Evaluation of Pesticides on Detritus-Inhabiting and Root-Associated Fungi in Aquatic Habitats and Potential Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Location and Fungal Isolation
2.2. Molecular Identification of Fungal Isolates
2.3. Pesticides
Toxicity Assays—Detritus Inhabiting and Root-Associated Fungi
2.4. Carbon Source Assays
2.4.1. Overall Cellulase Activity
2.4.2. Starch Degradation
2.4.3. Tannic Acid Degradation
3. Results
3.1. Fungal Taxa Analyzed
3.2. Pesticide Sensitivity Assays
3.2.1. Atrazine and Mancozeb
3.2.2. Cypermethrin and Malathion
3.2.3. Species-Specific Function and Comparison to Sensitivity Assays
4. Discussion
4.1. Pesticide Sensitivity
4.2. Functional Redundancy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Niskanen, T.; Lücking, R.; Dahlberg, A.; Gaya, E.; Suz, L.M.; Mikryukov, V.; Liimatainen, K.; Druzhinina, I.; Westrip, J.R.S.; Mueller, G.M.; et al. Pushing the frontiers of biodiversity research: Unveiling the global diversity, distribution, and conservation of fungi. Annu. Rev. Environ. Resour. 2023, 48, 149–176. [Google Scholar] [CrossRef]
- Calabon, M.S.; Hyde, K.D.; Jones, E.B.G.; Luo, Z.-L.; Dong, W.; Hurdeal, V.G.; Gentekaki, E.; Rossi, W.; Leonardi, M.; Thiyagaraja, V.; et al. Freshwater fungal numbers. Fungal Divers. 2022, 114, 3–235. [Google Scholar] [CrossRef]
- Wong, M.K.M.; Goh, T.K.; Hodgkiss, I.J.; Hyde, K.D.; Ranghou, V.M.; Tsui, C.K.M.; Ho, W.H.; Wong, W.S.W.; Yuen, T.K. Role of fungi in freshwater ecosystems. Biodivers. Conserv. 1998, 7, 1187–1206. [Google Scholar] [CrossRef]
- Shearer, C.A.; Descals, E.; Kohlmeyer, B.; Kohlmeyer, J.; Marvanová, L.; Padgott, D.; Porter, D.; Raja, H.A.; Schmit, J.P.; Thorton, H.A.; et al. Fungal biodiversity in aquatic habitats. Biodivers. Conserv. 2007, 16, 49–67. [Google Scholar] [CrossRef]
- Kohout, P.; Sýkorová, Z.; Čtvrtlíkova, M.; Rydlová, J.; Suda, J.; Vohník, M.; Sudová, R. Surprising spectra of root-associated fungi in submerged aquatic plants. FEMS Microbiol. Ecol. 2012, 80, 216–235. [Google Scholar] [CrossRef]
- You, Y.H.; Park, J.M.; Park, J.H.; Kim, J.G. Diversity of endophytic fungi associated with the roots of four aquatic plants inhabiting two wetlands in Korea. Mycobiology 2015, 43, 231–238. [Google Scholar] [CrossRef]
- Schmit, J.P.; Shearer, C.A. A checklist of mangrove associated fungi, their geographical distribution and known host plants. Mycotaxon 2003, 85, 423–477. [Google Scholar]
- Bärlocher, F. Research on aquatic hyphomycetes: Historical background and overview. In The Ecology of Aquatic Hyphomycetes; Bärlocher, F., Ed.; Springer-Verlag: Berlin, Germany, 1992; pp. 1–15. [Google Scholar]
- Gingerich, R.T.; Panaccione, D.G.; Anderson, J.T. The role of fungi and invertebrates in litter decomposition in mitigated and reference wetlands. Limnologica 2015, 54, 23–32. [Google Scholar] [CrossRef]
- Hanley, T.C.; La Pierre, K.J. Tropic Ecology: Bottom-Up and Top-Down Interactions across Aquatic and Terrestrial Systems; Cambridge University Press: Cambridge, UK, 2015; p. 409. [Google Scholar]
