Diversity of Cryptofaunal Nematode Assemblages along the Jardines de La Reina Coral Reef, Southern Cuba
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Zone
2.2. Sampling Design and Sample Processing
2.3. Biological Traits
2.4. Data Analysis
2.4.1. Diversity
2.4.2. Taxonomic Structure
2.4.3. Functional Structure
3. Results
3.1. Diversity
3.2. Taxonomic Structure
3.3. Functional Structure
4. Discussion
4.1. Species Accumulation Curve and γ-Diversity
4.2. Striking Patterns of α- and β-Diversity
4.3. Assemblage Structure
4.4. A Conservative Set of Biological Traits in the Reef
4.5. A Sampling Method with Pros and Cons
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, C.M.; McClean, C.J.; Veron, J.E.N.; Hawkins, J.P.; Allen, R.; McAllister, D.E.; Mittermeier, C.G.; Schueler, F.W.; Spalding, M.; Wells, F.; et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 2002, 295, 1280–1284. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.; Friedlander, A.M.; Pyle, R.L.; Brooks, C.M.; Gjerde, K.M.; Wilhelm, T.A. Coral reefs of the high seas: Hidden biodiversity hotspots in need of protection. Front. Mar. Sci. 2020, 7, 567428. [Google Scholar] [CrossRef]
- Stella, J.S.; Pratchett, M.S.; Hutchings, P.A.; Jones, G.P. Coral-associated invertebrates: Diversity, ecological importance and vulnerability to disturbance. Oceanogr. Mar. Biol. Annu. Rev. 2011, 49, 43–104. [Google Scholar]
- Stella, J.S.; Wolfe, K.; Roff, G.; Rogers, A.; Priest, M.; Golbuu, Y.; Mumby, P.J. Functional and phylogenetic responses of motile cryptofauna to habitat degradation. J. Anim. Ecol. 2022, 91, 2203–2219. [Google Scholar] [CrossRef] [PubMed]
- Enochs, I.C.; Toth, L.T.; Brandtneris, V.W.; Afflerbach, J.C.; Manzello, D.P. Environmental determinants of motile cryptofauna on an eastern Pacific coral reef. Mar. Ecol. Progr. Ser. 2011, 438, 105–118. [Google Scholar] [CrossRef]
- Kramer, M.J.; Bellwood, D.R.; Bellwood, O. Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef. Coral Reefs 2012, 31, 1007–1015. [Google Scholar] [CrossRef]
- Klumpp, D.W.; McKinnon, A.D.; Mundy, C.N. Motile cryptofauna of a coral reef: Abundance, distribution and trophic potential. Mar. Ecol. Prog. Ser. 1988, 5, 95–108. [Google Scholar] [CrossRef]
- Wolfe, K.; Kenyon, T.M.; Desbiens, A.; de la Motte, K.; Mumby, P.J. Hierarchical drivers of cryptic biodiversity on coral reefs. Ecol. Monogr. 2023, 93, e1586. [Google Scholar] [CrossRef]
- Lewis, J.B.; Snelgrove, P.V.R. Corallum morphology and composition of crustacean cryptofauna of the hermatypic coral Madracis mirabilis. Mar. Biol. 1990, 106, 267–272. [Google Scholar] [CrossRef]
- Enochs, I.C.; Manzello, D.P. Species richness of motile cryptofauna across a gradient of reef framework erosion. Coral Reefs 2012, 31, 653–661. [Google Scholar] [CrossRef]
- Hodda, M. Phylum Nematoda: A classification, catalogue and index of valid genera, with a census of valid species. Zootaxa 2022, 5114, 1–289. [Google Scholar] [CrossRef] [PubMed]
- Appeltans, W.; Ahyong, S.T.; Anderson, G.; Angel, M.V.; Artois, T.; Bailly, N.; Bamber, R.; Barber, A.; Bartsch, I.; Berta, A.; et al. The magnitude of global marine species diversity. Curr. Biol. 2012, 22, 2189–2202. [Google Scholar] [CrossRef] [PubMed]
- Hicks, G.R.F.; Coull, B.C. The ecology of marine meiobenthic harpacticoid copepods. Oceanogr. Mar. Biol. Annu. Rev. 1983, 21, 67–175. [Google Scholar]
- Heip, C.; Vincx, M.; Vranken, G. The ecology of marine nematodes. Oceanogr. Mar. Biol. Annu. Rev. 1985, 23, 399–489. [Google Scholar]
