Eco-Engineering Mangrove Restoration at Gazi Bay, Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Description of the Study Area
2.2. Vegetation Surveys
2.3. Sediment Characteristics
2.3.1. The Determination of Sediment Particle Sizes
2.3.2. The Determination of Bulk Density and Sediment Organic Matter
2.4. Experimental Mangrove Planting
2.4.1. Site Selection
2.4.2. The Use of PVC and Bamboo Pipes
2.4.3. Encasements and Propagule Preparation
2.4.4. Experimental Design
2.4.5. The Monitoring of Growth Performance
2.5. Data Analysis
3. Results
3.1. Biophysical Characteristcs
3.2. Mangrove Forest Structure
3.3. Trial Mangrove Growing Experiments in a High-Energy Site of Gazi
3.3.1. The Survival Rates of the Replanted Mangroves
3.3.2. The Growth Performance of the Replanted Mangroves
4. Discussion
4.1. Sediment Characteristics
4.2. Mangrove Forest Structure in Gazi
4.3. The Survival and Mortality of the Planted Mangroves
4.4. The Growth Performance of the Planted Mangroves
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Post Hoc-Tukey HSD | ||||||
---|---|---|---|---|---|---|
(I) Treatment | (J) Treatment | Mean Difference (I-J) | Std. Error | Sig. | 95% Confidence Interval | |
Lower Bound | Upper Bound | |||||
Control | 4” PVC | −21.167 * | 1.187 | 0.000 | −24.28 | −18.05 |
3” PVC | −21.500 * | 1.187 | 0.000 | −24.61 | −18.39 | |
Bamboo | −7.288 * | 1.416 | 0.000 | −11.00 | −3.57 | |
4” PVC | Control | 21.167 * | 1.187 | 0.000 | 18.05 | 24.28 |
3” PVC | −0.333 | 1.187 | 0.992 | −3.45 | 2.78 | |
Bamboo | 13.878 * | 1.416 | 0.000 | 10.16 | 17.59 | |
3” PVC | Control | 21.500 * | 1.187 | 0.000 | 18.39 | 24.61 |
4” PVC | 0.333 | 1.187 | 0.992 | −2.78 | 3.45 | |
Bamboo | 14.212 * | 1.416 | 0.000 | 10.50 | 17.93 | |
Bamboo | Control | 7.288 * | 1.416 | 0.000 | 3.57 | 11.00 |
4” PVC | −13.878 * | 1.416 | 0.000 | −17.59 | −10.16 | |
3” PVC | −14.212 * | 1.416 | 0.000 | −17.93 | −10.50 |
References
- Triyanti, A.; Chu, E. An ecosystem approach to disaster risk reduction: The challenges of multilevel governance. Br. GSDR Env. 2016, 3, 202–211. [Google Scholar]
- Faridah-Hanum, I.; Yusoff, F.M.; Fitrianto, A.; Ainuddin, N.A.; Gandaseca, S.; Zaiton, S.; Norizah, K.; Nurhidayu, S.; Roslan, M.K.; Hakeem, K.R. Development of a comprehensive mangrove quality index (MQI) in Matang Mangrove: Assessing mangrove ecosystem health. Ecol. Indic. 2019, 102, 103–117. [Google Scholar] [CrossRef]
- Barbier, E.B. The protective service of mangrove ecosystems: A review of valuation methods. Mar. Pollut. Bull. 2016, 109, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Friess, D.A.; Yando, E.S.; Alemu, J.B.; Wong, L.-W.; Soto, S.D.; Bhatia, N. Ecosystem services and disservices of mangrove forests and salt marshes. In Oceanography and Marine Biology; Taylor & Francis: Abingdon, UK, 2020. [Google Scholar]
- Huxham, M.; Dencer-Brown, K.; Kathiresan, K.; Nagelkerken, I.; Wanjiru, C. Mangrove ecosystem services for local communities and their vulnerability to climate change. In Mangrove Ecosystems: A Global Biogeographic Perspective o n Structure, Function and Services; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Sanderman, J.; Hengl, T.; Fiske, G.; Solvik, K.; Adame, M.F.; Benson, L.; Bukoski, J.J.; Carnell, P.; Cifuentes-Jara, M.; Donato, D. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 2018, 13, 55002. [Google Scholar] [CrossRef]
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.; Kauffman, J.B.; Marbà, N. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mackenzie, R.A.; Tieng, T.; Soben, K.; Tulyasuwan, N.; Resanond, A.; Blate, G.; Litton, C.M. The impacts of degradation, deforestation and restoration on mangrove ecosystem carbon stocks across Cambodia. Sci. Total Environ. 2019, 706, 135416. [Google Scholar] [CrossRef]
