The Potential of Artificial Snags to Promote Endangered Saproxylic Beetle Species in Bavarian Forests
Abstract
:1. Introduction
- Do artificially created high stumps harbour saproxylic beetle species of the Red List?
- How do beetle species richness and the occurrence of Red List beetle species differ among high stump characteristics as well as the amount of deadwood in the vicinity of the high stumps?
2. Material and Methods
2.1. Study Area and Site Selection
2.2. High Stumps Sampling
2.3. Insect Sampling and Identification
2.4. Data Analyses
3. Results
3.1. High Stump Characteristics
3.2. Beetle Species and Their Ecologies
3.3. Preferences of Beetle Species Regarding High Stump Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siitonen, J. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol. Bull. 2001, 49, 11–41. [Google Scholar]
- Speight, M.C. Saproxylic Invertebrates and Their Conservation; Council of Europe: Strasbourg, France, 1989; ISBN 92-871-1679-2. [Google Scholar]
- Bütler, R.; Schlaepfer, R. Wie viel Totholz braucht der Wald? Schweiz. Z. Forstwes. 2004, 155, 31–37. [Google Scholar] [CrossRef]
- Stokland, J.N.; Siitonen, J.; Jonsson, B.G. Biodiversity in Dead Wood; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Ulyshen, M.D. Saproxylic Insects: Diversity, Ecology and Conservation; Zoological Monographs; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Lachat, T.; Brang, P.; Bolliger, M.; Bollmann, K.; Brändli, U.-B.; Bütler, R.; Herrmann, S.; Schneider, O.; Wermelinger, B. Totholz im Wald—Entstehung, Bedeutung und Förderung. Eidgenössische Forschungsanstalt WSL. Merkbl. Für Die Prax. 2019, 52, 1–12. [Google Scholar]
- Rothacher, J.; Hagge, J.; Bässler, C.; Brandl, R.; Gruppe, A.; Müller, J. Logging operations creating snags, logs, and stumps under open and closed canopies promote stand-scale beetle diversity. For. Ecol. Manag. 2023, 540, 121022. [Google Scholar] [CrossRef]
- Humphrey, J.W.; Sippola, A.-L.; Lempérière, G.; Dodelin, B.; Alexander, K.N.A.; Butler, J.E. Deadwood as an indicator of biodiversity in European forests: From theory to operational guidance. In Monitoring and Indicators of Forest Biodiversity in Europe—From Ideas to Operationality; Marchetti, M., Ed.; EFI Proceeding; European Forest Institute: Joensuu, Finland, 2004; Volume 51, pp. 193–206. [Google Scholar]
- Stokland, J.N.; Tomter, S.M.; Söderberg, U. Development of dead wood indicators for biodiversity monitoring: Experiences from Scandinavia. In Monitoring and Indicators of Forest Biodiversity in Europe—From Ideas to Operationality; Marchetti, M., Ed.; EFI Proceeding; European Forest Institute: Joensuu, Finland, 2004; Volume 51, pp. 207–226. [Google Scholar]
- Zumr, V.; Remeš, J. Saproxylic beetles as an indicator of forest biodiversity and the influence of forest management on their crucial life attributes: Review. Zprávy Lesn. Výzkumu 2020, 65, 242–257. [Google Scholar]
- Seibold, S.; Brandl, R.; Buse, J.; Hothorn, T.; Schmidl, J.; Thorn, S.; Müller, J. Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv. Biol. 2015, 29, 382–390. [Google Scholar] [CrossRef]
- Caálix, M.; Alexandr, K.N.A.; Nieto, A.; Dodelin, B.; Soldati, F.; Telnov, D. European Red List of Saproxylic Beetles; IUCN: Brussels, Belgium, 2018; Available online: https://www.iucnredlist.org/resources/calix2018 (accessed on 19 January 2024).