- Semprucci, F.; Colantoni, P.; Baldelli, G.; Sbrocca, C.; Rocchi, M.; Balsamo, M. Meiofauna associated with coral sediments in the Maldivian subtidal habitats (Indian Ocean). Mar. Biodiv. 2013, 43, 189–198. [Google Scholar] [CrossRef]
- Pérez-García, J.A.; Marzo-Pérez, D.; Armenteros, M. Spatial scale influences diversity patterns of free-living nematode assemblages in coral degradation zones from the Caribbean Sea. Mar. Biodivers. 2019, 49, 1831–1842. [Google Scholar] [CrossRef]
- Armenteros, M.; Pérez-García, J.A.; Marzo-Pérez, D.; Rodríguez-García, P. The influential role of the habitat on the diversity patterns of free-living aquatic nematode assemblages in the Cuban Archipelago. Diversity 2019, 11, 166. [Google Scholar] [CrossRef]
- Magurran, A.E. Measuring Biological Diversity; Blackwell: Oxford, UK, 2004. [Google Scholar]
- Anderson, M.J.; Crist, T.O.; Chase, J.M.; Vellend, M.; Inouye, B.D.; Freestone, A.L.; Sanders, N.J.; Cornell, H.V.; Comita, L.S.; Davies, K.F.; et al. Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecol. Lett. 2011, 14, 19–28. [Google Scholar] [CrossRef]
- Whittaker, R.H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 1960, 30, 279–338. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Cardoso, P.; Gomes, P. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Glob. Ecol. Biogeogr. 2012, 21, 760–771. [Google Scholar] [CrossRef]
- Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 2014, 23, 1324–1334. [Google Scholar] [CrossRef]
- Cardoso, P.; Rigal, F.; Carvalho, J.C.; Fortelius, M.; Borges, P.A.; Podani, J.; Schmera, D. Partitioning taxon, phylogenetic and functional beta diversity into replacement and richness difference components. J. Biogeogr. 2014, 41, 749–761. [Google Scholar] [CrossRef]
- Petchey, O.L.; Gaston, K.J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 2002, 5, 402–411. [Google Scholar] [CrossRef]
- Mammola, S.; Carmona, C.P.; Guillerme, T.; Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 2021, 35, 1869–1885. [Google Scholar] [CrossRef]
- Violle, C.; Navas, M.L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Mouillot, D.; Graham, N.A.J.; Villéger, S.; Mason, N.W.H.; Bellwood, D.R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 2013, 28, 167–177. [Google Scholar] [CrossRef]
- Alves, A.S.; Veríssimo, H.; Costa, M.J.; Marques, J.C. Taxonomic resolution and Biological Traits Analysis (BTA) approaches in estuarine free-living nematodes. Estuar. Coast. Shelf Sci. 2014, 138, 69–78. [Google Scholar] [CrossRef]
- Thistle, D.; Lambshead, P.J.D.; Sherman, K.M. Nematode tail-shape groups respond to environmental differences in the deep sea. Vie Milieu 1995, 45, 107–115. [Google Scholar]
- Li, J.; Vincx, M.; Herman, P.M.J. Carbon flows through meiobenthic nematodes in the Westerschelde Estuary. Fundam. Appl. Nematol. 1997, 20, 487–494. [Google Scholar]
- Semprucci, F.; Grassi, E.; Balsamo, M. Simple is the best: An alternative method for the analysis of free-living nematode assemblage structure. Water 2022, 14, 1114. [Google Scholar] [CrossRef]
- Schratzberger, M.; Warr, K.; Rogers, S.I. Functional diversity of nematode communities in the southwestern North Sea. Mar. Environ. Res. 2007, 63, 368–389. [Google Scholar] [CrossRef] [PubMed]
- Caballero Aragón, H.; Armenteros, M.; Perera Valderrama, S.; Rey Villiers, N.; Cobian Rojas, D.; Campos Verdecia, K.; Alcolado Menéndez, P.M. Ecological condition of coral reef assemblages in the Cuban Archipelago. Mar. Biol. Res. 2019, 15, 61–73. [Google Scholar] [CrossRef]
- Grabb, K.C.; Kapit, J.; Wankel, S.D.; Manganini, K.; Apprill, A.; Armenteros, M.; Hansel, C. Development of a handheld submersible chemiluminescent sensor: Quantification of superoxide at coral surfaces. Environ. Sci. Technol. 2019, 53, 13850–13858. [Google Scholar] [CrossRef] [PubMed]