- Howard, J.; Sutton-Grier, A.; Herr, D.; Kleypas, J.; Landis, E.; Mcleod, E.; Pidgeon, E.; Simpson, S. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 2017, 15, 42–50. [Google Scholar] [CrossRef]
- Sidik, F.; Supriyanto, B.; Krisnawati, H.; Muttaqin, M.Z. Mangrove conservation for climate change mitigation in Indonesia. Wiley Interdiscip. Rev. Clim. Chang. 2018, 9, e529. [Google Scholar] [CrossRef]
- Gedan, K.B.; Kirwan, M.L.; Wolanski, E.; Barbier, E.B.; Silliman, B.R. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Clim. Chang. 2011, 106, 7–29. [Google Scholar] [CrossRef]
- Shepard, C.C.; Crain, C.M.; Beck, M.W. The protective role of coastal marshes: A systematic review and meta-analysis. PLoS ONE 2011, 6, e27374. [Google Scholar] [CrossRef]
- Sandilyan, S.; Kathiresan, K. Mangroves as bioshield: An undisputable fact. Ocean Coast. Manag. 2015, 103, 94–96. [Google Scholar] [CrossRef]
- Indarsih, R.; Masruri, M.S. Mangrove conservation as an abration strategy risk reduction based on ecosystem in the coastal area of the Rembang Regency. IOP Conf. Ser. Earth Environ. Sci. 2019, 271, 12021. [Google Scholar] [CrossRef]
- Lewis, R.R., III. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 2005, 24, 403–418. [Google Scholar] [CrossRef]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Ostling, J.L.; Butler, D.R.; Dixon, R.W. The biogeomorphology of mangroves and their role in natural hazards mitigation. Geogr. Compass 2009, 3, 1607–1624. [Google Scholar] [CrossRef]
- Steven, A.; Appeaning Addo, K.; Addo, G.; Llewellyn, V.; Vu, C.; Boateng, I.; Bustamante, R.; Doropoulos, C.; Gillies, C.; Hemer, M.; et al. Coastal Development: Resilience, Restoration and Infrastructure Requirements; World Resources Institute: Washington, DC, USA, 2020. [Google Scholar]
- Mclvor, A.; Moller, I.; Spencer, T.; Spalding, M. Reduction of Wind and Swell Waves by Mangroves; Natural Coastal Protection Series: Report 1. Cambridge Coastal Research Unit Working Paper 40; The Nature Conservancy and Wetlands International: Lincoln City, OR, USA, 2012; 27p, ISSN 2050-7941. [Google Scholar]
- McKee, K.L.; Cherry, J.A. Hurricane Katrina sediment slowed elevation loss in subsiding brackish marshes of the Mississippi River delta. Wetlands 2009, 29, 2–15. [Google Scholar] [CrossRef]
- Wolanski, E. Thematic paper: Synthesis of the protective functions of coastal forests and trees against natural hazards. In Coastal Protection in the Aftermath of the Indian Ocean Tsunami: What Role for Forests and Trees? FAO: Rome, Italy, 2006; pp. 157–179. [Google Scholar]
- Day, J.W.; Boesch, D.F.; Clairain, E.J.; Kemp, G.P.; Laska, S.B.; Mitsch, W.J.; Orth, K.; Mashriqui, H.; Reed, D.J.; Shabman, L. Restoration of the Mississippi Delta: Lessons from hurricanes Katrina and Rita. Science 2007, 315, 1679–1684. [Google Scholar] [CrossRef]
- McKee, K.L.; Cahoon, D.R.; Feller, I.C. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 2007, 16, 545–556. [Google Scholar] [CrossRef]
- Krauss, K.W.; McKee, K.L.; Lovelock, C.E.; Cahoon, D.R.; Saintilan, N.; Reef, R.; Chen, L. How mangrove forests adjust to rising sea level. New Phytol. 2014, 202, 19–34. [Google Scholar] [CrossRef]
- Dahdouh-Guebas, F.; Jayatissa, L.P.; Di Nitto, D.; Bosire, J.O.; Lo Seen, D.; Koedam, N. How effective were mangroves as a defence against the recent tsunami? Curr. Biol. 2005, 15, R443–R447. [Google Scholar] [CrossRef]
- Patel, D.M.; Patel, V.M.; Bhupesh, K.; Patel, K.A. Peformance of mangrove in tsunami resistance. Int. J. Emerg. Technol. Res. 2014, 1, 29–32. [Google Scholar]
- Fehr, I.; Grossi, P.; Hernandez, S.; Krebs, T.; McKay, S.; Muir-Wood, R.; Pomonis, A.; Del Re, D.; Souch, C.; Windeler, D. Managing Tsunami Risk in the Aftermath of the 2004 Indian Ocean Earthquake & Tsunami; RMS Incorporated: Whittier, CA, USA, 2006; Available online: http://www.disastersrus.org/emtools/tsunami/indianoceantsunamireport.pdf (accessed on 20 October 2023).
