Epiphytic Lichens in Salt Flats as Biodiversity Refuges in Reserva Ecológica Arenillas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design and Data Collection
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kathiresan, K.; Bingham, B.L. Biology of mangroves and mangrove Ecosystems. Adv. Mar. Biol. 2001, 40, 81–251. [Google Scholar]
- Alongi, D.M. Present state and future of world’s mangrove forest. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Sorrell, B.K.; Hancock, N.; Hua, Q.; Swales, A. Mangrove forest and soil development on a rapidly accreting shore in New Zealand. Ecosystems 2010, 13, 437–451. [Google Scholar] [CrossRef]
- Ronnback, P. The ecological basis for economic value of sea food production supported by mangrove ecosystems. Ecol. Econ. 1999, 29, 235–252. [Google Scholar] [CrossRef]
- Carugati, L.; Gatto, B.; Rastelli, E.; Lo Martire, M.; Coral, C.; Greco, S.; Danovaro, R. Impact of Mangrove Forests Degradation on Biodiversity and Ecosystem Functioning. Sci. Rep. 2018, 8, 13298. [Google Scholar] [CrossRef] [PubMed]
- Iftekhar, M.S.; Saenger, P. Vegetation dynamics in the Bangladesh Sundarbans mangroves: A review of forest inventories. Wetl. Ecol. Manag. 2008, 16, 291–312. [Google Scholar] [CrossRef]
- Pawar, P.R. Species diversity of birds in mangroves of Uran (Raigad), Navi Mumbai, Maharashtra, West coast of India. J. Exp. Sci. 2011, 2, 73–77. [Google Scholar]
- Reynolds, C.L.; Er, O.A.H.; Winder, L.; Blanchon, D.J. Distribution and community composition of lichens on mature mangroves (Avicennia marina subsp. australasica (Walp.) J. Everett) in New Zealand. PLoS ONE 2017, 12, e0180525. [Google Scholar] [CrossRef]
- Halpern, B.S.; Selkoe, K.A.; Micheli, F.; Kappel, C.V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 2007, 21, 1301–1315. [Google Scholar] [CrossRef]
- Gilman, E.L.; Ellison, J.; Duke, N.C.; Field, C. Threats to mangroves from climate change and adaptation options: A review. Aquat. Bot. 2008, 89, 237–250. [Google Scholar] [CrossRef]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Malik, A.; Fensholt, R.; Mertz, O. Mangrove exploitation effects on biodiversity and ecosystem services. Biodivers. Conserv. 2015, 24, 3543–3557. [Google Scholar] [CrossRef]
- de Lacerda, L.D.; Ward, R.D.; Godoy, M.D.P.; de Andrade Meireles, A.J.; Borges, R.; Ferreira, A.C. 20-years cumulative impact from shrimp farming on mangroves of Northeast Brazil. Front. For. Glob. Chang. 2021, 4, 653096. [Google Scholar] [CrossRef]
- Merecí-Guamán, J.; Casanoves, F.; Delgado-Rodríguez, D.; Ochoa, P.; Cifuentes-Jara, M. Impact of shrimp ponds on mangrove blue carbon stocks in Ecuador. Forests 2021, 12, 816. [Google Scholar] [CrossRef]
- Alias, S.A.; Zainuddin, N.; Jones, E.G. Biodiversity of marine fungi in Malaysian mangroves. Bot. Mar. 2010, 53, 545–554. [Google Scholar] [CrossRef]
- Rangsiruji, A.; Boonpragob, A.; Mongkolsuk, P.; Sodamuk, M.; Buaruang, K.; Binchai, S.; Lumbsch, H.T.; Parnmen, S. Diversity and phylogenetic survey of cyanobacterial lichens (Collematineae, Ascomycota) in mangrove forests of eastern Thailand. Bryologist 2017, 119, 123–130. [Google Scholar] [CrossRef]