- Babbin, A.R.; Tamasi, T.; Dumit, D.; Weber, L.; Iglesias Rodríguez, M.V.; Schwartz, S.L.; Armenteros, M.; Wankel, S.D.; Apprill, A. Discovery and quantification of anaerobic nitrogen metabolisms among oxygenated tropical Cuban stony corals. ISME J. 2021, 15, 1222–1235. [Google Scholar] [CrossRef] [PubMed]
- Weber, L.; González-Díaz, P.; Armenteros, M.; Apprill, A. The coral ecosphere: A unique coral reef habitat that fosters coral–microbial interactions. Limnol. Oceanogr. 2019, 64, 2373–2388. [Google Scholar] [CrossRef]
- Weber, L.; González-Díaz, P.; Armenteros, M.; Ferrer, V.M.; Bretos, F.; Bartels, E.; Santoro, A.E.; Apprill, A. Microbial signatures of protected and impacted Northern Caribbean reefs: Changes from Cuba to the Florida Keys. Environ. Microbiol. 2019, 22, 499–519. [Google Scholar] [CrossRef]
- Hernández-Fernández, L.; González de Zayas, R.; Weber, L.; Apprill, A.; Armenteros, M. Small-scale variability dominates benthic coverage and diversity across the Jardines de La Reina, Cuba coral reef system. Front. Mar. Sci. 2019, 6, 747. [Google Scholar] [CrossRef]
- Navarro-Martínez, Z.M.; Armenteros, M.; Espinosa, L.; Lake, J.J.; Apprill, A. Taxonomic and functional assemblage structure of coral reef fishes from Jardines de la Reina (Caribbean Sea, Cuba). Mar. Ecol. Prog. Ser. 2022, 690, 113–132. [Google Scholar] [CrossRef]
- Lillis, A.; Apprill, A.; Armenteros, A.; Mooney, T.A. Small-scale variation in the soundscapes of coral reefs. In The Effects of Noise on Aquatic Life; Popper, A.N., Sisneros, J., Hawkins, A.D., Thomsen, F., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 1–23. [Google Scholar] [CrossRef]
- Boucher, G.; Gourbault, N.E.C. Sublitoral meiofauna and diversity of nematode assemblages of Guadeloupe Islands (French West Indies). Bull. Mar. Sci. 1990, 47, 448–463. [Google Scholar]
- De Jesús-Navarrete, A. Nematodos de los arrecifes de Isla Mujeres y Banco Chinchorro, Quintana Roo, Mexico. Rev. Biol. Mar. Oceanogr. 2007, 42, 193–200. [Google Scholar] [CrossRef]
- Armenteros, M.; Ruiz-Abierno, A.; Sosa, Y.; Pérez-García, J.A. Habitat heterogeneity effects on macro- and meiofauna (especially nematodes) in Punta Francés coral reef (SW Cuban Archipelago). Rev. Investig. Mar. 2012, 32, 50–61. [Google Scholar]
- Marzo-Pérez, D.; Pérez-García, J.A.; Armenteros, M. Lista taxonómica de nemátodos marinos de vida libre del sistema de arrecife coralino Jardines de la Reina, Cuba. Rev. Investig. Mar. 2023, 42, 38–46. [Google Scholar]
- Smol, N. (Ghent University, Ghent, Belgium). General techniques. International Nematology Course. 2007; Unpublished work. [Google Scholar]
- Platt, H.M.; Warwick, R.M. Free-Living Marine Nematodes. Part I. British Enoplids; Synopses of the British Fauna (New Series) 28; The Linnean Society of London and The Estuarine and Brackish-Water Sciences Association: Cambridge, UK, 1983. [Google Scholar]
- Platt, H.M.; Warwick, R.M. Free-Living Marine Nematodes. Part II. British Chromadorids; Synopses of the British Fauna (New Series) 38; The Linnean Society of London and The Estuarine and Brackish-Water Sciences Association: Cambridge, UK, 1988. [Google Scholar]
- Warwick, R.M.; Platt, H.M.; Somerfield, P.J. Free-Living Marine Nematodes. Part III. Monhysterids; Synopses of the British Fauna (New Series) 38; The Linnean Society of London and The Estuarine and Coastal Sciences Association: Shrewsbury, UK, 1998. [Google Scholar]
- Schmidt-Rhaesa, A. Handbook of Zoology. Gastrotricha, Cycloneuralia, Gnathifera. Volume 2: Nematoda; De Gruyter: Berlin, Germany, 2014. [Google Scholar]