- Hawkes, A.D.; Bird, M.; Cowie, S.; Grundy-Warr, C.; Horton, B.P.; Hwai, A.T.S.; Law, L.; Macgregor, C.; Nott, J.; Ong, J.E. Sediments deposited by the 2004 Indian Ocean tsunami along the Malaysia–Thailand Peninsula. Mar. Geol. 2007, 242, 169–190. [Google Scholar] [CrossRef]
- Athukorala, P. Disaster, Generosity and Recovery: Indian Ocean Tsunami; Departmental Working Papers 2012-04; Arndt-Corden Department of Economics, The Australian National University: Canberra, Australia, 2012. [Google Scholar]
- Carugati, L.; Gatto, B.; Rastelli, E.; Lo Martire, M.; Coral, C.; Greco, S.; Danovaro, R. Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Sci. Rep. 2018, 8, 13298. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- GoK, G.K. National Mangrove Ecosystem Management Plan; Kenya Forest Service: Nairobi, Kenya, 2017; Available online: https://wiomn.org/wp-content/uploads/2017/10/National-Mangrove-Ecosystem-Management-Plan_Final_170628.pdf (accessed on 22 October 2023).
- Bosire, J.O.; Mangora, M.M.; Bandeira, S.O.; Rajkaran, A.; Ratsimbazafy, R.; Appadoo, C.; Kairo, J.G. (Eds.) Mangroves of the Western Indian Ocean: Status and Management; Western Indian Ocean Marine Science Association (WIOMSA): Zanzibar, Tanzania, 2015; 157p, ISBN 9987955940. [Google Scholar]
- Murray, B.C.; Pendleton, L.; Jenkins, W.A.; Sifleet, S. Green Payments for Blue Carbon: Economic Incentives for Protecting Threatened Coastal Habitats; Nicholas Institute for Environmental Policy Solutions: Durham, NC, USA, 2011. [Google Scholar]
- Primavera, J.H.; Rollon, R.N.; Samson, M.S. 10.10 The Pressing Challenges of Mangrove Rehabilitation: Pond Reversion and Coastal Protection. Biologica 2011, 50, 232. [Google Scholar]
- Bandeira, S.; Balidy, H. Limpopo Estuary Mangrove Transformation, Rehabilitation and Management. In Estuaries: A Lifeline of Ecosystem Services in the Western Indian Ocean; Springer: Cham, Switzerland, 2016; pp. 227–237. [Google Scholar] [CrossRef]
- Brooks, S.M.; Spencer, T. Shoreline retreat and sediment release in response to accelerating sea level rise: Measuring and modelling cliffline dynamics on the Suffolk Coast, UK. Glob. Planet. Chang. 2012, 80, 165–179. [Google Scholar] [CrossRef]
- Kairo, J.G. Artificial Regeneration and Sustainable Yield Management of Mangrove Forests at Gazi Bay, Kenya; University of Nairobi: Nairobi, Kenya, 1995. [Google Scholar]
- Bosire, J.O.; Dahdouh-Guebas, F.; Kairo, J.G.; Koedam, N. Colonization of non-planted mangrove species into restored mangrove stands in Gazi Bay, Kenya. Aquat. Bot. 2003, 76, 267–279. [Google Scholar] [CrossRef]
- Dahdouh-Guebas, F.; Van Pottelbergh, I.; Kairo, J.G.; Cannicci, S.; Koedam, N. Human-impacted mangroves in Gazi (Kenya): Predicting future vegetation based on retrospective remote sensing, social surveys, and tree distribution. Mar. Ecol. Prog. Ser. 2004, 272, 77–92. [Google Scholar] [CrossRef]
- Kirui, K.B.; Kairo, J.G.; Bosire, J.; Viergever, K.M.; Rudra, S.; Huxham, M.; Briers, R.A. Mapping of mangrove forest land cover change along the Kenya coastline using Landsat imagery. Ocean Coast. Manag. 2013, 83, 19–24. [Google Scholar] [CrossRef]
- Cadier, C.; Bayraktarov, E.; Piccolo, R.; Adame, M.F. Indicators of coastal wetlands restoration success: A systematic review. Front. Mar. Sci. 2020, 7, 600220. [Google Scholar] [CrossRef]