- Nieto, A.; Alexander, K.N.A. European Red List of Saproxylic Beetles; Publications Office of the European Union: Luxembourg, 2010. [Google Scholar]
- Juutilainen, K.; Halme, P.; Kotiranta, H.; Mönkkönen, M. Size matters in studies of dead wood and wood-inhabiting fungi. Fungal Ecol. 2011, 4, 342–349. [Google Scholar] [CrossRef]
- Jonsell, M.; Weslien, J. Felled or standing retained wood—It makes a difference for saproxylic beetles. For. Ecol. Manag. 2003, 175, 425–435. [Google Scholar] [CrossRef]
- Zahner, V. Biologische Vielfalt durch Totholz. Zeitgeist oder Notwendigkeit? LWF Aktuell 1999, 18, 14–17. [Google Scholar]
- Abrahamsson, M.; Lindbladh, M. A comparison of saproxylic beetle occurrence between man-made high- and low-stumps of spruce (Picea abies). For. Ecol. Manag. 2006, 226, 230–237. [Google Scholar] [CrossRef]
- Jonsell, M.; Nittérus, K.; Stighäll, K. Saproxylic beetles in natural and man-made deciduous high stumps retained for conservation. Biol. Conserv. 2004, 118, 163–173. [Google Scholar] [CrossRef]
- Zumr, V.; Nakládal, O.; Gallo, J.; Remeš, J. Deadwood position matters: Diversity and biomass of saproxylic beetles in a temperate beech forest. For. Ecosyst. 2024, 11, 100174. [Google Scholar] [CrossRef]
- Lindhe, A.; Lindelöw, A. Cut high stumps of spruce, birch, aspen and oak as breeding substrates for saproxylic beetles. For. Ecol. Manag. 2004, 203, 1–20. [Google Scholar] [CrossRef]
- Ranius, T.; Ekvall, H.; Jonsson, M.; Bostedt, G. Cost-efficiency of measures to increase the amount of coarse woody debris in managed Norway spruce forests. For. Ecol. Manag. 2005, 206, 119–133. [Google Scholar] [CrossRef]
- Freude, H.; Harde, W.; Lohse, G.A. Die Käfer Mitteleuropas. Band 1–15; Goecke & Evers: Krefeld, Germany, 1965–2004. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 4 May 2023).
- Hervé, M. RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R Package Version 0.9-83-7. 2023. Available online: https://CRAN.R-project.org/package=RVAideMemoire (accessed on 26 February 2024).
- Lechowicz, M.J. The sampling characteristics of electivity indices. Oecologia 1982, 52, 22–30. [Google Scholar] [CrossRef]
- Reger, B.; Lackner, T.; Zahner, V. Aktiv Totholz schaffen? Das Projekt Hochstümpfe in Bayern. AFZ DerWald 2020, 21, 29–33. [Google Scholar]
- Lachat, T.; Wermelinger, B.; Gossner, M.M.; Bussler, H.; Isacsson, G.; Müller, J. Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecol. Indic. 2012, 23, 323–331. [Google Scholar] [CrossRef]
- Henneberg, B.; Bauer, S.; Birkenbach, M.; Mertl, V.; Steinbauer, M.J.; Feldhaar, H.; Obermaier, E. Influence of tree hollow characteristics and forest structure on saproxylic beetle diversity in tree hollows in managed forests in a regional comparison. Ecol. Evol. 2021, 11, 17973–17999. [Google Scholar] [CrossRef]
- Jonsell, M.; Hansson, J.; Wedmo, L. Diversity of saproxylic beetle species in logging residues in Sweden—Comparisons between tree species and diameters. Biol. Conserv. 2007, 138, 89–99. [Google Scholar] [CrossRef]
- Martikainen, P. Conservation of threatened saproxylic beetles: Significance of retained Aspen Populus tremula on clearcut areas. Ecol. Bull. 2001, 49, 205–218. [Google Scholar]
