Mapping Breeding Birds in a Karstic Sinkhole with a Comparison between Different Sampling Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Bird Survey
2.3. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Özkan, K.; Gulsoy, S.; Mert, A.; Ozturk, M.; Muys, B. Plant distribution-altitude and landform relationships in karstic sinkholes of Mediterranean region of Turkey. J. Environm. Biol. 2010, 31, 51–60. [Google Scholar]
- Bàtori, Z.; Gallé, R.; Erdõs, L.; Körmöczi, L. Ecological conditions, flora and vegetation of a large doline in the Mecsek Mountains (South Hungary). Acta Bot. Croat. 2011, 70, 147–155. [Google Scholar] [CrossRef]
- Bàtori, Z.; Csiky, J.; Farkas, T.; Vojtkó, A.E.; Erdõs, L.; Kovacs, D.; Wirth, T.; Kormoczi, L.; Tölgyesi, C.; Körmöczi, L.; et al. A comparison of the vegetation of forested and non-forested solution dolines in Hungary: A preliminary study. Intern. J. Speleol. 2014, 43, 15–26. [Google Scholar] [CrossRef]
- Battisti, C.; Giardini, M.; Marini, F.; Di Rocco, L.; Dodaro, G.; Vignoli, L. Diversity metrics, species turnovers and nestedness of bird assemblages in a deep karst sinkhole. Isr. J. Ecol. Evol. 2017, 63, 8–15. [Google Scholar] [CrossRef]
- Dimitrova, M.; Brambilla, M.; Nikolov, B.P. Habitat preferences of Sombre Tit (Poecile lugubris) in a karst environment. Ornis Fenn. 2020, 97, 79–88. [Google Scholar] [CrossRef]
- Giardini, M.; Caramanna, G. Il Pozzo del Merro: Storia Delle Ricerche e Situazione Attuale; Giardini, M., Ed.; Sant’Angelo Romano (Monti Cornicolani, Roma). Un territorio ricco di storia e di natura; Comune di Sant’Angelo Romano, Regione Lazio—Assessorato Ambiente e Sviluppo sostenibile; Grafica Ripoli: Tivoli, Italy, 2012; pp. 265–273. [Google Scholar]
- Sutherland, W. Ecological Census Techniques; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Bibby, C.J.; Burgess, D.; Hill, D.A. Bird Census Techniques; Academic Press: London, UK, 1992. [Google Scholar]
- Cento, M.; Scrocca, R.; Coppola, M.; Rossi, M.; Di Giuseppe, R.; Battisti, C.; Luiselli, L.; Amori, G. Do McKinnon lists provide reliable data in bird species frequency? A comparison with transect-based data. Acta Oecol. 2018, 89, 27–31. [Google Scholar] [CrossRef]
- Baiocchi, V.; Caramanna, G.; Costantino, D.; D’Aranno, P.J.; Giannone, F.; Liso, L.; Piccaro, C.; Sonnessa, A.; Vecchio, M. First geomatic restitution of the sinkhole known as ‘Pozzo Del Merro’ (Italy), with the integration and comparison of ‘classic’ and innovative geomatic techniques. Environm. Earth Sc. 2018, 77, 61. [Google Scholar] [CrossRef]
- Bono, P. Is the “Merro Well” the deepest karst cenote explored in the world? Environm. Geol. 2001, 40, 787–788. [Google Scholar]
- Gary, M.O.; Sharp, J.M., Jr.; Caramanna, G.; Havens, R.H. Volcanically Influenced Speleogenesis: Forming El Sistema Zacatòn, Mexico, and Pozzo del Merro, Italy, the Deepest Phreatic Sinkholes in the World; Abstracts with Programs 34; Geological Society of America: Boulder, CO, USA, 2003; pp. 1–52. [Google Scholar]
- Palozzi, R.; Caramanna, G.; Albertano, P.; Congestri, R.; Bruno, L.; Romano, A.; Giganti, M.G.; Zenobi, R.; Costanzo, C.; Valente, G.; et al. The underwater exploration of the Merro sinkhole and the associated diving physiological and psychological effects. Underwater Technol. 2010, 29, 125–134. [Google Scholar] [CrossRef]
- Romano, A.; Salvidio, S.; Palozzi, R.; Sbordoni, V. Diet of the newt, Triturus carnifex (Laurenti, 1768), in the flooded karst sinkhole Pozzo del Merro, central Italy. J. Cave Karst Stud. 2012, 74, 271–277. [Google Scholar] [CrossRef]