- Airoldi, L.; Beck, M.W.; Firth, L.B.; Bugnot, A.B.; Steinberg, P.D.; Dafforn, K.A. Emerging solutions to return nature to the urban ocean. Ann. Rev. Mar. Sci. 2021, 13, 445–477. [Google Scholar] [CrossRef] [PubMed]
- Gerona-Daga, M.E.B.; Salmo, S.G., III. A systematic review of mangrove restoration studies in Southeast Asia: Challenges and opportunities for the United Nation’s Decade on Ecosystem Restoration. Front. Mar. Sci. 2022, 9, 987737. [Google Scholar] [CrossRef]
- Kairo, J.G.; Dahdouh-Guebas, F.; Bosire, J.; Koedam, N. Restoration and management of mangrove systems—A lesson for and from the East African region. S. Afri. J. Bot. 2001, 67, 383–389. [Google Scholar] [CrossRef]
- UNEP; Nairobi Convention Secretariat; USAID; WIOMSA. Guidelines on Mangrove Ecosystem Restoration for the Western Indian Ocean Region; UNEP: Nairobi, Kenya, 2020; 71p, Available online: https://www.unep.org/resources/report/guidelines-mangrove-restoration-western-indian-ocean-region (accessed on 28 December 2023).
- Kodikara, K.A.S.; Mukherjee, N.; Jayatissa, L.P.; Dahdouh-Guebas, F.; Koedam, N. Have mangrove restoration projects worked? An in-depth study in Sri Lanka. Restor. Ecol. 2017, 25, 705–716. [Google Scholar] [CrossRef]
- Wodehouse, D.C.J.; Rayment, M.B. Mangrove area and propagule number planting targets produce sub-optimal rehabilitation and afforestation outcomes. Estuar. Coast. Shelf Sci. 2019, 222, 91–102. [Google Scholar] [CrossRef]
- Otero, V.; Van De Kerchove, R.; Satyanarayana, B.; Mohd-Lokman, H.; Lucas, R.; Dahdouh-Guebas, F. An analysis of the early regeneration of mangrove forests using Landsat time series in the Matang Mangrove Forest Reserve, Peninsular Malaysia. Remote Sens. 2019, 11, 774. [Google Scholar] [CrossRef]
- Kamali, B.; Hashim, R. Mangrove restoration without planting. Ecol. Eng. 2011, 37, 387–391. [Google Scholar] [CrossRef]
- Schmitt, K.; Duke, N.C. Mangrove management, assessment and monitoring. In Tropical Forestry Handbook; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–29. [Google Scholar]
- Riley, R.W.; Kent, C.P.S. Riley encased methodology: Principles and processes of mangrove habitat creation and restoration. Mangroves Salt Marshes 1999, 3, 207–213. [Google Scholar] [CrossRef]
- Coppejans, E.; Beeckman, H.; De Wit, M. The seagrass and associated macroalgal vegetation of Gazi Bay (Kenya). Hydrobiologia 1992, 247, 59–75. [Google Scholar] [CrossRef]
- Tack, J.; Polk, P. The influence of tropical catchments upon the coastal zone: Modelling the links between groundwater and mangrove losses in Kenya, India/Bangladesh and Florida. In The Sustainable Management of Tropical Catchments; John Wiley & Sons: Hoboken, NJ, USA, 1999; pp. 359–371. [Google Scholar]
- Kitheka, J.U. Water circulation and coastal trapping of brackish water in a tropical mangrove-dominated bay in Kenya. Limnol. Oceanogr. 1996, 41, 169–176. [Google Scholar] [CrossRef]
- Obura, D. Coral reefs and society—Finding a balance? Oryx 2012, 46, 467–468. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- McClanahan, T.R. Seasonality in East Africa’s coastal waters. Mar. Ecol. Prog. Ser. Oldend. 1988, 44, 191–199. [Google Scholar] [CrossRef]
- UNEP; Institute of Marine Sciences, University of Dar es Salaam; FAQ; SIDA. Overview of Land-Based Sources and Activities Affecting the Marine, Coastal and Associated Freshwater Environment in the Eastern African Region; UNEP Regional Seas Reports and Studies; UNEP: Nairobi, Kenya, 1998. [Google Scholar]