- Vogel, S.; Bussler, H.; Finnberg, S.; Müller, J.; Stengel, E.; Thorn, S. Diversity and conservation of saproxylic beetles in 42 European tree species: An experimental approach using early successional stages of branches. Insect Conserv. Divers. 2021, 14, 132–143. [Google Scholar] [CrossRef]
- Gossner, M.M.; Wende, B.; Levick, S.; Schall, P.; Floren, A.; Linsenmair, K.E.; Steffan-Dewenter, I.; Schulze, E.-D.; Weisser, W.W. Deadwood enrichment in European forests—Which tree species should be used to promote saproxylic beetle diversity? Biol. Conserv. 2016, 201, 92–102. [Google Scholar] [CrossRef]
- Mazzei, A.; Bonacci, T.; Contarini, E.; Zetto, T.; Brandmayr, P. Rediscovering the “umbrella species” candidate Cucujus cinnaberinus (Scopoli, 1763) in southern Italy (Coleoptera Cucujidae), and notes on bionomy. Ital. J. Zool. 2011, 78, 264–270. [Google Scholar] [CrossRef]
- Zumr, V.; Nakládal, O.; Bílek, L.; Remeš, J. The diameter of beech snags is an important factor for saproxylic beetle richness: Implications for forest management and conservation. For. Ecosyst. 2023, 10, 100143. [Google Scholar] [CrossRef]
- Lindhe, A.; Lindelöw, Å.; Åsenblad, N. Saproxylic beetles in standing dead wood density in relation to substrate sun-exposure and diameter. Biodivers. Conserv. 2005, 14, 3033–3053. [Google Scholar] [CrossRef]
- Oettel, J.; Zolles, A.; Gschwantner, T.; Lapin, K.; Kindermann, G.; Schweinzer, K.-M.; Gossner, M.M.; Essl, F. Dynamics of standing deadwood in Austrian forests under varying forest management and climatic conditions. J. Appl. Ecol. 2023, 60, 696–713. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.; Brustel, H.; Brin, A.; Bussler, H.; Bouget, C.; Obermaier, E.; Heidinger, I.M.M.; Lachat, T.; Förster, B.; Horák, J.; et al. Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography 2015, 38, 499–509. [Google Scholar] [CrossRef]
- Seibold, S.; Bässler, C.; Brandl, R.; Büche, B.; Szallies, A.; Thorn, S.; Ulyshen, M.D.; Müller, J. Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. J. Appl. Ecol. 2016, 53, 934–943. [Google Scholar] [CrossRef]
DS | Decay Stage | Description |
---|---|---|
1 | No decomposition | Recently artificially created high stumps (<2 years). Outer bark still well attached. |
2 | Slight decomposition | Outer bark loosely attached to sap wood. Wood mostly intact. |
3 | Mesic decomposition | Outer bark partially absent; wood showing signs of decomposition. |
4 | Mid decomposition | Outer bark absent; wood largely decomposed with some remaining hardy parts. |
5 | Strong decomposition | Most parts of the wood decayed into humus. |
DBH [cm] | Height [m] | Decay Stage | Deadwood Volume [m3/0.1 ha] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tree Species | n | Mean | Min–Max | Mean | Min–Max | 1 | 2 | 3 | 4 | 5 | Mean | Min–Max |
Coniferous trees | 21 | 41 | 25–57 | 2.85 | 1.70–4.60 | 5 | 5 | 4 | 5 | 2 | 2.2 | 0.7–4.7 |
Picea abies | 17 | 41 | 25–57 | 2.50 | 1.70–4.78 | 5 | 3 | 4 | 3 | 2 | 2.3 | 0.7–4.7 |
Pinus sylvestris | 3 | 32 | 24–40 | 4.33 | 3.90–4.60 | 0 | 1 | 0 | 2 | 0 | 1.9 | 1.1–3.4 |