- Teixidó, N.; Albajes-Eizagirre, A.; Bolbo, D.; Le Hir, E.; Demestre, M.; Garrabou, J.; Guigues, L.; Gili, J.; Piera, J.; Prelot, T.; et al. Hierarchical segmentation-based software for cover classification analyses of seabed images (Seascape). Mar. Ecol. Prog. Ser. 2011, 431, 45–53. [Google Scholar] [CrossRef]
- Hodda, M. Phylum Nematoda: Feeding habits for all valid genera using a new, universal scheme encompassing the entire phylum, with descriptions of morphological characteristics of the stoma, a key, and discussion of the evidence for trophic relationships. Zootaxa 2022, 5114, 318–451. [Google Scholar] [CrossRef] [PubMed]
- Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Bongers, T.; Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 1998, 10, 239–251. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Cardoso, P.; Rigal, F.; Carvalho, J.C. BAT–Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 2015, 6, 232–236. [Google Scholar] [CrossRef]
- Petchey, O.L.; Gaston, K.J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 2006, 9, 741–758. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N.; Somerfield, P.J.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 3rd ed.; PRIMER-E: Plymouth, UK, 2014. [Google Scholar]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E Ltd.: Massey, New Zealand, 2008. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Colwell, R.K.; Chao, A.; Gotelli, N.J.; Lin, S.-Y.; Mao, C.-X.; Chazdon, R.L.; Longino, J.T. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 2012, 5, 3–21. [Google Scholar] [CrossRef]
- Raes, M.; De Troch, M.; Ndaro, S.G.M.; Muthumbi, A.; Guilini, K.; Vanreusel, A. The structuring role of microhabitat type in coral degradation zones: A case study with marine nematodes from Kenya and Zanzibar. Coral Reefs 2007, 26, 113–126. [Google Scholar] [CrossRef]
- Semprucci, F.; Colantoni, P.; Baldelli, G.; Rocchi, M.; Balsamo, M. The distribution of meiofauna on back-reef sandy platforms in the Maldives (Indian Ocean). Mar. Ecol. 2010, 31, 592–607. [Google Scholar] [CrossRef]
- Boucher, G. Structure and biodiversity of nematode assemblages in the SW lagoon of New Caledonia. Coral Reefs 1997, 16, 177–186. [Google Scholar] [CrossRef]
- Liao, J.-X.; Yeh, H.-M.; Mok, H.-K. Meiofaunal communities in a tropical seagrass bed and adjacent unvegetated sediments with note on sufficient sample size for determining local diversity indices. Zool. Stud. 2015, 54, 14. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Colwell, R.K. Estimating species richness. In Biological Diversity: Frontiers in Measurement and Assessment; Magurran, A.E., McGill, B.J., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 39–54. [Google Scholar]
- Wiens, J.J. The causes of species richness patterns across space, time, and clades and the role of “ecological limits”. Quart. Rev. Biol. 2011, 86, 75–96. [Google Scholar] [CrossRef] [PubMed]
- Costello, M.J.; Tsai, P.; Wong, P.S.; Cheung, A.K.L.; Basher, Z.; Chaudhary, C. Marine biogeographic realms and species endemicity. Nat. Commun. 2017, 8, 1057. [Google Scholar] [CrossRef]
- Ptatscheck, C.; Traunspurger, W. The ability to get everywhere: Dispersal modes of free-living, aquatic nematodes. Hydrobiologia 2020, 847, 3519–3547. [Google Scholar] [CrossRef]
- Gambi, C.; Pusceddu, A.; Benedetti-Cecchi, L.; Danovaro, R. Species richness, species turnover and functional diversity in nematodes of the deep Mediterranean Sea: Searching for drivers at different spatial scales. Glob. Ecol. Biogeogr. 2014, 23, 24–39. [Google Scholar] [CrossRef]