- Kirui, B.; Kairo, J.G.; Karachi, M. Allometric equations for estimating above ground biomass of Rhizophora mucronata Lamk.(Rhizophoraceae) mangroves at Gazi Bay, Kenya. West. Indian Ocean J. Mar. Sci. 2006, 5, 27–34. [Google Scholar]
- Neukermans, G.; Dahdouh-Guebas, F.; Kairo, J.G.; Koedam, N. Mangrove species and stand mapping in Gazi Bay (Kenya) using Quickbird satellite imagery. J. Spat. Sci. 2008, 53, 75–86. [Google Scholar] [CrossRef]
- Kairu, A.; Kotut, K.; Mbeche, R.; Kairo, J.G. Participatory forestry improves mangrove forest management in Kenya. Int. For. Rev. 2021, 23, 41–54. [Google Scholar] [CrossRef]
- Cintron, G.; Schaeffer Novelli, Y. Methods for studying mangrove structure. Monogr. Oceanogr. Methodol. 1984, 8, 91–113. [Google Scholar]
- Komiyama, A.; Poungparn, S.; Kato, S. Common allometric equations for estimating the tree weight of mangroves. J. Trop. Ecol. 2005, 21, 471–477. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Donato, D.C. Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass, and Carbon Stocks in Mangrove Forests; Working Paper 86; CIFOR: Bogor, Indonesia, 2012. [Google Scholar]
- Kershaw Jr, J.A.; Ducey, M.J.; Beers, T.W.; Husch, B. Forest Mensuration, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 1118902033. Available online: https://books.google.co.ke/books?id=SGVJDQAAQBAJ (accessed on 5 November 2023).
- Folk, R.L.; Ward, W.C. Brazos River bar [Texas]; a study in the significance of grain size parameters. J. Sediment. Res. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landforms 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Howard, J.; Hoyt, S.; Isensee, K.; Telszewski, M.; Pidgeon, E. Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrasses; Conservation International: Arlington, VA, USA; Intergovernmental Oceanographic Commission of UNESCO: Paris, France; International Union for Conservation of Nature: Gland, Switzerland, 2014. [Google Scholar]
- Kauffman, J.B.; Heider, C.; Cole, T.G.; Dwire, K.A.; Donato, D.C. Ecosystem carbon stocks of micronesian mangrove forests. Wetlands 2011, 31, 343–352. [Google Scholar] [CrossRef]
- Krumholz, J.; Jadot, C. Demonstration of a new technology for restoration of Red Mangrove (Rhizophora mangle) in high-energy environments. Mar. Technol. Soc. J. 2009, 43, 64–72. [Google Scholar] [CrossRef]
- Clarke, A.; Johns, L. Mangrove Nurseries: Construction, Propagation and Planting; Fish Habitat Guideline FHG 004; Queensland Department of Agriculture and Fisheries: Warwick, Australia, 2002; 32p. [Google Scholar]
- Melana, D.M.; Atchue, J., III; Yao, C.E.; Edwards, R.; Melana, E.E.; Gonzales, H.I. Mangrove Management Handbook; Department of Environment and Natural Resources: Cebu City, Philippines, 2000; 96p. [Google Scholar]
- Change, C. A Community-Based Mangrove Planting Handbook for Papua New Guinea; Asian Development Bank: Mandaluyong, Philippines, 2018. [Google Scholar]
- Rahardjo, H.; Indrawan, I.G.B.; Leong, E.C.; Yong, W.K. Effects of coarse-grained material on hydraulic properties and shear strength of top soil. Eng. Geol. 2008, 101, 165–173. [Google Scholar] [CrossRef]
- Zhao, Y.; Cui, Y.; Zhou, H.; Feng, X.; Huang, Z. Effects of void ratio and grain size distribution on water retention properties of compacted infilled joint soils. Soils Found. 2017, 57, 50–59. [Google Scholar] [CrossRef]