- Margalef, R. Information theory in ecology. Gen. Syst. 1958, 3, 36–71. [Google Scholar]
- Magurran, A. Measuring Biological Diversity; Blackwell: London, UK, 2004. [Google Scholar]
- Battisti, C.; Dodaro, G. Mapping bird assemblages in a Mediterranean urban park: Evidence for a shift in dominance towards medium-large body sized species after 26 years. Belg. J. Zool. 2016, 146, 81–89. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1963. [Google Scholar]
- Lloyd, M.; Ghelardi, R.J. A table for calculating the ‘equitability’ component of species diversity. J. Anim. Ecol. 1964, 33, 217–225. [Google Scholar] [CrossRef]
- Whittaker, R.H. Dominance and diversity in land plant communities. Science 1965, 147, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Magurran, A.; McGill, B.J. Biological Diversity: Frontiers in Measurements and Assessments; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Dytham, C. Choosing and Using Statistics: A Biologist’s Guide; John Wiley and Sons: London, UK, 2011. [Google Scholar]
- Hammer, Ø.; Harper, D.A. Past: Paleontological statistics software package for educaton and data analysis. Palaeontol. Electr. 2001, 4, 1–9. [Google Scholar]
- Baccetti, N.; Fracasso, G. CISO-COI Check-list of Italian birds-2020. Avocetta 2021, 45, 21–82. [Google Scholar]
- Bianconi, R.; Battisti, C.; Zapparoli, M. Pattern of richness, abundance and diversity of four interior bird species in a hilly landscape in Central Italy: A contribution to assess their sensitivity to habitat fragmentation. J. Medit. Ecol. 2003, 4, 37–44. [Google Scholar]
- Willson, M.F.; Comet, T.A. Bird communities of northern forests: Ecological correlates of diversity and abundance in the understory. Condor 1996, 98, 350–362. [Google Scholar] [CrossRef]
- Orłowski, G.; Martini, K.; Martini, M. Avian responses to undergrowth removal in a suburban wood. Pol. J. Ecol. 2008, 56, 487–495. [Google Scholar]
- Dagan, U.; Izhaki, I. Understory vegetation in planted pine forests governs bird community composition and diversity in the eastern Mediterranean region. Forest Ecosyst. 2019, 6, 29. [Google Scholar] [CrossRef]
- Kipper, S.; Mundry, R.; Hultsch, H.; Todt, D. Long-term persistence of song performance rules in nightingales (Luscinia megarhynchos): A longitudinal field study on repertoire size and composition. Behaviour 2004, 141, 371–390. [Google Scholar]
- Winiarska, D.; Szymański, P.; Osiejuk, T.S. Detection ranges of forest bird vocalisations: Guidelines for passive acoustic monitoring. Sci. Rep. 2024, 14, 894. [Google Scholar] [CrossRef] [PubMed]
- Battisti, C.; Gippoliti, S. Conservation in the urban/countryside interface: A cautionary note from Italy. Conserv. Biol. 2004, 18, 581–583. [Google Scholar] [CrossRef]
Density | |||||
---|---|---|---|---|---|
Species | Pairs | p/ha (3 ha) | p/ha (7.9 ha) | FrMA | N |
Troglodytes troglodytes | 4 | 1.333 | 0.506 | 0.157 | 37 |
Sylvia atricapilla | 3.5 | 1.167 | 0.443 | 0.137 | 29 |
Turdus merula | 2.5 | 0.833 | 0.316 | 0.098 | 39 |
Luscinia megarhynchos | 2 | 0.667 | 0.253 | 0.078 | 23 |
Parus major | 1.5 | 0.500 | 0.190 | 0.059 | 21 |
Cyanistes caeruleus | 1.5 | 0.500 | 0.190 | 0.059 | 18 |
Columba palumbus | 1.5 | 0.500 | 0.190 | 0.059 | 17 |
Picus viridis | 0.5 | 0.167 | 0.063 | 0.020 | 11 |
Garrulus glandarius | 0.5 | 0.167 | 0.063 | 0.020 | 10 |
Erithacus rubecula | 1 | 0.333 | 0.127 | 0.039 | 9 |