- Flach, P.Z.S.; Ozorio, C.P.; Melo, A.S. Alpha and beta components of diversity of freshwater nematodes at different spatial scales in subtropical coastal lakes. Fundam. Appl. Limnol. 2012, 108, 249–258. [Google Scholar] [CrossRef]
- Spedicato, A.; Zeppilli, D.; Thouzeau, G.; Michaud, E. Nematode diversity patterns in mangroves: A review of environmental drivers at different spatial scales. Biodivers. Conserv. 2023, 32, 1451–1472. [Google Scholar] [CrossRef]
- Loke, L.H.L.; Chisholm, R.A. Measuring habitat complexity and spatial heterogeneity in ecology. Ecol. Lett. 2022, 25, 2269–2288. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, K.; Desbiens, A.A.; Mumby, P.J. Emigration patterns of motile cryptofauna and their implications for trophic functioning in coral reefs. Ecol. Evol. 2023, 13, e9960. [Google Scholar] [CrossRef] [PubMed]
- Victorero, L.; Robert, K.; Robinson, L.F.; Taylor, M.L.; Huvenne, V.A.I. Species replacement dominates megabenthos beta diversity in a remote seamount setting. Sci. Rep. 2018, 8, 4152. [Google Scholar] [CrossRef] [PubMed]
- Armenteros, M.; Quintanar-Retama, O.; Gracia, A. Depth-related patterns and regional diversity of free-living nematodes in the deep-sea Southwestern Gulf of Mexico. Front. Mar. Sci. 2022, 9, 1023996. [Google Scholar] [CrossRef]
- Danovaro, R.; Gambi, C. Cosmopolitism, rareness and endemism in deep- sea marine nematodes. Eur. Zool. J. 2022, 89, 653–665. [Google Scholar] [CrossRef]
- Ruiz-Abierno, A.; Armenteros, M. Coral reef habitats strongly influence the diversity of macro and meiobenthos in the Caribbean. Mar. Biodivers. 2017, 47, 101–111. [Google Scholar] [CrossRef]
- Gamenick, I.; Giere, O. The microdistribution of coral sand meiofauna affected by water currents. Vie Milieu 1994, 44, 93–100. [Google Scholar]
- Netto, S.A.; Attrill, M.J.; Warwick, R.M. The effect of a natural water-movement related disturbance on the structure of meiofauna and macrofauna communities in the intertidal sand flat of Rocas Atoll (NE, Brazil). J. Sea Res. 1999, 42, 291–302. [Google Scholar] [CrossRef]
- Semprucci, F.; Colantoni, P.; Sbrocca, C.; Baldelli, G.; Rocchi, M.; Balsamo, M. Meiofauna in sandy back-reef platforms differently exposed to the monsoons in the Maldives (Indian Ocean). J. Mar. Syst. 2011, 87, 208–215. [Google Scholar] [CrossRef]
- Davis, K.A.; Pawlak, G.; Monismith, S.G. Turbulence and coral reefs. Annu. Rev. Mar. Sci. 2021, 13, 343–373. [Google Scholar] [CrossRef] [PubMed]
- Weber, L.; Armenteros, M.; Kido Soule, M.; Longnecker, K.; Kujawinski, E.B.; Apprill, A. Extracellular Reef Metabolites Across the Protected Jardines de la Reina, Cuba Reef System. Front. Mar. Sci. 2020, 7, 582161. [Google Scholar] [CrossRef]
- Moens, T.; Yeates, G.W.; de Ley, P. Use of carbon and energy sources by nematodes. Nematol. Monogr. Perspect. 2004, 2, 529–545. [Google Scholar]
- Ullberg, J.; Ólafsson, E. Free-living marine nematodes actively choose habitat when descending from the water column. Mar. Ecol. Prog. Ser. 2003, 260, 141–149. [Google Scholar] [CrossRef]
- Semprucci, F.; Cesaroni, L.; Guidi, L.; Balsamo, M. Do the morphological and functional traits of free-living marine nematodes mirror taxonomical diversity? Mar. Environ. Res. 2018, 35, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Decraemer, W.; Coomans, A.; Baldwin, J. Morphology of Nematoda. In Handbook of Zoology. Gastrotricha, Cycloneuralia and Gnathifera; Schmidt-Rhaesa, A., Ed.; De Gruyter: Berlin, Germany, 2014; Volume 2, pp. 1–59. [Google Scholar]
- Thistle, D.; Sherman, K.M. The nematode fauna of a deep-sea site exposed to strong near-bottom currents. Deep-Sea Res. 1985, 32, 1077–1088. [Google Scholar] [CrossRef]