- Kairo, J.G.; Lang’at, J.K.S.; Dahdouh-Guebas, F.; Bosire, J.; Karachi, M. Structural development and productivity of replanted mangrove plantations in Kenya. For. Ecol. Manage. 2008, 255, 2670–2677. [Google Scholar] [CrossRef]
- Tue, N.T.; Quy, T.D.; Amano, A.; Hamaoka, H.; Tanabe, S.; Nhuan, M.T.; Omori, K. Historical profiles of trace element concentrations in mangrove sediments from the Ba Lat Estuary, Red River, Vietnam. Water, Air, Soil Pollut. 2012, 223, 1315–1330. [Google Scholar] [CrossRef]
- Al-Shayea, N.A. The combined effect of clay and moisture content on the behavior of remolded unsaturated soils. Eng. Geol. 2001, 62, 319–342. [Google Scholar] [CrossRef]
- Dimitrova, R.S.; Yanful, E.K. Factors affecting the shear strength of mine tailings/clay mixtures with varying clay content and clay mineralogy. Eng. Geol. 2012, 125, 11–25. [Google Scholar] [CrossRef]
- Cerón-Bretón, J.G.; Cerón-Bretón, R.M.; Rangel-Marrón, M.; Estrella-Cahuich, A. Evaluation of carbon sequestration potential in undisturbed mangrove forest in Términos Lagoon, Campeche. Dev. Energy Environ. Econ 2010, 1, 295–300. [Google Scholar]
- Calderón, F.J.; Reeves, J.B.; Collins, H.P.; Paul, E.A. Chemical Differences in Soil Organic Matter Fractions Determined by Diffuse-Reflectance Mid-Infrared Spectroscopy. Soil Sci. Soc. Am. J. 2011, 75, 568–579. [Google Scholar] [CrossRef]
- Watson, J. Do Mangrove forests of the Malay Peninsula. Malayan Forest Records 6, Forest Department, Federated Malay States, Kuala Lumpur. Malay For. Rec. 1928, 6, 1–275. [Google Scholar]
- Srikanth, S.; Lum, S.K.Y.; Chen, Z. Mangrove root: Adaptations and ecological importance. Trees 2016, 30, 451–465. [Google Scholar] [CrossRef]
- Kamil, E.A.; Takaijudin, H.; Hashim, A.M. Mangroves as coastal bio-shield: A review of mangroves performance in wave attenuation. Civ. Eng. J. 2021, 7, 1964–1981. [Google Scholar] [CrossRef]
- Tanaka, N.; Sasaki, Y.; Mowjood, M.I.M.; Jinadasa, K.; Homchuen, S. Coastal vegetation structures and their functions in tsunami protection: Experience of the recent Indian Ocean tsunami. Landsc. Ecol. Eng. 2007, 3, 33–45. [Google Scholar] [CrossRef]
- Ohira, W.; Honda, K.; Nagai, M.; Ratanasuwan, A. Mangrove stilt root morphology modeling for estimating hydraulic drag in tsunami inundation simulation. Trees 2013, 27, 141–148. [Google Scholar] [CrossRef]
- Primavera, J.H.; Dela Cruz, M.; Montilijao, C.; Consunji, H.; Dela Paz, M.; Rollon, R.N.; Maranan, K.; Samson, M.S.; Blanco, A. Preliminary assessment of post-Haiyan mangrove damage and short-term recovery in Eastern Samar, central Philippines. Mar. Pollut. Bull. 2016, 109, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.J.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Lovelock, C.E.; Adame, M.F.; Bennion, V.; Hayes, M.; Reef, R.; Santini, N.; Cahoon, D.R. Sea level and turbidity controls on mangrove soil surface elevation change. Estuar. Coast. Shelf Sci. 2015, 153, 1–9. [Google Scholar] [CrossRef]
- Njiru, D.M.; Githaiga, M.N.; Nyaga, J.M.; Lang’at, K.S.; Kairo, J.G. Geomorphic and climatic drivers are key determinants of structural variability of mangrove forests along the Kenyan Coast. Forests 2022, 13, 870. [Google Scholar] [CrossRef]
- Oosterom, A.P. The Geomorphology of Southeast Kenya; Wageningen University and Research: Wageningen, The Netherlands, 1988; ISBN 9798516020117. [Google Scholar]
