Drivers for the Diversity of Mollusc Communities in Unique Calcareous Fen Habitats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field and Laboratory Methods
- Permanence/astatism (expressed as the number of months during which water was present at a site).
- Fish predation pressure on molluscs.
- The overall coverage (percentage) of a site by vegetation.
- The coverage of helophytes.
- The coverage of floating macrophytes.
- The coverage of submersed macrophytes.
- Diversity of riparian vegetation.
- Moving the meadows.
2.3. Numerical and Statistical Analyses
- Dominance index D% divided into five classes (eudominants > 10.0% of a sample, dominants 5.1–10.0% of a sample, subdominants 2.1–5.0% of a sample, recedents 1.1–2.0% of a sample and subrecedents ≤ 1.0% of a sample).
- Frequency index F% divided into four classes (euconstants 75.1–100.0% of samples, constants 50.1–75.0% of samples, accessory species 25.1–50.0% of samples, and accedents ≤ 25.0% of samples).
- The Shannon–Wiener index H’.
- The density of Mollusca is estimated as the number of individuals per square metre.
3. Results
3.1. Environmental Variables
3.2. The Structure of Mollusc Communities
3.3. Mollusc Communities in Relation to Environmental Data
3.4. The Similarity of the Species Composition of Molluscs between the Types of Calcareous Fen Habitats
4. Discussion
4.1. Diversity of Mollusc Communities in Calcareous Fen Habitats
4.2. Molluscs in Relation to the Environmental Variables in Unique Calcareous Fen Habitats
4.3. Calcareous Fens as Unique Habitats for Rare and Threatened Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Living Planet Report 2020. WWF (2020) Living Planet Report 2020—Bending the Curve of Biodiversity Loss; Almond, R.E.A., Grooten, M., Petersen, T., Eds.; WWF: Gland, Switzerland, 2020. [Google Scholar]
- Living Planet Report 2022. CWWF (2022) Living Planet Report 2022—Building a Naturepositive Society; Almond, R.E.A., Grooten, M., Juffe Bignoli, D., Petersen, T., Eds.; WWF: Gland, Switzerland, 2022. [Google Scholar]
- Bijkerk, E.; Regan, S.; Paul, M.; Johnston, P.M.; Coxon, C.; Gill, L.W. The challenge of developing ecohydrological metrics for vegetation communities in calcareous fen wetland systems. Front. Earth Sci. 2022, 10, 917233. [Google Scholar] [CrossRef]
- Singh, P.; Jiroušek, M.; Hájková, P.; Horsák, M.; Hájek, M. The future of carbon storage in calcareous fens depends on the balance between groundwater discharge and air temperature. Catena 2023, 231, 107350. [Google Scholar] [CrossRef]
- Štokmane, M.; Spuņģis, V. The influence of vegetation structure on spider species richness, diversity and community organization in the Apšuciems calcareous fen, Latvia. Anim. Biodivers. Conserv. 2016, 39, 221–236. [Google Scholar] [CrossRef]
- Štokmane, M.; Cera, I. Revision of the calcareous fen arachnofauna: Habitat affinities of the fen-inhabiting spiders. ZooKeys 2018, 802, 67–108. [Google Scholar] [CrossRef] [PubMed]
- Buczyńska, E.; Tarkowski, A.; Sugier, P.; Płaska, W.; Zawal, A.; Janicka, A.; Buczyński, P. Caddisflies (Trichoptera) of Protected Calcareous Fen Habitats: Assemblages, Environmental Drivers, Indicator Species, and Conservation Issues. Insects 2023, 14, 850. [Google Scholar] [CrossRef]
- Council Directive 92/43/EEC; Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and Wild Fauna and Flora. Council of the European Communities: Brussels, Belgium, 1992.