Curruca melanocephala | 1 | 0.333 | 0.127 | 0.039 | 8 |
Passer domesticus | 0.5 | 0.167 | 0.063 | 0.020 | 7 |
Aegithalos caudatus | 1 | 0.333 | 0.127 | 0.039 | 6 |
Oriolus oriolus | 0.5 | 0.167 | 0.063 | 0.020 | 5 |
Cuculus canorus | 0.5 | 0.167 | 0.063 | 0.020 | 4 |
Hippolais polyglotta | 0.5 | 0.167 | 0.063 | 0.020 | 4 |
Phylloscopus collybita | 0.5 | 0.167 | 0.063 | 0.020 | 4 |
Serinus serinus | 0.5 | 0.167 | 0.063 | 0.020 | 4 |
Streptopelia decaocto | 0.5 | 0.167 | 0.063 | 0.020 | 3 |
Sylvia cantillans | 0.5 | 0.167 | 0.063 | 0.020 | 3 |
Corvus cornix | 0.5 | 0.167 | 0.063 | 0.020 | 3 |
Falco peregrinus | 0.5 | 0.167 | 0.063 | 0.020 | Nd |
Total | 25.5 | 8.5 | 3.228 | 1 | 265 |
Mapping | Point Counts | ||||||
---|---|---|---|---|---|---|---|
Species | frMA | n | frPC | n | χ2 | p | |
TRTR | Troglodytes troglodytes | 0.157 | 37 | 0.149 | 27 | 0.08 | 0.778 |
SYAT | Sylvia atricapilla | 0.137 | 29 | 0.105 | 19 | 0.02 | 0.881 |
TUME | Turdus merula | 0.098 | 39 | 0.149 | 27 | 0.003 | 0.953 |
LUME | Luscinia megarhynchos | 0.078 | 23 | 0.028 | 5 | 6.4 | 0.011 * |
PAMA | Parus major | 0.059 | 21 | 0.055 | 10 | 0.958 | 0.328 |
CYCA | Cyanistes caeruleus | 0.059 | 18 | 0.055 | 10 | 0.294 | 0.588 |
COPA | Columba palumbus | 0.059 | 17 | 0.055 | 10 | 0.15 | 0.699 |
PIVI | Picus viridis | 0.020 | 11 | 0.011 | 2 | 3.526 | 0.06 |
GAGL | Garrulus glandarius | 0.020 | 10 | 0.033 | 6 | 0.065 | 0.798 |
ERRU | Erithacus rubecula | 0.039 | 9 | 0.055 | 10 | 1.195 | 0.274 |
CUME | Curruca melanocephala | 0.039 | 8 | 0.061 | 11 | 2.467 | 0.117 |
PADO | Passer domesticus | 0.020 | 7 | 0.028 | 5 | 0.006 | 0.938 |
AECA | Aegithalos caudatus | 0.039 | 6 | 0.066 | 12 | 5.292 | 0.021 * |
OROR | Oriolus oriolus | 0.020 | 5 | 0.011 | 2 | ||
MEAP | Merops apiaster | 0.022 | 4 | ||||
CUCA | Cuculus canorus | 0.020 | 4 | ||||
HIPO | Hippolais polyglotta | 0.020 | 4 | 0.011 | 2 | ||
PHCO | Phylloscopus collybita | 0.020 | 4 | 0.006 | 1 | ||
SESE | Serinus serinus | 0.020 | 4 | 0.011 | 2 | ||
STDE | Streptopelia decaocto | 0.020 | 3 | 0.006 | 1 | ||
SYCA | Sylvia cantillans | 0.020 | 3 | 0.006 | 1 | ||
MOAL | Motacilla alba | 0.006 | 1 | ||||
COCO | Corvus cornix | 0.020 | 3 | 0.011 | 2 | ||
REIG | Regulus ignicapilla | 0.006 | 1 | ||||
FAPE | Falco peregrinus | 0.022 | 4 | ||||
FATI | Falco tinnunculus | 0.020 | 3 | 0.006 | 1 | ||
Total | 268 | 176 |
Univariate Metric | Mapping Method (Original Data) | Point Counts [4] |
---|---|---|
H’ | 2.797 | 2.7 |
J | 0.905 | 0.84 |
Dm | 3.764 | 4.64 |
S | 22 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battisti, C.; Crucitti, P.; Dodaro, G.; Giardini, M.; Marini, F. Mapping Breeding Birds in a Karstic Sinkhole with a Comparison between Different Sampling Methods. Diversity 2024, 16, 326. https://doi.org/10.3390/d16060326
Battisti C, Crucitti P, Dodaro G, Giardini M, Marini F. Mapping Breeding Birds in a Karstic Sinkhole with a Comparison between Different Sampling Methods. Diversity. 2024; 16(6):326. https://doi.org/10.3390/d16060326
Chicago/Turabian StyleBattisti, Corrado, Pierangelo Crucitti, Giuseppe Dodaro, Marco Giardini, and Francesca Marini. 2024. "Mapping Breeding Birds in a Karstic Sinkhole with a Comparison between Different Sampling Methods" Diversity 16, no. 6: 326. https://doi.org/10.3390/d16060326
APA StyleBattisti, C., Crucitti, P., Dodaro, G., Giardini, M., & Marini, F. (2024). Mapping Breeding Birds in a Karstic Sinkhole with a Comparison between Different Sampling Methods. Diversity, 16(6), 326. https://doi.org/10.3390/d16060326