- Krauss, G.J.; Solé, M.; Krauss, G.; Schlosser, D.; Wesenberg, D.; Bärlocher, F. Fungi in freshwater: Ecology, physiology and biochemical potential. FEFEMS Microbiol. Rev. 2011, 35, 620–651. [Google Scholar] [CrossRef]
- Vandenkoornhuyse, P.; Baldauf, S.L.; Leyval, C.; Straczek, J.; Young, J.P.W. Extensive fungal diversity in plant roots. Science 2002, 295, 2051. [Google Scholar] [CrossRef]
- Hemati, A.; Nazari, M.; Lajayer, B.A.; Smith, D.L.; Astatkie, T. Lignocellulosics in plant cell wall and their potential biological degradation. Folia Microbiol. 2022, 67, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Ogwugwa, V.H.; Ogwugwa, J.; Bandh, S.A. Mycoloop: Role in shaping aquatic ecosystems. In Freshwater Mycology; Bandh, S.A., Shafi, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 117–133. [Google Scholar]
- Miki, T.; Takimoto, G.; Kagami, M. Roles of parasitic fungi in aquatic food webs: A theoretical approach. Freshw. Biol. 2011, 56, 1173–1183. [Google Scholar] [CrossRef]
- Wang, J.; Li, T.; Liu, G.; Smith, J.M.; Zhao, Z. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: Physiological, cytological, and genic aspects. Sci. Rep. 2016, 6, 22028. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, X.; Hou, L.; Ren, Y.; Wang, S.; Su, F. Dark septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition. Sci. Rep. 2018, 8, 7896. [Google Scholar] [CrossRef] [PubMed]
- Mateu, M.G.; Baldwin, A.H.; Maul, J.E.; Yarwood, S.A. Dark septate endophyte improves salt tolerance of native and invasive lineages of Phragmites australis. ISME J. 2020, 14, 1943–1954. [Google Scholar] [CrossRef] [PubMed]
- Gilliom, R.J. Pesticides in the U.S. streams and groundwater. Environ. Sci. Technol. 2007, 41, 3408–3414. [Google Scholar] [CrossRef] [PubMed]
- Pariona, A. Top Pesticide Using Countries. 2017. Available online: https://www.worldatlas.com/articles/top-pesticide-consuming-countries-of-the-world.html (accessed on 6 October 2019).
- Ittner, L.D.; Junghans, M.; Werner, I. Aquatic fungi: A disregarded trophic level in ecological risk assessment of organic fungicides. Front. Environ. Sci. 2018, 6, 105. [Google Scholar] [CrossRef]
- Beatty, K.L.; Sohn, M.L. Effect of three insecticides on growth rates of soil fungi. Bull. Environ. Contam. Toxicol. 1986, 36, 533–539. [Google Scholar] [CrossRef]
- Wilkinson, V.; Lucas, R.L. Effects of herbicides on the growth of soil fungi. N. Phytol. 1969, 68, 709–719. [Google Scholar] [CrossRef]
- Yao, X.; Liu, Y.; Liu, X.; Qiao, Z.; Sun, S.; Li, X.; Wang, J.; Zhang, F.; Jiang, X. Effects of thifluzamide on soil fungal microbial ecology. J. Hazard. Mater. 2022, 431, 12326. [Google Scholar] [CrossRef]
- Grossart, H.-P.; den Wyngaert, S.V.; Kagami, M.; Wurzbacher, C.; Cunliffe, M.; Rojas-Jimenez, K. Fungi in aquatic ecosystems. Nat. Rev. Microbiol. 2019, 17, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Vergnon, R.; van Nes, E.H.; Cuppen, J.G.M.; Peeters, E.T.H.M.; Leijs, R.; Nilsson, A.N. The evolution of functionally redundant species; evidence from beetles. PLoS ONE 2015, 10, e0137974. [Google Scholar] [CrossRef] [PubMed]
