Benjelloun, B.; Leempoel, K.; Boyer, F.; Stucki, S.; Streeter, I.; Orozco-terWengel, P.; Alberto, F.J.; Servin, B.; Biscarini, F.; Alberti, A.; et al. Multiple genomic solutions for local adaptation in two closely related species (sheep and goats) facing the same climatic constraints. Mol. Ecol. 2023, 27, e17257. [Google Scholar] [CrossRef] [PubMed]
- Taberlet, P.; Valentini, A.; Rezaei, H.R.; Naderi, S.; Pompanon, F.; Negrini, R.; Ajmone-Marsan, P. Are cattle, sheep, and goats endangered species? Mol. Ecol. 2008, 17, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Porter, V.; Alderson, L.; Hall, S.J.G.; Sponenberg, D.P. Goats. In Mason’s World Encyclopedia of Livestock Breeds and Breeding; CABI: Oxfordshire, UK, 2016; pp. 350–352. [Google Scholar]
- Sedefchev, S.; Vuchkov, A.; Sedefchev, A. Characterization and conservation of Bulgarian autochthonous goat breeds. Agric. Sci. 2011, 3, 53–67. [Google Scholar]
- Nikolov, V. Review of the specific measures for support of the autochthonous breeds in Bulgaria. J. Cent. Eur. Agric. 2015, 16, 38–46. [Google Scholar] [CrossRef]
- Vuchkov, A. Variation of the exterior in the Bulgarian Screw-Horned Longhaired Goat from two distribution areas. TJS 2020, 18, 34–39. [Google Scholar] [CrossRef]
- Vuchkov, A.; Kostova, M.; Bojinov, B. Genetic variation in two Bulgarian domestic goat breeds as detected with ISSR markers. In Proceedings of the XXII Savetovanje o Biotehnologiji sa Mejdunarodnium Ucescem-RADOVA 1, Čačak, Serbia, 10–11 March 2017; pp. 387–395. [Google Scholar]
- Leroy, G.; Baumung, R.; Notter, D.; Verrier, E.; Wurzinger, M.; Scherf, B. Stakeholder involvement and the management of animal genetic resources across the world. Livest. Sci. 2017, 198, 120–128. [Google Scholar] [CrossRef]
- Cao, J.; Baumung, R.; Boettcher, P.; Scherf, B.; Besbes, B.; Leroy, G. Monitoring and progress in the implementation of the global plan of action on animal genetic resources. Sustainability 2021, 13, 775. [Google Scholar] [CrossRef]
- Juvančič, L.; Slabe-Erker, R.; Ogorevc, M.; Drucker, A.G.; Erjavec, E.; Bojkovski, D. Payments for conservation of animal genetic resources in agriculture: One size fits all? Animals 2021, 11, 846. [Google Scholar] [CrossRef]
- Olschewsky, A.; Hinrichs, D. An overview of the use of genotyping techniques for assessing genetic diversity in local farm animal breeds. Animals 2021, 11, 2016. [Google Scholar] [CrossRef]
- Aboul-Naga, A.M.; Alsamman, A.M.; Nassar, A.E.; Mousa, K.H.; Osman, M.; Abdelsabour, T.H.; Mohamed, T.H.; Elshafie, M.H. Investigating genetic diversity and population structure of Egyptian goats across four breeds and seven regions. Small Rumin. Res. 2023, 226, 107017. [Google Scholar] [CrossRef]
- Bora, S.K.; Tessema, T.S.; Girmay, G. Genetic diversity and population structure of selected Ethiopian indigenous cattle breeds using microsatellite markers. Genet. Res. 2023, 14, 1106755. [Google Scholar] [CrossRef] [PubMed]