- Armenteros, M.; Ruiz-Abierno, A.; Decraemer, W. Revision of Desmodorinae and Spiriniinae (Nematoda: Desmodoridae) with redescription of eight known species. Eur. J. Taxon. 2014, 96, 1–32. [Google Scholar] [CrossRef]
- Keklikoglou, K.; Chatzigeorgiou, G.; Faulwetter, S.; Kalogeropoulou, V.; Plaiti, W.; Maidanou, M.; Dounas, C.; Lampadariou, N.; Arvanitidis, C. “Simple” can be good, too: Testing three hard bottom sampling methods on macrobenthic and meiobenthic assemblages. J. Mar. Biol. Assoc. UK 2019, 99, 777–784. [Google Scholar] [CrossRef]
- Pearman, J.K.; Leray, M.; Villalobos, R.; Machida, R.J.; Berumen, M.L.; Knowlton, N.; Carvalho, S. Cross-shelf investigation of coral reef cryptic benthic organisms reveals diversity patterns of the hidden majority. Sci. Rep. 2018, 8, 8090. [Google Scholar] [CrossRef] [PubMed]
Site | Latitude (N) | Longitude (W) | Depth (m) | Sampling Units | Nematodes | Observed Richness |
---|---|---|---|---|---|---|
1 | 21.18351 | −79.35556 | 9 | 10 | 278 | 43 |
2 | 21.11029 | −79.32738 | 10 | 9 | 144 | 30 |
3 | 20.58030 | −79.11847 | 12 | 10 | 300 | 39 |
4 | 20.51286 | −79.02910 | 8 | 10 | 493 | 43 |
5 | 20.46464 | −78.54922 | 9 | 8 | 102 | 21 |
6 | 20.37612 | −78.35676 | 9 | 10 | 226 | 41 |
7 | 20.30788 | −78.23179 | 10 | 9 | 105 | 24 |
Metric | Source of Variation | DF | MS | Pseudo-F | p-Value | ECV (%) |
---|---|---|---|---|---|---|
Abundance | Coral cover | 1 | 290 | 0.49 | 0.47 | 0 |
Algae cover | 1 | 1495 | 2.57 | 0.09 | 10 | |
Site | 6 | 1495 | 2.57 | 0.019 | 26 | |
Residual | 57 | 582 | 64 | |||
Species density | Coral cover | 1 | 1.85 | 0.053 | 0.82 | 0 |
Algae cover | 1 | 130 | 3.74 | 0.05 | 11 | |
Site | 6 | 158 | 4.55 | 0.002 | 34 | |
Residual | 57 | 35 | 55 | |||
Assemblage structure | Coral cover | 1 | 2324 | 0.77 | 0.73 | 0 |
Algae cover | 1 | 5151 | 1.72 | 0.03 | 7 | |
Site | 6 | 6314 | 2.11 | 0.001 | 24 | |
Residual | 57 | 2998 | 69 |
Response | Predictor | Slope | 0.95 LCI | 0.95 UCI | Explained Variance | p-Value |
---|---|---|---|---|---|---|
Abundance | Coral cover | 0.016 | −0.09 | 0.11 | 0.0023 | 0.73 |
Algae cover | −0.004 | −0.03 | 0.021 | 0.0002 | 0.8 | |
Interaction coral*algae | −0.002 | −0.005 | 0.0009 | 0.0000019 | 0.14 | |
Coral|Site | 0.0048 | |||||
Algae|Site | 0.0013 | |||||
Species density | Coral cover | 0.038 | −4.25 | 0.12 | 0.0018 | 0.36 |
Algae cover | −0.0011 | −1.24 | 0.01 | 0.000037 | 0.85 | |
Interaction coral*algae | −0.0024 | −5.84 | 0.0004 | 0.0000023 | 0.11 | |
Coral|Site | 0.000099 | |||||
Algae|Site | 0.00031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzo-Pérez, D.; Pérez-García, J.A.; Apprill, A.; Armenteros, M. Diversity of Cryptofaunal Nematode Assemblages along the Jardines de La Reina Coral Reef, Southern Cuba. Diversity 2024, 16, 264. https://doi.org/10.3390/d16050264
Marzo-Pérez D, Pérez-García JA, Apprill A, Armenteros M. Diversity of Cryptofaunal Nematode Assemblages along the Jardines de La Reina Coral Reef, Southern Cuba. Diversity. 2024; 16(5):264. https://doi.org/10.3390/d16050264
Chicago/Turabian StyleMarzo-Pérez, Diana, Jose Andrés Pérez-García, Amy Apprill, and Maickel Armenteros. 2024. "Diversity of Cryptofaunal Nematode Assemblages along the Jardines de La Reina Coral Reef, Southern Cuba" Diversity 16, no. 5: 264. https://doi.org/10.3390/d16050264
APA StyleMarzo-Pérez, D., Pérez-García, J. A., Apprill, A., & Armenteros, M. (2024). Diversity of Cryptofaunal Nematode Assemblages along the Jardines de La Reina Coral Reef, Southern Cuba. Diversity, 16(5), 264. https://doi.org/10.3390/d16050264