- De Sousa, M.M.; Colpo, K.D. Diversity and distribution of epiphytic bromeliads in a Brazilian subtropical mangrove. An. Acad. Bras. Ciências 2017, 89, 1085–1093. [Google Scholar] [CrossRef]
- Gomes, P.W.P.; Simões, M.C.; Tavares-Martins, A.C.C. Spatial Distribution and Substrate Preferences of Bryophyte Species in Mangrove Ecosystems of the East Coast of Marajó Island, Brazil. Cryptogam. Bryol. 2023, 44, 219–235. [Google Scholar]
- Delgadillo, J.; Peinado, M.; Parras, J.M.M.; Alcaraz, F.; De La Torre, A. Análisis fitosociológico de los saladares y manglares de Baja California, México. Acta Bot. Mex. 1992, 19, 1–35. [Google Scholar] [CrossRef]
- Ladero, M.; Navarro, F.; Valle, C.J.; Marcos, B.; Ruiz, T.; Santos, M.T. Vegetación de los saladares Castellano-Leoneses. Stud. Bot. Univ. Salamanca 1984, 3, 17–62. [Google Scholar]
- Ashton, E.C.; Macintosh, D.J. Preliminary assessment of the plant diversity and community ecology of the sematan mangrove forest, Sarawak, Malaysia. For. Ecol. Manag. 2002, 166, 111–129. [Google Scholar] [CrossRef]
- Logesh, A.R.; Upreti, D.K.; Kalaiselvam, M.; Nayaka, S.; Kathiresan, K. Lichen flora of Pichavaram and Muthupet mangroves (Southeast Coast of India). Mycosphere 2012, 3, 884–888. [Google Scholar] [CrossRef]
- Sethy, P.P.; Pandit, G.S.; Sharma, B.O. Lichens on mangrove plants in Andaman Islands, India. Mycosphere 2012, 3, 476–484. [Google Scholar] [CrossRef]
- Panda, M.; Murthy, T.V.R.; Samal, R.N.; Lele, N.; Patnaik, A.K.; Mohan, P.K. A comparative study of manglicolous lichens and their distribution inside Bhitarkanika National Park (Odisha), India. Stud. Fungi 2017, 2, 1–13. [Google Scholar] [CrossRef]
- Álvarez-León, R.; Avendaño-Remolina, D.; Sanjuan-Muñoz, A.M. La relación entre Peltigera sp. Y Rhizophora mangle en Arroyo de Plata (Bolívar), Caribe colombiano. Luna Azul 2014, 38, 105–121. [Google Scholar] [CrossRef]
- García-Martínez, Y.A.; Heredia Abarca, G.; Guzmán-Guillermo, J.; Valenzuela, R.; Raymundo, T. Hongos asociados al mangle rojo Rhizophoramangle (Rhizophoraceae) en la Reserva de la Biosfera Isla Cozumel, Quintana Roo, México. Acta Bot. Mex. 2021, 128, e1792. [Google Scholar]
- Bungartz, F.; Lücking, R.; Aptroot, A. The family Graphidaceae (Ostropales, Lecanoromycetes) in the Galapagos Islands. Nova Hedwig. 2010, 90, 1–44. [Google Scholar] [CrossRef]
- Benítez, Á.; Aragón, G.; Prieto, M. Lichen Diversity on Tree Trunks in Tropical Dry Forests Is Highly Influenced by Host Tree Traits. Biodivers. Conserv. 2019, 28, 2909–2929. [Google Scholar] [CrossRef]
- Hayasaka, D.; Kimura, N.; Fujiwara, K.; Thawatchai, W.; Nakamura, T. Relationship between microenvironment of mangrove forests and epiphytic fern species richness along the Pan Yi river, Thailand. J. Trop. For. Sci. 2012, 24, 265–274. [Google Scholar]
- Yao, H.; Sun, X.; He, C.; Li, X.-C.; Guo, L.-D. Host identity is more important in structuring bacterial epiphytes than endophytes in a tropical mangrove forest. FEMS Microbiol. Ecol. 2020, 96, fiaa038. [Google Scholar] [CrossRef]
- Zhu, C.; Lin, Y.; Wang, Z.; Luo, W.; Zhang, Y.; Chu, C. Community assembly and network structure of epiphytic and endophytic phyllosphere fungi in a subtropical mangrove ecosystem. Front. Microbiol. 2023, 14, 1147285. [Google Scholar] [CrossRef] [PubMed]