- Corner, S.; Yuzbasiyan-Gurkan, V.; Agnew, D.; Venta, P.J. Development of a 12-plex of new microsatellite markers using a novel universal primer method to evaluate the genetic diversity of jaguars (Panthera onca) from North American zoological institutions. Conserv. Genet. Resour. 2019, 11, 487–497. [Google Scholar] [CrossRef]
- Forcina, G.; Leonard, J.A. Tools for Monitoring Genetic Diversity in Mammals: Past, Present, and Future. In Conservation Genetics in Mammals; Ortega, J., Maldonado, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 13–27. [Google Scholar]
- Xie, D.; Yang, N.; Xu, W.; Jiang, X.; Luo, L.; Hou, Y.; Zhao, G.; Shen, F.; Zhang, X. Development and application of potentially universal microsatellite markers for pheasant species. Animals 2023, 13, 3601. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T.; Hayes, B.; Goddard, M. Accelerating improvement of livestock with genomic selection. Annu. Rev. Anim. Biosci. 2013, 1, 221–237. [Google Scholar] [CrossRef] [PubMed]
- Nicoloso, L.; Bomba, L.; Colli, L.; Negrini, R.; Milanesi, M.; Mazza, R.; Sechi, T.; Frattini, S.; Talenti, A.; Coizet, B.; et al. Italian Goat Consortium. Genetic diversity of Italian goat breeds assessed with a medium-density SNP chip. Genet. Sel. Evol. 2015, 47, 62. [Google Scholar] [CrossRef] [PubMed]
- Bruford, M.W.; Ginja, C.; Hoffmann, I.; Joost, S.; Orozco-terWengel, P.; Alberto, F.J.; Amaral, A.J.; Barbato, M.; Biscarini, F.; Colli, L.; et al. Prospects and challenges for the conservation of farm animal genomic resources, 2015–2025. Front. Genet. 2015, 6, 314. [Google Scholar] [CrossRef] [PubMed]
- Deb, R.; Mukhopadhyay, C.S.; Sengar, G.S.; da Cruz, A.S.; Silva, D.C.; Pinto, I.P.; Minasi, L.B.; Costa, E.O.A.; da Cruz, A.D. Genetic markers for improving farm animals. In Genomics and Biotechnological Advances in Veterinary, Poultry, and Fisheries; Academic Press: Cambridge, MA, USA, 2020; pp. 107–129. [Google Scholar]
- Eusebi, P.G.; Martinez, A.; Cortes, O. Genomic Tools for Effective Conservation of Livestock Breed Diversity. Diversity 2020, 12, 8. [Google Scholar] [CrossRef]
- Meuwissen, T.H.; Sonesson, A.K.; Gebregiwergis, G.; Woolliams, J.A. Management of genetic diversity in the era of genomics. Front. Genet. 2020, 11, 472717. [Google Scholar] [CrossRef]
- Eynard, S.E.; Windig, J.J.; Hiemstra, S.J.; Calus, M.P.L. Whole-genome sequence data uncover loss of genetic diversity due to selection. Genet. Sel. Evol. 2016, 48, 33. [Google Scholar] [CrossRef]
- Alberto, F.J.; Boyer, F.; Orozco-terWengel, P.; Streeter, I.; Servin, B.; De Villemereuil, P.; Benjelloun, B.; Librado, P.; Biscarini, F.; Colli, L.; et al. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 2018, 9, 813. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358. [Google Scholar] [CrossRef] [PubMed]