Larix decidua | 1 | 36 | 36 | 4.30 | 4.30 | 0 | 1 | 0 | 0 | 0 | 3.1 | 3.1 |
Deciduous trees | 42 | 40.5 | 21–60 | 4.33 | 2.17–6.35 | 10 | 8 | 7 | 14 | 3 | 3.9 | 0.1–18.3 |
Acer pseudoplatanus | 1 | 21 | 21 | 2.97 | 2.97 | 0 | 0 | 0 | 1 | 0 | 13.4 | 13.4 |
Alnus glutinosa | 2 | 42.25 | 41.5–43 | 3.98 | 3.58–4.37 | 0 | 0 | 0 | 2 | 0 | 7.9 | 3.4–12.4 |
Betula pendula | 3 | 30.5 | 29–52 | 4.33 | 3.78–5.30 | 1 | 1 | 0 | 1 | 0 | 2.4 | 0.5–6.0 |
Carpinus betulus | 1 | 35 | 35 | 2.17 | 2.17 | 0 | 1 | 0 | 0 | 0 | 4.6 | 4.6 |
Fagus sylvatica | 12 | 40.5 | 21–60 | 3.83 | 2.79–5.74 | 2 | 4 | 4 | 1 | 1 | 4.8 | 0.9–18.3 |
Populus tremula | 7 | 42 | 27–57 | 4.83 | 3.90–5.80 | 5 | 1 | 0 | 1 | 0 | 5.6 | 1.1–15.4 |
Quercus robur/petraea | 16 | 35 | 25–45 | 4.75 | 3.30–6.35 | 2 | 1 | 3 | 8 | 2 | 1.7 | 0.1–11.4 |
Family | Fungivorous | Predaceous | Saprophagous | Phytophagous |
---|---|---|---|---|
Anthribidae | x | |||
Buprestidae | x | |||
Cantharidae | x | |||
Cerambycidae | x | |||
Chrysomelidae | x | |||
Ciidae | x | |||
Cleridae | x | |||
Coccinellidae | x | |||
Cryptophagidae | x | |||
Curculionidae | x | |||
Dermestidae | x | |||
Elateridae | x | |||
Eucnemidae | x | |||
Histeridae | x | |||
Latridiidae | x | |||
Lucanidae | x | |||
Lymexylidae | x | |||
Melandryidae | x | |||
Melyridae | x | |||
Monotomidae | x | |||
Mordellidae | x | |||
Mycetophagidae | x | |||
Ptinidae | x | |||
Scraptidae | x | |||
Silvanidae | x | |||
Staphylinidae | x | |||
Tenebrionidae | x | |||
Tetratomidae | x | |||
Zopheridae | x |
Species | Family | RLD | RLB |
---|---|---|---|
Acanthocinus griseus (F., 1792) | Cerambycidae | 3 | 3 |
Agrilus ater (L., 1767) | Buprestidae | 2 | 0 |
Bolitophagus reticulatus * (L., 1767) | Tenebrionidae | 3 | 3 |
Colydium elongatum (F., 1787) | Zopheridae | 3 | 2 |
Megatoma undata (L., 1758) | Dermestidae | 3 | 3 |
Hylis olexai (Palm, 1955) | Eucnemidae | 3 | 3 |
Hypoganus inunctus (Lacordaire, 1835) | Elateridae | 3 | V |
Lymexylon navale (L., 1758) | Lymexylidae | 3 | 3 |
Saperda perforata (Pallas, 1773) | Cerambycidae | 2 | 2 |
Sinodendron cylindricum (L., 1758) * | Lucanidae | 3 | 3 |
Tillus elongatus (L., 1758) | Cleridae | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lackner, T.; Reger, B.; Tobisch, C.; Zahner, V. The Potential of Artificial Snags to Promote Endangered Saproxylic Beetle Species in Bavarian Forests. Diversity 2024, 16, 270. https://doi.org/10.3390/d16050270
Lackner T, Reger B, Tobisch C, Zahner V. The Potential of Artificial Snags to Promote Endangered Saproxylic Beetle Species in Bavarian Forests. Diversity. 2024; 16(5):270. https://doi.org/10.3390/d16050270
Chicago/Turabian StyleLackner, Tomáš, Birgit Reger, Cynthia Tobisch, and Volker Zahner. 2024. "The Potential of Artificial Snags to Promote Endangered Saproxylic Beetle Species in Bavarian Forests" Diversity 16, no. 5: 270. https://doi.org/10.3390/d16050270
APA StyleLackner, T., Reger, B., Tobisch, C., & Zahner, V. (2024). The Potential of Artificial Snags to Promote Endangered Saproxylic Beetle Species in Bavarian Forests. Diversity, 16(5), 270. https://doi.org/10.3390/d16050270