- Horsák, M.; Rádkowá, V.; Syrovátka, V.; Bojková, J.; Křoupalová, V.; Schenková, J.; Zajacová, J. Drivers of aquatic macroinvertebrate richness in spring fens in relation to habitat specialization and dispersal mode. J. Biogeogr. 2015, 42, 2112–2121. [Google Scholar] [CrossRef]
- Böhm, M.; Dewhurst-Richman, N.I.; Seddon, M.; Ledge, S.E.H.; Albrecht, C.; Allen, D.; Bogan, A.E.; Cordeiri, J.; Cummings, K.S.; Cuttelod, A.; et al. The conservation status of the world’s freshwater molluscs. Hydrobiologia 2021, 848, 3231–3254. [Google Scholar] [CrossRef]
- Ormerod, S.J.; Durance, I.; Terrier, A.; Swanson, A.M. Priority Wetland Invertebrates as Conservation Surrogates. Conserv. Biol. 2010, 24, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Directive 2009/147/EC; Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the Conservation of Wild Birds (Codified Version); Official Journal of the European Union (L20/7). Publications Office of the European Union: Luxembourg, 2009; pp. 1–19.
- Piechocki, A.; Wawrzyniak-Wydrowska, B. Guide to Freshwater and Marine Mollusca of Poland; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2016. [Google Scholar]
- Górny, M.; Grüm, L. Metody Stosowane w Zoologii Gleby; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1981. [Google Scholar]
- McCune, B.; Grace, J.B. Analysis of Ecological Communities; MjM Software Design: Gleneden Beach, OR, USA, 2002. [Google Scholar]
- Ter Braak, C.J.F.; Šmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5), 2nd ed.; Microcomputer Power: Ithaca, NY, USA, 2002. [Google Scholar]
- Painter, D. Macroinvertebrate distributions and the conservation value of aquatic Coleoptera\Mollusca and Odonata in the ditches of traditionally managed and grazing fen at Wicken Fen\UK. J. Appl. Ecol. 1999, 36, 33–48. [Google Scholar] [CrossRef]
- Horsák, M.; Cernohorsky, N. Mollusc diversity patterns in Central European fens: Hotspots and conservation priorities. J. Biogeogr. 2008, 35, 1215–1225. [Google Scholar] [CrossRef]
- Schenková, V.; Horsák, M.; Hájek, M.; Hájková, P.; Díté, D. Mollusc assemblages of Scandinavian fens: Species composition in relation to environmental gradients and vegetation. Ann. Zool. Fenn. 2015, 52, 1–16. [Google Scholar] [CrossRef]
- Lewin, I. Mollusc communities of lowland rivers and oxbow lakes in agricultural areas with anthropogenically elevated nutrient concentration. Folia Malacol. 2014, 22, 87–159. [Google Scholar] [CrossRef]
- Jurkiewicz-Karnkowska, E. Diversity of aquatic malacofauna of temporary water bodies within the lower Bug river floodplain. Folia Malacol. 2011, 19, 9–18. [Google Scholar] [CrossRef]
- Watson, A.M.; Ormerod, S.J. The distribution of three uncommon freshwater gastropods in the drainage ditches of British grazing marshes. Biol. Conserv. 2004, 118, 455–466. [Google Scholar] [CrossRef]
- Buczyński, P. Dragonflies (Odonata) of Anthropogenic Waters in Middle-Eastern Poland; Wydawnictwo Mantis: Olsztyn, Poland, 2015. [Google Scholar]
- Hájek, M.; Horsáková, V.; Hájková, P.; Coufal, R.; Díte, D.; Němec, T.; Horsák, M. Habitat extremity and conservation management stabilise endangered calcareous fens in a changing world. Sci. Total Environ. 2020, 719, 134693. [Google Scholar] [CrossRef]