- Yeh, F.C.; Yang, R.C.; Boyle, T.B.; Ye, Z.H.; Mao, J.X. PopGene, the User-Friendly Shareware for Population Genetic Analysis, Molecular Biology and Biotechnology Center; University of Alberta: Edmonton, AB, Canada, 1997. [Google Scholar]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314. [Google Scholar]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Colli, L.; Milanesi, M.; Talenti, A.; Bertolini, F.; Chen, M.; Crisà, A.; Daly, K.G.; Corvo, M.D.; Guldbrandtsen, B.; Lenstra, J.A.; et al. Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes. Genet. Sel. Evol. 2018, 50, 58. [Google Scholar] [CrossRef]
- Daly, K.G.; Maisano Delser, P.; Mullin, V.E.; Scheu, A.; Mattiangeli, V.; Teasdale, M.D.; Hare, A.J.; Burger, J.; Verdugo, M.P.; Collins, M.J.; et al. Ancient goat genomes reveal mosaic domestication in the Fertile Crescent. Science 2018, 361, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Naderi, S.; Rezaei, H.R.; Pompanon, F.; Blum, M.G.; Negrini, R.; Naghash, H.R.; Balkiz, O.; Mashkour, M.; Gaggiotti, O.E.; Ajmone-Marsan, P.; et al. The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals. Proc. Natl. Acad. Sci. USA 2008, 105, 17659–17664. [Google Scholar] [CrossRef]
- Colli, L.; Lancioni, H.; Cardinali, I.; Olivieri, A.; Capodiferro, M.R.; Pellecchia, M.; Rzepus, M.; Zamani, W.; Naderi, S.; Gandini, F.; et al. Whole mitochondrial genomes unveil the impact of domestication on goat matrilineal variability. BMC Genom. 2015, 16, 1115. [Google Scholar] [CrossRef]
- Ahmed, A.V.; Classeva, A.; Kitanova, S.; Genov, P. Bezoar wild goat (Capra aegagrus Erxleben, 1777) history and opportunities for development of the species in Bulgaria. J. Ani. Vet. Advan. 2016, 6, 171–175. [Google Scholar]
- Bruinsma, J. World Agriculture: Towards 2015/2030: An FAO Study; Routledge: London, UK, 2017. [Google Scholar]
- Giller, K.E.; Delaune, T.; Silva, J.V.; Gerrie van de Ven, K.D.; Schut, A.G.T.; van Wijk, M.; Hammond, J.; Hochman, Z.; Taulya, G.; Chikowo, R.; et al. The future of farming: Who will produce our food? Food Sec. 2021, 13, 1073–1099. [Google Scholar] [CrossRef]
- Hristov, P.; Spassov, N.; Iliev, N.; Radoslavov, G. An independent event of Neolithic cattle domestication on the South-eastern Balkans: Evidence from prehistoric aurochs and cattle populations. Mitochondrial DNA A DNA Mapp. Seq. Anal. 2017, 28, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Perini, F.; Cardinali, I.; Ceccobelli, S.; Gruppetta, A.; San José, C.; Cosenza, M.; Musso, N.; Martìnez, A.; Abushady, A.M.; Monteagudo, L.V.; et al. Phylogeographic and population genetic structure of hound-like native dogs of the Mediterranean Basin. Res. Vet. Sci. 2023, 155, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, P.; Lancioni, H.; Ceccobelli, S.; Colli, L.; Cardinali, I.; Karsli, T.; Capodiferro, M.R.; Sahin, E.; Ferretti, L.; Ajmone Marsan, P.; et al. Mitochondrial DNA variants of Podolian cattle breeds testify for a dual maternal origin. PLoS ONE 2018, 13, e0192567. [Google Scholar] [CrossRef] [PubMed]
- Marinov, M.; Teofanova, D.; Gadjev, D.; Radoslavov, G.; Hristov, P. Mitochondrial diversity of Bulgarian native dogs suggests dual phylogenetic origin. PeerJ 2018, 6, e5060. [Google Scholar] [CrossRef]