- Mohamed, M.O.S.; Neukermans, G.; Kairo, J.G.; Dahdouh-Guebas, F.; Koedam, N. Mangrove forests in a peri-urban setting: The case of Mombasa (Kenya). Wetl. Ecol. Manag. 2009, 17, 243–255. [Google Scholar] [CrossRef]
- Ndirangu, M.D. Bio-Shields: Wave Energy Reduction and Sediment Stabilization by Mangroves in Gazi Bay, Kenya; University of Nairobi: Nairobi, Kenya, 2016. [Google Scholar]
- Primavera, J.H.; Esteban, J.M.A. A review of mangrove rehabilitation in the Philippines: Successes, failures and future prospects. Wetl. Ecol. Manag. 2008, 16, 345–358. [Google Scholar] [CrossRef]
- Teas, H.J. Ecology and restoration of mangrove shorelines in Florida. Environ. Conserv. 1977, 4, 51–58. [Google Scholar] [CrossRef]
- Kent, C.P.S.; Lin, J. A comparison of Riley encased methodology and traditional techniques for planting red mangroves (Rhizophora mangle). Mangroves Salt Marshes 1999, 3, 215–225. [Google Scholar] [CrossRef]
- Hashim, R.; Kamali, B.; Tamin, N.M.; Zakaria, R. An integrated approach to coastal rehabilitation: Mangrove restoration in Sungai Haji Dorani, Malaysia. Estuar. Coast. Shelf Sci. 2010, 86, 118–124. [Google Scholar] [CrossRef]
- Furukawa, K.; Primavera, J.H.; Loma, R.J.; Montilijao, C.L.; Coching, J.D.; Maria, Y.Y.; Siringan, F.P. A community based mangrove rehabilitation of high energy coasts in Pedada Bay, Philippines. J. Trop. For. Res 2019, 3, 36–53. [Google Scholar]
- Shu, A.; Zhu, J.; Cui, B.; Wang, L.; Zhang, Z.; Pi, C. Coastal wave-energy attenuation by artificial wooden fences deployed for mangrove restoration: An experimental study. Front. Mar. Sci. 2023, 10, 1165048. [Google Scholar] [CrossRef]
- Le Xuan, T.; Le Manh, H.; Ba, H.T.; Do Van, D.; Vu, H.T.D.; Wright, D.; Bui, V.H.; Anh, D.T. Wave energy dissipation through a hollow triangle breakwater on the coastal Mekong Delta. Ocean Eng. 2022, 245, 110419. [Google Scholar] [CrossRef]
- Almahasheer, H.; Duarte, C.M.; Irigoien, X. Nutrient limitation in central Red Sea mangroves. Front. Mar. Sci. 2016, 3, 271. [Google Scholar] [CrossRef]
- Alongi, D. Early growth responses of mangroves to different rates of nitrogen and phosphorus supply. J. Exp. Mar. Biol. Ecol. 2011, 397, 85–93. [Google Scholar] [CrossRef]
- Krauss, K.W.; Lovelock, C.E.; McKee, K.L.; López-Hoffman, L.; Ewe, S.M.; Sousa, W.P. Environmental drivers in mangrove establishment and early development: A review. Aquat. Bot. 2008, 89, 105–127. [Google Scholar] [CrossRef]
- Almahasheer, H.; Duarte, C.M.; Irigoien, X. Phenology and Growth dynamics of Avicennia marina in the Central Red Sea. Sci. Rep. 2016, 6, 37785. [Google Scholar] [CrossRef]
- Su, J.; Friess, D.A.; Gasparatos, A. A meta-analysis of the ecological and economic outcomes of mangrove restoration. Nat. Commun. 2021, 12, 5050. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.W.; Heck, N.; Narayan, S.; Menéndez, P.; Reguero, B.G.; Bitterwolf, S.; Torres-Ortega, S.; Lange, G.-M.; Pfliegner, K.; McNulty, V.P. Return on investment for mangrove and reef flood protection. Ecosyst. Serv. 2022, 56, 101440. [Google Scholar] [CrossRef]
- Ounanian, K.; Carballo-Cárdenas, E.; van Tatenhove, J.P.M.; Delaney, A.; Papadopoulou, K.N.; Smith, C.J. Governing marine ecosystem restoration: The role of discourses and uncertainties. Mar. Policy 2018, 96, 136–144. [Google Scholar] [CrossRef]