- Siqueiros Beltrones, D.A.; López Fuerte, F.O. Epiphytic diatoms associated with red mangrove (Rhizophora mangle) prop roots in Bahía Magdalena, Baja California Sur, Mexico. Rev. Biol. Trop. 2006, 54, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Isa, H.M.; Kamal, A.H.M.; Idris, M.H.; Rosli, Z.; Ismail, J. Biomass and habitat characteristics of epiphytic macroalgae in the Sibuti Mangroves, Sarawak, Malaysia. Trop. Life Sci. Res. 2017, 28, 1–21. [Google Scholar] [PubMed]
- Molina, J.; Pertiñez, C.; de la Cruz, M. Datos sobre la relación suelo-vegetación en los saladares de Cordobilla (Albacete, España). Rev. Estud. Albacet. 2001, 1, 217–232. [Google Scholar]
- Cartagena, A.; Viñolas, E.; Galante, E. Biodiversidad de tenebriónidos (Coleoptera: Tenebriónidae) en saladares ibéricos. Bull. Inst. Catalana Hist. Nat. 2002, 70, 91–104. [Google Scholar]
- Hazzouri, K.M.; Sudalaimuthuasari, N.; Saeed, E.E.; Kundu, B.; Al-Maskari, R.S.; Nelson, D.; AlShehhi, A.A.; Aldhuhoori, M.A.; Almutawa, D.S.; Alshehhi, F.R.; et al. Salt flat microbial diversity and dynamics across salinity gradient. Sci. Rep. 2022, 12, 11293. [Google Scholar] [CrossRef] [PubMed]
- Crespo, A.; Atienza, V. Sobre la flora y vegetación liquénica epifitica de las formaciones fruticosas de saladar. Lazaroa 1989, 11, 135–139. [Google Scholar]
- Lücking, R.; Hodkinson, B.P.; Leavitt, S.D. The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota—Approaching one thousand genera. Bryologist 2017, 119, 361–416. [Google Scholar] [CrossRef]
- Fajardo, W.T. Taxonomy and new distributional records of corticolous manglicolous microlichens in Bangrin Marine Protected Area, Philippines. Multidiscip. Sci. J. 2024, 6, 2024218. [Google Scholar] [CrossRef]
- Logesh, A.R.; Kalaiselvam, M.; Upreti, D.K.; Nayaka, S.; Karthiresan, K. Mangroves—An Abode for Unique Lichens Coastal Ecosystems of India; Special Publication; Annamalai University: Parangipettai, India, 2013; pp. 39–44. [Google Scholar]
- Lucban, M.C.; Paguirigan, J.A.G. Occurrence of manglicolous lichens in Calabarzon, Philippines. Stud. Fungi 2019, 4, 263–273. [Google Scholar] [CrossRef]
- Torres-Fernández del Campo, J.; Olvera-Vargas, M.; Figueroa-Rangel, B.L.; Cuevas-Guzmán, R.; Iñiguez-Dávalos, L.I. Patterns of Spatial Diversity and Structure of Mangrove Vegetation in Pacific West-Central Mexico. Wetlands 2018, 38, 919–931. [Google Scholar] [CrossRef]
- Jaramillo, J.J.; Rivas, C.A.; Oteros, J.; Navarro-Cerrillo, R.M. Forest Fragmentation and Landscape Connectivity Changes in Ecuadorian Mangroves: Some Hope for the Future? Appl. Sci. 2023, 13, 5001. [Google Scholar] [CrossRef]
- Benítez, Á.; Ortiz, J.; Matamoros-Apolo, D.; Bustamante, A.; López, F.; Yangua-Solano, E.; Gusmán-Montalván, E. Forest Disturbance Determines Diversity of Epiphytic Lichens and Bryophytes on Trunk Bases in Tropical Dry Forests. Forests 2024, 15, 1565. [Google Scholar] [CrossRef]
- Laakso, K.; López-Rodríguez, J.C.; Rivard, B.; Sánchez-Azofeifa, G.A. Using visible-near-infrared spectroscopy to classify lichens at a Neotropical Dry Forest. Ecol. Indic. 2020, 111, 105999. [Google Scholar]