- Yankova, I.; Marinov, M.; Neov, B.; Petrova, M.; Spassov, N.; Hristov, P.; Radoslavov, G. Evidence for early European Neolithic dog dispersal: New data on southeastern european subfossil dogs from the prehistoric and antiquity ages. Genes 2019, 10, 757. [Google Scholar] [CrossRef]
- Negrini, R.; D’Andrea, M.; Crepaldi, P.; Colli, L.; Nicoloso, L.; Guastella, A.M.; Sechi, T.; Bordonaro, S.; Ajmone-Marsan, P.; Pilla, F.; et al. Effect of microsatellite outliers on the genetic structure of eight Italian goat breeds. Small Rumin. Res. 2012, 103, 99–107. [Google Scholar] [CrossRef]
- Hoda, A. Genetic diversity of the Capore goat in Albania based on 30 microsatellite markers. Maced. J. Anim. Sci. 2011, 1, 53–56. [Google Scholar] [CrossRef]
- Ramljak, J.; Mioč, B.; Ćurković, M.; Pavić, V.; Ivanković, A.; Međugorac, I. Genetic diversity measures of the Croatian spotted goat. Acta Vet. 2011, 61, 373–382. [Google Scholar] [CrossRef]
- Ağaoğlu, Ö.K.; Ertuğrul, O. Assessment of genetic diversity, genetic relationship and bottleneck using microsatellites in some native Turkish goat breeds. Small Rumin. Res. 2012, 105, 53–60. [Google Scholar] [CrossRef]
- Demiray, A.; Gündüz, Z.; Ata, N.; Yılmaz, O.; Cemal, İ.; Konyalı, A.; Semen, Z.; Altuntaş, A.; Atik, A.; Akçay, A.; et al. Genetic diversity and population structure of Anatolian Hair goats, an ancient breed. Arch. Anim. Breed. 2024, 67, 13–23. [Google Scholar] [CrossRef]
- Mukhopadhyay, T.; Bhattacharjee, S. Genetic Diversity: Importance and Measurements. In Conserving Biological Diversity: A Multiscaled Approach; Research India Publications: New Delhi, India, 2016; pp. 251–295. [Google Scholar]
- Ellegren, H.; Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 2016, 17, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef] [PubMed]
- Sheriff, O.; Alemayehu, K. Genetic diversity studies using microsatellite markers and their contribution in supporting sustainable sheep breeding programs: A review. Cogent. Food Agric. 2018, 4, 1459062. [Google Scholar] [CrossRef]
- Serrote, C.M.L.; Reiniger, L.R.S.; Silva, K.B.; dos Santos Rabaiolli, S.M.; Stefanel, C.M. Determining the Polymorphism Information Content of a molecular marker. Gene 2020, 726, 144175. [Google Scholar] [CrossRef]
- Yaro, M.; Munyard, K.A.; Stear, M.J.; Groth, D.M. Molecular identification of livestock breeds: A tool for modern conservation biology. Biol. Rev. Camb. Philos. Soc. 2017, 92, 993–1010. [Google Scholar] [CrossRef]
- Rasoarahona, R.; Wattanadilokchatkun, P.; Panthum, T.; Thong, T.; Singchat, W.; Ahmad, S.F.; Chaiyes, A.; Han, K.; Kraichak, E.; Muangmai, N.; et al. Optimizing Microsatellite Marker Panels for Genetic Diversity and Population Genetic Studies: An Ant Colony Algorithm Approach with Polymorphic Information Content. Biology 2023, 12, 1280. [Google Scholar] [CrossRef] [PubMed]