- Covich, A.P.; Palmer, M.A.; Crowl, T.A. The role of benthic invertebrate species in freshwater ecosystems. BioScience 1999, 49, 119. [Google Scholar] [CrossRef]
- Raudabaugh, D.B.; Bach, E.M.; Allen, J.M.; Miller, A.N. Fungal communities of submerged fine detritus from temperate peatland and stream habitats. Aquat. Microb. Ecol. 2021, 86, 191–207. [Google Scholar] [CrossRef]
- Mehrotra, B.S.; Bisht, N.S.; Harsh, N.S.K. Utilization of waste tea leaves for the growth and maintenance of cultures of wood-decaying fungi. Natl. Acad. Sci. Lett. 1982, 5, 87–88. [Google Scholar]
- Petrini, O. Taxonomy of endophytic fungi in aerial plant tissues. In Microbiology of the Phyllosphere; Fokkema, N.J., van den Heuvel, J., Eds.; Cambridge University Press: New York, NY, USA, 1986; pp. 175–187. [Google Scholar]
- Naganuma, T.; Katsumatak, K.; Ando, T.; Watanabe, H.; Nishimura, K.; Uzuka, Y. An improved method for isolating yeasts in the genus Lipomyces and related genera from soil. Biosci. Biotechnol. Biochem. 1999, 63, 195–198. [Google Scholar] [CrossRef]
- Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. Ainsworth & Bisby’s Dictionary of the Fungi, 10th ed.; CAB International: Wallingford, UK, 2008. [Google Scholar]
- Osmundson, T.W.; Eyre, C.A.; Hayden, K.M.; Dhillon, J.; Garbelotto, M.M. Back to basics: An evaluation of NaOH and alternative rapid DNA extraction protocols for DNA barcoding, genotyping, and disease diagnostics from fungal and oomycete samples. Mol. Ecol. Resour. 2013, 13, 66–74. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification, and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, N., Gelfand, D., Sninsky, J., White, T., Eds.; Academic Press: Cambridge, MA, USA, 1990; pp. 315–322. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Zhang, W. Global pesticide use: Profile, trend, cost/benefit and more. Proc. Int. Acad. Ecol. Environ. Sci. 2018, 1, 1–27. [Google Scholar]
- Klementova, S.; Keltnerova, L. Triazine herbicides in the environment. In Herbicides, Physiology of Action, and Safety; Price, A., Kelton, J., Sarunaite, L., Eds.; InTech: London, UK, 2015. [Google Scholar] [CrossRef]
- Broekaert, W.F.; Terras, F.R.G.; Cammue, B.P.A.; Vanderleyden, J. An automated quantitative assay for fungal growth inhibition. FEMS Microbiol. Lett. 1989, 69, 55–60. [Google Scholar] [CrossRef]
- Armbruster, D.; Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 2008, 29 (Suppl. S1), S49–S52. [Google Scholar] [PubMed]
- Pointing, S.B. Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers. 1999, 2, 17–33. [Google Scholar]
- Han, S.J.; Yoo, Y.J.; Kang, H.S. Characterization of a bifunctional cellulase and its structural gene. J. Biol. Chem. 1995, 270, 26012–26019. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, K.; Dhal, N.K.; Das, R. Production of amylase enzyme from mangrove fungal isolates. Afr. J. Biotechnol. 2014, 13, 4338–4346. [Google Scholar]
- Brahmbhatt, D.; Modi, H.A. Comparative studies on methods of tannase assay. Int. J. Res. Appl. Sci. Eng. Technol. IJRASET 2015, 3, 715–720. [Google Scholar]