- Økland, J. Factors regulating the distribution of fresh-water snails (Gastropoda) in Norway. Malacologia 1983, 24, 277–288. [Google Scholar]
- Hunter, R.D. Effects of low pH and low calcium concentration on the pulmonate snail Planorbella trivolvis: A laboratory study. Can. J. Zool. 1990, 68, 1382–1389. [Google Scholar] [CrossRef]
- Horsák, M.; Hájek, M. Composition and species richness of molluscan communities in relation to vegetation and water chemistry in the Western Carpathian spring fens: The poor–rich gradient. J. Moll. Stud. 2003, 69, 349–357. [Google Scholar] [CrossRef]
- Horsák, M.; Hájek, M.; Hájková, P.; Cameron, R.; Cernohorsky, N.; Apostolova, I. Mollusc communities in Bulgarian fens: Predictive power of the environment, vegetation, and spatial structure in an isolated habitat. Naturwissenschaften 2011, 98, 671–681. [Google Scholar] [CrossRef]
- Dodds, W.K.; Whiles, M.R. Freshwater Ecology: Concepts and Environmental Applications of Limnology, 3rd ed.; Elsevier: London, UK; Academic Press: Cambridge, MA, USA, 2020; ISBN 978-0-12-813255-5. [Google Scholar]
- Lodge, D.M. Macrophyte-gastropod associations: Observations and experiments on macrophyte choice by gastropods. Freshw. Biol. 1985, 15, 695–708. [Google Scholar] [CrossRef]
- Thomas, J.D.; Kowalczyk, C. Utilization of dissolved organic matter (DOM), from living macrophytes, by pulmonate snails: Implications to the “food web” and “module” concepts. Comp. Biochem. Phys. A 1997, 117, 105–119. [Google Scholar] [CrossRef]
- Lajtner, J.; Kozak, A.; Špoljar, M.; Kuczyńska-Kippen, N.; Dražina, T.; Perić, M.S.; Tkalčec, I.; Gottstein, S.; Zrinščak, I. Gastropod Assemblages Associated with Habitat Heterogeneity and Hydrological Shifts in Two Shallow Waterbodies. Water 2022, 14, 2290. [Google Scholar] [CrossRef]
- Cheng, H.; Feng, M.; Zhang, P.; Zhang, H.; Wang, H.; Xu, J.; Zhang, M. Effects of Warming on Aquatic Snails and Periphyton in Freshwater Ecosystems with and without Predation by Common Carp. Water 2023, 15, 153. [Google Scholar] [CrossRef]
- Cuttelod, A.; Seddon, M.; Neubert, E. European Red List of Non-Marine Molluscs; Publications Office of the European Union: Luxembourg, 2011. [Google Scholar]
- Piechocki, A. Gastropoda aquatica. Ślimaki wodne. In Czerwona Lista Zwierząt Ginących i Zagrożonych w Polsce. Red List of Threatened Animals in Poland; Głowaciński, Z., Ed.; Polish Academy of Sciences, Institute of Nature Conservation: Cracow, Poland, 2002; pp. 34–37. [Google Scholar]
- Terrier, A.; Castella, E.; Falkner, G.; Killeen, I. Species account for Anisus vorticulus (Troschel,1834) (Gastropoda: Planorbidae), a species listed in annexes II and IIV of the Habitats Directive. J. Conchol. 2006, 39, 193–205. [Google Scholar]
- Zettler, M.L. Some ecological peculiarities of Anisus vorticulus (Troschel 1834) (Gastropoda: Planorbidae) in northeast Germany. J. Conchol. 2013, 41, 389–398. [Google Scholar]
- Van Damme, D. Anisus Vorticulus. The IUCN Red List of Threatened Species 2012: e.T155966A738056; International Union for Conservation of Nature and Natural Resources: Gland, Switzerland, 2012. [Google Scholar] [CrossRef]
- Dz, U. 2021. Journal of Laws of the Republic of Poland, item 1752. Regulation of the Minister of Climate and Environment of 2 September 2021 on the special habitat protection area Torfowisko Chełmskie (PLH060023).