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J. International principles and standards for the practice of ecological restoration. Restor. Ecol. 2019, 27, S1–S46. [Google Scholar] [CrossRef]
- Waltham, N.J.; Elliott, M.; Lee, S.Y.; Lovelock, C.; Duarte, C.M.; Buelow, C.; Simenstad, C.; Nagelkerken, I.; Claassens, L.; Wen, C.K.C. UN decade on ecosystem restoration 2021–2030—What chance for success in restoring coastal ecosystems? Front. Mar. Sci. 2020, 7, 71. [Google Scholar] [CrossRef]
Time after Planting | Parameters Measured |
---|---|
0 to 3 months | Percentage Survival |
4 to 6 months | Percentage Survival Shoot height (from first node to the base of top-most leaves) Number of leaves (for all individuals) Number of internodes (for all individuals) |
7 to 8 months | Percentage Survival Shoot Height Number of leaves (for all individuals) Number of internodes (for all individuals) |
Sample Depth (cm) | Coarse Sand (%) | Medium Sand (%) | Fine Sand (%) | Silt-Clay (%) | Bulk Density (g/cm3) | SOM (%) | SOC (%) |
---|---|---|---|---|---|---|---|
0–15 | 13.54 ± 0.98 | 27.68 ± 2.30 | 55.33 ± 2.60 | 3.45 ± 0.30 | 0.335 ± 0.009 | 6.419 ± 0.35 | 5.554 ± 0.15 |
15–30 | 19.50 ± 1.41 | 27.60 ± 1.87 | 50.05 ± 2.30 | 2.86 ± 0.24 | 0.281 ± 0.010 | 5.948 ± 0.48 | 5.358 ± 0.20 |
30–50 | 18.74 ± 1.53 | 24.66 ± 2.08 | 53.76 ± 2.55 | 2.84 ± 0.43 | 0.184 ± 0.008 | 6.251 ± 0.55 | 5.484 ± 0.23 |
50–100 | 19.23 ± 1.73 | 19.51 ± 1.75 | 58.65 ± 2.99 | 2.60 ± 0.34 | 0.065 ± 0.004 | 7.315 ± 0.58 | 5.926 ± 0.24 |
Average | 17.19 ± 0.70 | 26.10 ± 1.13 | 53.68 ± 1.35 | 3.03 ± 0.17 | 0.255 ± 0.007 | 6.334 ± 0.24 | 5.519 ± 0.10 |
Species | Relative Values (%) | |||
---|---|---|---|---|
Dominance | Frequency | Density | IV (%) | |
Avicennia marina | 2.45 | 9.09 | 1.709 | 13.25 |
Rhizophora mucronata | 1.25 | 13.64 | 1.368 | 16.25 |
Sonneratia alba | 96.30 | 100 | 96.923 | 293.23 |
Treatments | Blocks | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | Sig. | Sum of Squares | df | Mean Square | F | Sig. | |
Between Groups | 7812.524 | 3 | 2604.175 | 153.962 | 0.000 | 110.614 | 2 | 55.307 | 0.500 | 0.608 |
Within Groups | 1370.064 | 81 | 16.914 | 9071.974 | 82 | 110.634 | ||||
Total | 9182.588 | 84 | 9182.588 | 84 |
Treatment | Shoot Growth (cm) | Number of Leaves | Number of Internodes | Number of Branches |
3” PVC | 23.84 ± 0.66 | 11.37 ± 0.15 | 4.68 ± 0.08 | 1.87 ± 0.13 |
4” PVC | 25.65 ± 0.72 | 11.89 ± 0.20 | 4.95 ± 0.10 | 2.45 ± 0.18 |
Total | 24.74 ± 0.69 | 11.63 ± 0.13 | 4.82 ± 0.06 | 2.27 ± 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinya, G.; Kairo, J.G.; Nyoike, R.N.; Nguu, J.G.; Githinji, B.K.; Githaiga, M.N. Eco-Engineering Mangrove Restoration at Gazi Bay, Kenya. Diversity 2024, 16, 135. https://doi.org/10.3390/d16030135
Kinya G, Kairo JG, Nyoike RN, Nguu JG, Githinji BK, Githaiga MN. Eco-Engineering Mangrove Restoration at Gazi Bay, Kenya. Diversity. 2024; 16(3):135. https://doi.org/10.3390/d16030135
Chicago/Turabian StyleKinya, Gladys, James Gitundu Kairo, Rossa Ngendo Nyoike, Josphat Gachoki Nguu, Brian Kiiru Githinji, and Michael N. Githaiga. 2024. "Eco-Engineering Mangrove Restoration at Gazi Bay, Kenya" Diversity 16, no. 3: 135. https://doi.org/10.3390/d16030135
APA StyleKinya, G., Kairo, J. G., Nyoike, R. N., Nguu, J. G., Githinji, B. K., & Githaiga, M. N. (2024). Eco-Engineering Mangrove Restoration at Gazi Bay, Kenya. Diversity, 16(3), 135. https://doi.org/10.3390/d16030135