- Kaufman, D.D.; Blake, J. Degradation of atrazine by soil fungi. Soil Biol. Biochem. 1970, 2, 73–80. [Google Scholar] [CrossRef]
- Oliveira, B.R.; Penetra, A.; Cardoso, V.V.; Benoliel, M.J.; Crespo, M.T.B.; Samson, R.A.; Pereira, V.J. Biodegradation of pesticides using fungi species found in the aquatic environment. Environ. Sci. Pollut. Res. 2015, 22, 11781–11791. [Google Scholar] [CrossRef] [PubMed]
- Staley, Z.R.; Harwood, V.J.; Rohr, J.R. A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems. Crit. Rev. Toxicol. 2015, 45, 813–836. [Google Scholar] [CrossRef]
- Ariole, C.N.; Benson, H. The effects of atrazine on microbial populations and diversity in marine coastal surface water. Niger. J. Microbiol. 2016, 30, 3310–3315. [Google Scholar]
- Gangola, S.; Sharma, A.; Bhatt, P.; Khati, P.; Chaudhary, P. Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin. Sci. Rep. 2018, 8, 12755. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xiao, L.; Li, F.; Xiao, M.; Lin, D.; Long, X.; Wu, Z. Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic Acid: A review. Molecules 2018, 23, 2313. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, S.; Yan, Y. Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production. Bioresour. Technol. 2011, 102, 7139–7146. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Zaborowska, M.; Kucharski, J. The impact of permethrin and cypermethrin on plants, soil enzyme activity, and microbial communities. Int. J. Mol. Sci. 2023, 24, 2892. [Google Scholar] [CrossRef]
- Matsumura, F.; Boush, G.M. Malathion degradation by Trichoderma viride and a Pseudomonas Species. Science 1966, 151, 1278–1280. [Google Scholar] [CrossRef]
- Paris, D.F.; Lewis, D.L.; Wolfe, N.L. Rates of degradation of malathion by bacteria isolated from aquatic systems. Environ. Sci. Technol. 1975, 9, 135–138. [Google Scholar] [CrossRef]
- Lewis, D.L.; Paris, D.F.; Baughman, G.L. Transformation of malathion by a fungus Aspergillus oryzae isolated from a freshwater pond. Bull. Environ. Contam. Toxicol. 1975, 13, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Isia, I.; Hadibarata, T.; Sari, A.A.; Farraj, D.A.; Elshikh, M.S.; Khulaifi, M.M.A. Potential use of a pathogenic yeast Pichia kluyveri FM012 for degradation of dichlorodiphenyltrichloroethane (DDT). Water Air Soil Pollut. 2019, 230, 221. [Google Scholar] [CrossRef]
- Benoit, I.; Culleton, H.; Zhou, M.; DiFalco, M.; Aguilar-Osorio, G.; Battaglia, E.; Ourdia, B.O.; Brouwer, C.P.J.M.; El-Bushari, H.B.O.; Coutinho, P.M.; et al. Closely related fungi employ diverse enzymatic strategies to degrade plant biomass. Biotechnol. Biofuels 2015, 8, 107. [Google Scholar] [CrossRef]
- Tkaczuk, C.; Krzyczkowski, T.; Głuszczak, B.; Król, A. Wpływ wybranych środków ochrony roślinna wzrost kolonii i kiełkowanie zarodników owadobójczego grzyba Beauveria bassiana (Bals.). Vuill. Prog. Plant Prot./Post. Ochr. Roślin. 2012, 52, 969–974. [Google Scholar]
Sampling Locations | State | Collection | Type | Fungal Habitat |
---|---|---|---|---|
Black Moshannon State Park (42.819°/−88.407) 1 | Pennsylvania | 2014 | fen | fine detritus |