- Dyduch-Falniowska, A.; Zając, K. Bivalvia Małże. In Czerwona Lista Zwierząt Ginących i Zagrożonych w Polsce. Red List of Threatened Animals in Poland; Głowaciński, Z., Ed.; Polish Academy of Sciences: Warsaw, Poland; Institute of Nature Conservation Cracow: Kraków, Poland, 2002; pp. 23–26. [Google Scholar]
- Beran, L.; Horsák, M. Distribution of Bithynia leachii (Sheppard, 1823) and Bithynia troschelii (Paasch, 1842) (Gastropoda: Bithyniidae) in the Czech Republic. Malacol. Bohemoslov. 2009, 8, 19–23. [Google Scholar] [CrossRef]
- Gojšina, V.; Marković, V.; Karan-Žnidaršič, T. New Insight on the Presence of Several Freshwater Gastropod Species Considered Rare in Serbia. Acta Zool. Bul. 2024, 76, 43–48. [Google Scholar]
- Killeen, I.; Aldridge, D.; Oliver, G. Freshwater Bivalves of Britain and Ireland; FSC, AIDGSP Occasional Publication 82; Field Studies Council: Bonn, Germany, 2004. [Google Scholar]
- van Leeuwen, C.H.A.; der Velde, G. Prerequisites for Flying Snails: External Transport Potential of Aquatic Snails by Waterbirds. Freshw. Sci. 2012, 31, 963–972. [Google Scholar] [CrossRef]
- Gittenberger, E. Long-distance dispersal of molluscs: ‘Their distribution at first perplexed me much’. J. Biogeogr. 2012, 39, 10–11. [Google Scholar] [CrossRef]
- Lewin, I.; Stępień, E.; Szlauer-Łukaszewska, A.; Pakulnicka, J.; Stryjecki, R.; Pešić, V.; Bańkowska, A.; Szućko-Kociuba, I.; Michoński, G.; Krzynówek, Z.; et al. Drivers of the Structure of Mollusc Communities in the Natural Aquatic Habitats along the Valley of a Lowland River: Implications for Their Conservation through the Buffer Zones. Water 2023, 15, 2059. [Google Scholar] [CrossRef]
Parameter /Unit | UF N = 39 | DF N = 28 | FD N = 39 | FP N = 58 | H-Value | p-Value |
---|---|---|---|---|---|---|
TEMP [°C] | 7.27–33.29 | 7.35–30.68 | 7.44–26.60 | 6.39–25.30 | 5.84 | 0.1194 |
pH | 7.01–9.67 | 6.86–10.69 | 7.07–10.48 | 7.16–11.08 | 3.39 | 0.3353 |
ORP [mV] | −455.7–205.6 | −426.7–220.3 | −401.8–92.1 | −453.9–249.5 | 0.78 | 0.8551 |
DO [mg dm−3] | 0.0–9.35 | 0.0–10.21 | 0.0–10.24 | 0.0–10.42 | 7.75 | 0.0514 |
EC [µS cm−1] | 168–1187 FD | 294–864 FD | 372–3232 DF,FP,UF | 205–1111 FD | 15.82 | 0.0012 |
SR [Ohm cm−1] | 0.001–0.006 FD | 0.001–0.0029 FD | 0.0–0.003 DF,FP,UF | 0.0–0.005 FD | 15.27 | 0.0016 |
TDS [mg dm−3] | 84–593 FD | 127–432 FD | 178–1616 DF,FP,UF | 103–556 FD | 16.95 | 0.0070 |
Salinity [PSU] | 0.08–0.59 FD | 0.16–0.43 FD | 0.14–1.60 DF,FP,UF | 0.10–0.82 FD | 16.46 | 0.0090 |
Species | UF N = 39 | DF N = 28 | FD N = 39 | FP N = 55 | F |
---|---|---|---|---|---|
Viviparus contectus (Millet, 1813) | 0.18 | 0.06 | 1.21 | 4.56 | 21.3 |
Bithynia leachii (Sheppard, 1823) | 0.43 | 0.6 | |||
Bithynia tentaculata (Linnaeus, 1758) | 7.53 | 3.18 | 5.26 | 9.44 | 54.3 |