Specie | Family | Growth Form | Photobyont | Salt Flat 1 | Salt Flat 2 |
---|---|---|---|---|---|
Anisomeridium biforme | Monoblastiaceae | Crustose | Trentepohlia | + | |
Arthonia aff. conferta | Arthoniaceae | Crustose | Trentepohlia | + | |
Arthonia antillarum | Arthoniaceae | Crustose | Trentepohlia | + | |
Arthonia reniformis | Arthoniaceae | Crustose | Trentepohlia | + | + |
Arthonia sp. | Arthoniaceae | Crustose | Trentepohlia | + | |
Bactrospora brevispora | Roccellaceae | Crustose | Trentepohlia | + | + |
Bactrospora myriadea | Roccellaceae | Crustose | Trentepohlia | + | |
Çoniocarpon cinnabarinum | Arthoniaceae | Crustose | Trentepohlia | + | + |
Dirinaria confluens | Caliciaceae | Foliose | Trebouxia | + | |
Dirinaria picta | Caliciaceae | Foliose | Trebouxia | + | |
Graphis anfractuosa | Graphidaceae | Crustose | Trentepohlia | + | + |
Graphis leptospora | Graphidaceae | Crustose | Trentepohlia | + | |
Graphis sp. 1 | Graphidaceae | Crustose | Trentepohlia | + | |
Graphis sp. 2 | Graphidaceae | Crustose | Trentepohlia | + | |
Lecanora helva | Lecanoraceae | Crustose | Trebouxia | + | |
Lecanora leprosa | Lecanoraceae | Crustose | Trebouxia | + | |
Lecanora sp. | Lecanoraceae | Crustose | Trebouxia | + | + |
Bacidia sp. | Ramalinaceae | Crustose | Trebouxia | + | |
Cratiria sp. | Caliciaceae | Crustose | Trebouxia | + | |
Opegrapha aff. diagrapha | Opegraphaceae | Crustose | Trentepohlia | + | |
Parmotrema aff. dominicanum | Parmeliaceae | Foliose | Trebouxia | + | |
Pyrenula cerina | Pyrenulaceae | Crustose | Trentepohlia | + | + |
Pyrenula ochraceoflava | Pyrenulaceae | Crustose | Trentepohlia | + | |
Pyrenula sp. 1 | Pyrenulaceae | Crustose | Trentepohlia | + | |
Pyxine petricola | Caliciaceae | Foliose | Trebouxia | + | |
Ramalina aff. darwiniana | Ramalinaceae | Fruticose | Trebouxia | + | |
Ramalina aspera | Ramalinaceae | Fruticose | Trebouxia | + | |
Ramalina complanata | Ramalinaceae | Fruticose | Trebouxia | + | |
Ramalina sideriza | Ramalinaceae | Fruticose | Trebouxia | + | + |
Roccella gracilis | Roccellaceae | Fruticose | Trentepohlia | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benítez, Á.; Cruz, D.; López, F.; Cumbicus, N.; Naranjo, C.; Riofrío, M.; Ochoa-Pérez, T.; Vega, M. Epiphytic Lichens in Salt Flats as Biodiversity Refuges in Reserva Ecológica Arenillas. Diversity 2024, 16, 655. https://doi.org/10.3390/d16110655
Benítez Á, Cruz D, López F, Cumbicus N, Naranjo C, Riofrío M, Ochoa-Pérez T, Vega M. Epiphytic Lichens in Salt Flats as Biodiversity Refuges in Reserva Ecológica Arenillas. Diversity. 2024; 16(11):655. https://doi.org/10.3390/d16110655
Chicago/Turabian StyleBenítez, Ángel, Darío Cruz, Fausto López, Nixon Cumbicus, Carlos Naranjo, María Riofrío, Teddy Ochoa-Pérez, and Marlon Vega. 2024. "Epiphytic Lichens in Salt Flats as Biodiversity Refuges in Reserva Ecológica Arenillas" Diversity 16, no. 11: 655. https://doi.org/10.3390/d16110655
APA StyleBenítez, Á., Cruz, D., López, F., Cumbicus, N., Naranjo, C., Riofrío, M., Ochoa-Pérez, T., & Vega, M. (2024). Epiphytic Lichens in Salt Flats as Biodiversity Refuges in Reserva Ecológica Arenillas. Diversity, 16(11), 655. https://doi.org/10.3390/d16110655