Tannersville Cranberry bog (41.037/−75.264) | Pennsylvania | 2016 | acid-poor fen | fine detritus |
Pepper Run (41.051/−77.331) | Pennsylvania | 2014 | first-order stream | fine detritus |
Nescopeck State Park (41.093/−78.059) | Pennsylvania | 2016 | first-order stream | fine detritus |
Beulah bog (42.819/−88.407) | Wisconsin | 2016 | kettle bog | fine detritus |
Honey Creek Natural Area (42.727/−88.269) | Wisconsin | 2016 | first-order stream | fine detritus |
Republic (36.792/−76.289) | Virginia | 2019 | saltwater marsh | root-associated |
Bell Mills (36.721/−76.253) | Virginia | 2019 | saltwater marsh | root-associated |
Deep Creek Lock (36.746/−76.343) | Virginia | 2019 | saltwater marsh | root-associated |
Phylum/Class | Genus | Species or Final Determination | Number of Isolates Per Taxonomic Level | Isolation 1 |
---|---|---|---|---|
Ascomycota | ||||
Dothideomycetes | ||||
Alternaria | alternata | 2 | D | |
sp. | 4 | RA/D | ||
Boeremia | exigua | 1 | D | |
sp. | 1 | D | ||
Capnodium | sp. | 1 | D | |
Cladosporium | cladosporioides | 1 | D | |
sp. | 5 | RA | ||
Dendryphiella | sp. | 1 | D | |
Didymella | sp. | 1 | RA | |
Didymellaceae sp. | 2 | RA | ||
Epicoccum | nigrum | 1 | D | |
Exserohilum | rostratum | 3 | RA | |
Hongkongmyces | snookiorum | 1 | D | |
Hormonema | sp. | 1 | D | |
Keissleriella | yonaguniensis | 1 | D | |
Leptosphaeria | sp. | 1 | D | |
Leptosphaerulina | chartarum | 1 | D | |
Paraconiothyrium | fuckelii | 1 | D | |
Paraphaeosphaeria | sp. | 3 | RA | |
Preussia | flanaganii | 1 | D | |
Pyrenochaeta | unguis-hominis | 1 | D | |
Recurvomyces | mirabilis | 1 | D | |
Tausonia | pullulans | 1 | D | |
Toxicocladosporium | ficiniae | 1 | D | |
Unknown | 3 | RA/D | ||
Eurotiomycetes | ||||
Aspergillus | fumigatus | 1 | D | |
Exophiala | spartinae | 3 | RA | |
Paecilomyces | sp. | 1 | D | |
Penicillium | sp. | 2 | RA/D | |
Sclerocleista | ornata | 1 | D | |
Talaromyces | sp. | 1 | D | |
Thysanophora | penicilliodes | 1 | D | |
Incertae sedis | ||||
Filosporella | sp. | 1 | D | |
Pseudeurotium | sp. | 1 | D | |
Setophoma | vernoniae | 1 | D | |
Leotiomycetes | ||||
Acephala | sp. | 1 | D | |
Botryotinia | fuckeliana | 1 | D | |
Cadophora | luteo-olivacea | 1 | D | |
Godronia | cassandrae | 1 | D | |
Helicodendron | triglitziense | 1 | D | |
Loramyces | macrosporus | 1 | D | |
Patinella | hyalophaea | 1 | D | |
Phialocephala | fortinii | 1 | D | |
Trichosporiella | sp. | 1 | D | |
Urceolella | carestiana | 1 | D | |
Pezizomycetes | ||||
Peziza | sp. | 1 | RA | |
Saccharomycetes | ||||
Barnettozyma | californica | 1 | D | |
Cyberlindnera | saturnus | 1 | D | |
Debaryomyces | hansenii | 1 | D | |
Galactomyces | candidum | 1 | D | |
Geotrichum | restrictum | 1 | D | |
Pichia | kudriavzevii | 1 | D | |
Scheffersomyces | spartinae | 4 | RA | |
Sugiyamaella | paludigena | 1 | D | |
Torulaspora | delbrueckii | 1 | D | |
Wickerhamomyces | anomalus | 1 | D | |
Williopsis | sp. | 1 | D | |
Yamadazyma | mexicana | 1 | D | |
Sordariomycetes | ||||
Acremonium | rutilum | 2 | RA/D | |
Albifimbria | viridis | 1 | D | |
Alfaria | sp. | 1 | D | |