Valvata cristata O.F. Müller, 1774 | 2.33 | 3.76 | 3.06 | 2.92 | 25.6 |
Valvata macrostoma Mörch, 1864 | 3.14 | 5.45 | 5.19 | 3.41 | 32.3 |
Acroloxus lacustris (Linnaeus, 1758) | 0.09 | 0.13 | 1.8 | ||
Lymnaea stagnalis (Linnaeus, 1758) | 0.72 | 0.19 | 13.01 | 2.22 | 30.5 |
Radix balthica (Linnaeus, 1758) | 0.63 | 0.19 | 2.35 | 4.31 | 15.8 |
Stagnicola corvus (Gmelin, 1778) | 2.06 | 0.32 | 1.77 | 14.0 | |
Stagnicola palustris (O.F. Müller, 1774) | 0.45 | 1.17 | 0.43 | 0.06 | 6.1 |
Physa acuta (Draparnaud, 1805) | 0.14 | 0.6 | |||
Physa fontinalis (Linnaeus, 1758) | 0.43 | 2.4 | |||
Anisus leucostoma (Millet, 1813) | 3.94 | 4.93 | 3.41 | 3.99 | 37.8 |
Anisus spirorbis (Linnaeus, 1758) | 0.71 | 0.89 | 1.2 | ||
Anisus vortex (Linnaeus, 1758) | 0.72 | 0.19 | 4.12 | 0.44 | 14.6 |
Anisus vorticulus (Troschel, 1834) | 0.13 | 1.2 | |||
Bathyomphalus contortus (Linnaeus, 1758) | 10.22 | 8.37 | 4.76 | 7.41 | 53.1 |
Gyraulus albus (O.F. Müller, 1774) | 0.09 | 0.06 | 0.57 | 0.19 | 4.3 |
Gyraulus crista (Linnaeus, 1758) | 0.72 | 0.19 | 0.51 | 6.1 | |
Hippeutis complanatus (Linnaeus, 1758) | 0.54 | 0.39 | 1.20 | 7.9 | |
Planorbarius corneus (Linnaeus, 1758) | 12.01 | 9.41 | 15.64 | 9.51 | 75.6 |
Planorbis planorbis (Linnaeus, 1758) | 41.31 | 56.0 | 32.76 | 38.66 | 71.3 |
Segmentina nitida (O.F. Müller, 1774) | 2.96 | 0.91 | 0.36 | 1.14 | 17.1 |
Musculium lacustre (O.F. Müller, 1774) | 0.90 | 1.21 | 4.3 | ||
Pisidium nitidum Jenyns, 1832 | 0.09 | 0.6 | |||
Pisidium sp. | 5.56 | 0.91 | 0.57 | 0.89 | 14.6 |
Sphaerium corneum (Linnaeus, 1758) | 3.85 | 3.57 | 5.12 | 6.21 | 39.6 |
Number of specimens | 1116 | 1541 | 1407 | 1578 | |
The total number of species/taxa | 22 | 20 | 20 | 22 | |
The Shannon-Wiener index H’(min-max) | 0.0–3.0 | 0.0–2.66 | 0.0–3.04 | 0.0–2.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewin, I.; Tarkowski, A.; Sugier, P.; Płaska, W.; Buczyńska, E.; Buczyński, P. Drivers for the Diversity of Mollusc Communities in Unique Calcareous Fen Habitats. Diversity 2024, 16, 350. https://doi.org/10.3390/d16060350
Lewin I, Tarkowski A, Sugier P, Płaska W, Buczyńska E, Buczyński P. Drivers for the Diversity of Mollusc Communities in Unique Calcareous Fen Habitats. Diversity. 2024; 16(6):350. https://doi.org/10.3390/d16060350
Chicago/Turabian StyleLewin, Iga, Adam Tarkowski, Piotr Sugier, Wojciech Płaska, Edyta Buczyńska, and Paweł Buczyński. 2024. "Drivers for the Diversity of Mollusc Communities in Unique Calcareous Fen Habitats" Diversity 16, no. 6: 350. https://doi.org/10.3390/d16060350
APA StyleLewin, I., Tarkowski, A., Sugier, P., Płaska, W., Buczyńska, E., & Buczyński, P. (2024). Drivers for the Diversity of Mollusc Communities in Unique Calcareous Fen Habitats. Diversity, 16(6), 350. https://doi.org/10.3390/d16060350