- Meirmans, P.G.; Hedrick, P.W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 2011, 11, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Martins, H.; Caye, K.; Luu, K.; Blum, M.G.; François, O. Identifying outlier loci in admixed and in continuous populations using ancestral population differentiation statistics. Mol. Ecol. 2016, 25, 5029–5042. [Google Scholar] [CrossRef]
- Hall, S.J.G. Genetic Differentiation among Livestock Breeds-Values for Fst. Animals 2022, 12, 1115. [Google Scholar] [CrossRef] [PubMed]
- Woolliams, J.A.; Oldenbroek, J.K. Genetic diversity issues in animal populations in the genomic era. In Genomic Management of Animal Genetic Diversity; Wageningen Academic: Wageningen, The Netherlands, 2017; pp. 13–47. [Google Scholar]
- Rexroad, C.; Vallet, J.; Matukumalli, L.K.; Reecy, J.; Bickhart, D.; Blackburn, H.; Boggess, M.; Cheng, H.; Clutter, A.; Cockett, N.; et al. Genome to phenome: Improving animal health, production, and well-being-a new USDA blueprint for animal genome research 2018–2027. Front. Genet. 2019, 10, 327. [Google Scholar] [CrossRef] [PubMed]
- Ajmone-Marsan, P.; Boettcher, P.J.; Ginja, C.; Kantanen, J.; Lenstra, J.A. Genomic Characterization of Animal Genetic Resources: Practical Guide; Food & Agriculture Organization: Rome, Italy, 2023. [Google Scholar]
Locus | Na | Ne | PIC | Ho | He | I | F (Null) |
---|---|---|---|---|---|---|---|
CSRD247 | 9.0 | 5.55 | 0.83 | 0.80 | 0.82 | 1.90 | 0.0271 |
ILSTS008 | 7.0 | 2.47 | 0.56 | 0.57 | 0.58 | 1.22 | 0.0256 |
ILSTS019 | 6.0 | 3.64 | 0.69 | 0.72 | 0.72 | 1.46 | 0.0028 |
ILSTS087 | 9.0 | 4.95 | 0.78 | 0.75 | 0.79 | 1.77 | 0.0347 |
INRA005 | 5.00 | 3.01 | 0.64 | 0.62 | 0.67 | 1.27 | 0.0561 |
INRA006 | 12.50 | 6.69 | 0.86 | 0.80 | 0.85 | 2.12 | 0.0366 |
INRA023 | 10.50 | 4.66 | 0.77 | 0.73 | 0.78 | 1.82 | 0.0525 |
INRA063 | 5.50 | 2.88 | 0.59 | 0.63 | 0.65 | 1.22 | 0.0261 |
MAF65 | 14.50 | 8.21 | 0.88 | 0.91 | 0.88 | 2.31 | −0.0166 |
MCM527 | 7.00 | 4.82 | 0.77 | 0.77 | 0.79 | 1.71 | 0.0235 |
OARFCB20 | 7.50 | 3.21 | 0.66 | 0.66 | 0.69 | 1.40 | 0.0160 |
SRCRSP5 | 9.00 | 4.57 | 0.76 | 0.78 | 0.78 | 1.76 | −0.0060 |
SRCRSP8 | 9.00 | 5.70 | 0.81 | 0.85 | 0.82 | 1.91 | −0.0123 |
SRCRSP23 | 12.50 | 7.29 | 0.86 | 0.82 | 0.86 | 2.16 | 0.0260 |
Mean | 8.82 | 4.83 | 0.75 | 0.75 | 0.76 | 1.72 | |
SE | 0.57 | 0.34 | 0.02 | 0.02 | 0.07 |
Locus | FIS a | FIT a | FST a | Nm | GST | HT | D |
---|---|---|---|---|---|---|---|
CSRD247 | 0.020 | 0.049 | 0.029 | 2.131 | 0.026 | 0.846 | 0.255 |
ILSTS008 | 0.026 | 0.051 | 0.029 | 2.631 | 0.023 | 0.603 | 0.067 |
ILSTS019 | 0.001 | 0.012 | 0.029 | 2.231 | 0.008 | 0.734 | 0.043 |
ILSTS087 | 0.049 | 0.061 | 0.029 | 2.030 | 0.009 | 0.796 | 0.071 |
INRA005 | 0.066 | 0.105 | 0.029 | 2.150 | 0.038 | 0.696 | 0.162 |
INRA006 | 0.054 | 0.078 | 0.029 | 2.153 | 0.023 | 0.873 | 0.276 |
INRA023 | 0.071 | 0.082 | 0.029 | 2.078 | 0.009 | 0.797 | 0.067 |
INRA063 | 0.032 | 0.036 | 0.029 | 2.511 | 0.001 | 0.650 | 0.002 |
MAF65A | −0.039 | −0.029 | 0.029 | 2.281 | 0.007 | 0.886 | 0.106 |
MCM527 | 0.025 | 0.039 | 0.029 | 2.442 | 0.011 | 0.803 | 0.087 |
OARFCB20 | 0.037 | 0.043 | 0.029 | 3.701 | 0.003 | 0.696 | 0.013 |