Arthrinium | arundinis | 2 | RA | |
Beauveria | brongniartii | 1 | D | |
Bionectria | sp. | 1 | D | |
Chaetomium | sp. | 1 | D | |
Chalara | vaccinii | 1 | D | |
Chaunopycnis | sp. | 1 | D | |
Clavicipitaceae sp. | 1 | D | ||
Clonostachys | sp. | 2 | RA/D | |
Colletotrichum | sp. | 3 | RA/D | |
Coniella | lustricola | 1 | D | |
Cosmospora | sp. | 1 | D | |
Elaphocordyceps | sp. | 1 | D | |
Fusarium | equiseti | 1 | D | |
sp. | 7 | RA | ||
sporotrichioides | 3 | RA | ||
Metarhizium | anisopliae | 1 | D | |
Neopestalotiopsis | sp. | 1 | D | |
Ophiostomataceae sp. | 1 | D | ||
Pestalotiopsis | sp. | 2 | RA | |
Phaeoacremonium | sp. | 1 | RA | |
Plectosphaerella | cucumerina | 1 | D | |
Sarocladium | sp. | 1 | D | |
Trichoderma | atroviride | 2 | RA | |
sp. | 19 | RA/D | ||
Volutella | sp. | 1 | D | |
Basidiomycota | ||||
Exobasidiomycetes | ||||
Meira | sp. | D | ||
Microbotryomycetes | ||||
Hamamotoa | sp. | 1 | D | |
Leucosporidium | sp. | 1 | D | |
Mastigobasidium | intermedium | 1 | D | |
Rhodotorula | bogoriensis | 1 | D | |
Tremellomycetes | ||||
Bullera | alba | 1 | D | |
Cystofilobasidium | macerans | 1 | D | |
Fonsecazyma | betulae | 1 | D | |
Gibellulopsis | nigrescens | 1 | D | |
Papiliotrema | flavescens | 1 | D | |
pseudoalba | 1 | RA | ||
sp. | 1 | D | ||
Saitozyma | podzolica | 2 | D | |
Trichosporon | moniliiforme | 1 | D | |
Vanrija | musci | 1 | D | |
Mortierellomycota | ||||
Incertae sedis | ||||
Mortierella | macrocystis | 1 | D | |
sossauensis | 1 | D | ||
Mortierellales sp. | 1 | D | ||
Mucoromycota | ||||
Incertae sedis | ||||
Mucor | sp. | 1 | D | |
Rhizomucor | variabilis | 1 | D | |
Umbelopsis | ramanniana | 1 | D |
Chemical | Water Solubility | Environmental Levels | Assay Concentrations −L | |||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
Mancozeb | 6–20 mg/L | 1–4 mg/L 1 | 100 µg | 500 µg | 1.5 mg | 4 mg |
Malathion | 130 mg/L | 0.3 to 38 µg/L | 1 µg | 10 µg | 20 µg | 40 µg |
Cypermethrin | 9 µg/L | 6.25 µg/L | 0.5 µg | 1 µg | 3 µg | 6 µg |
Atrazine | 33 µg/mL | 3.7 to 350 ng/L | 3.7 ng | 50 ng | 150 ng | 350 ng |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raudabaugh, D.B.; Miller, A.N.; Gunsch, C.K. Evaluation of Pesticides on Detritus-Inhabiting and Root-Associated Fungi in Aquatic Habitats and Potential Implications. Diversity 2024, 16, 255. https://doi.org/10.3390/d16050255
Raudabaugh DB, Miller AN, Gunsch CK. Evaluation of Pesticides on Detritus-Inhabiting and Root-Associated Fungi in Aquatic Habitats and Potential Implications. Diversity. 2024; 16(5):255. https://doi.org/10.3390/d16050255
Chicago/Turabian StyleRaudabaugh, Daniel B., Andrew N. Miller, and Claudia K. Gunsch. 2024. "Evaluation of Pesticides on Detritus-Inhabiting and Root-Associated Fungi in Aquatic Habitats and Potential Implications" Diversity 16, no. 5: 255. https://doi.org/10.3390/d16050255
APA StyleRaudabaugh, D. B., Miller, A. N., & Gunsch, C. K. (2024). Evaluation of Pesticides on Detritus-Inhabiting and Root-Associated Fungi in Aquatic Habitats and Potential Implications. Diversity, 16(5), 255. https://doi.org/10.3390/d16050255