SRCRSP05 | 0.003 | 0.010 | 0.029 | 3.133 | 0.004 | 0.785 | 0.028 |
SRCRSP08 | −0.033 | −0.026 | 0.029 | 3.118 | 0.004 | 0.831 | 0.037 |
SRCRSP23 | 0.039 | 0.052 | 0.029 | 2.580 | 0.010 | 0.871 | 0.130 |
Mean | 0.025 | 0.040 | 0.016 | 2.512 | 0.012 | 0.776 | 0.083 |
SE | 0.009 | 0.010 | 0.003 | 0.132 | 0.003 | 0.024 | 0.020 |
Breed | Acronym | N | Number of Alleles | Na | Ne | Ho | He | FIS |
---|---|---|---|---|---|---|---|---|
Kalofer long-haired | KLH | 66 | 111 | 7.929 | 4.757 | 0.737 | 0.764 | 0.037 |
Bulgarian screw-horned long-haired | BSLH | 86 | 147 | 9.714 | 4.911 | 0.754 | 0.764 | 0.011 |
Mean | 129 | 8.821 | 4.834 | 0.746 | 0.764 | 0.024 | ||
SE | 0.571 | 0.336 | 0.020 | 0.017 | 0.012 |
Flocks/Breeds * | Sample No. | Na | Ne | Ho | He | FIS |
---|---|---|---|---|---|---|
KLH FL1 | 18 | 6.57 | 4.09 | 0.75 | 0.74 | −0.02 |
KLH FL2 | 10 | 4.64 | 3.42 | 0.76 | 0.69 | −0.11 |
KLH FL3 | 8 | 5.43 | 3.89 | 0.79 | 0.71 | −0.13 |
KLH FL4 | 10 | 4.86 | 3.56 | 0.71 | 0.69 | −0.03 |
KLH FL5 | 10 | 5.36 | 3.54 | 0.70 | 0.67 | −0.02 |
KLH FL6 | 10 | 5.21 | 3.68 | 0.69 | 0.69 | 0.04 |
BSLH FL1 | 10 | 5.71 | 3.50 | 0.73 | 0.68 | −0.07 |
BSLH FL2 | 10 | 5.79 | 3.91 | 0.78 | 0.72 | −0.09 |
BSLH FL3 | 10 | 5.93 | 3.76 | 0.71 | 0.71 | −0.005 |
BSLH FL4 | 10 | 5.86 | 3.75 | 0.78 | 0.70 | −0.11 |
BSLH FL5 | 10 | 5.71 | 3.78 | 0.73 | 0.68 | −0.08 |
BSLH FL6 | 8 | 5.86 | 4.24 | 0.82 | 0.73 | −0.12 |
BSLH Fl7 | 10 | 6.21 | 4.14 | 0.76 | 0.72 | −0.05 |
BSLH FL8 | 8 | 5.93 | 4.04 | 0.77 | 0.73 | −0.06 |
BSLH FL9 | 10 | 5.93 | 3.70 | 0.71 | 0.69 | −0.03 |
Mean | 5.67 | 3.80 | 0.75 | 0.70 | −0.06 | |
SE | 0.11 | 0.09 | 0.01 | 0.01 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yordanov, G.; Kalaydzhiev, G.; Palova, N.; Salkova, D.; Lozanova, L.; Dundarova, H.; Odjakova, T.; Todorov, P.; Radoslavov, G.; Hristov, P. Genetic Differentiation and Population Structure of Two Bulgarian Local Goat Breeds Using Microsatellite Markers. Diversity 2024, 16, 388. https://doi.org/10.3390/d16070388
Yordanov G, Kalaydzhiev G, Palova N, Salkova D, Lozanova L, Dundarova H, Odjakova T, Todorov P, Radoslavov G, Hristov P. Genetic Differentiation and Population Structure of Two Bulgarian Local Goat Breeds Using Microsatellite Markers. Diversity. 2024; 16(7):388. https://doi.org/10.3390/d16070388
Chicago/Turabian StyleYordanov, Georgi, Georgi Kalaydzhiev, Nadezhda Palova, Delka Salkova, Lyudmila Lozanova, Heliana Dundarova, Tsonka Odjakova, Pavel Todorov, Georgi Radoslavov, and Peter Hristov. 2024. "Genetic Differentiation and Population Structure of Two Bulgarian Local Goat Breeds Using Microsatellite Markers" Diversity 16, no. 7: 388. https://doi.org/10.3390/d16070388
APA StyleYordanov, G., Kalaydzhiev, G., Palova, N., Salkova, D., Lozanova, L., Dundarova, H., Odjakova, T., Todorov, P., Radoslavov, G., & Hristov, P. (2024). Genetic Differentiation and Population Structure of Two Bulgarian Local Goat Breeds Using Microsatellite Markers. Diversity, 16(7), 388. https://doi.org/10.3390/d16070388