Zoonotic Pathogens Isolated from an Introduced Population of Red Swamp Crayfish (Procambarus clarkii) in Tenerife (Canary Islands, Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Sample Preparation
2.3. Detection and Identification of Pathogenic Bacteria
2.3.1. Detection of Pathogenic Bacteria Using the Biofire FilmArray™ System (BioMérieux)
2.3.2. Detection of Pathogenic Bacteria Using Culture–PCR
2.3.3. Molecular Identification of Isolates
DNA Extraction
PCR Assays
2.4. Statistical Analysis
3. Results
3.1. Assays Conducted with the Biofire FilmArray™ System
3.2. Culturing-PCR Assays
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Claire, W.H.; Wroiten, J.W. First Record of the Crayfish, Procambarus clarkii, from Idaho, USA (Decapoda, Cambaridae). Crustaceana 1978, 35, 317–319. [Google Scholar]
- Hobbs, H.H., Jr. Crayfish distribution, adaptive radiation and evolution. In Feshwater Crayfish: Biology Management and Exploitation; Croom Helm: London, UK, 1988; pp. 52–82. [Google Scholar]
- Gherardi, F. Crayfish Invading Europe: The Case Study of Procambarus clarkii. Mar. Freshw. Behav. Physiol. 2006, 39, 175–191. [Google Scholar] [CrossRef]
- Dörr, A.J.M.; Scoparo, M.; Cardinali, I.; La Porta, G.; Caldaroni, B.; Magara, G.; Pallottini, M.; Selvaggi, R.; Cenci-Goga, B.; Goretti, E.; et al. Population Ecology and Genetic Diversity of the Invasive Alien Species Procambarus clarkii in Lake Trasimeno (Italy). Biology 2021, 10, 1059. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, C.F.; Bécares, E.; Fernández-Aláez, M. Shift from clear to turbid pase in Lake Chozas (NW Spain) due to the introduction of American red swamp crayfish (Procambarus clarkii). Hydrobiologia 2003, 506, 421–426. [Google Scholar] [CrossRef]
- Dörr, A.J.; Rodolfi, M.; Scalici, M.; Elia, A.C.; Garzoli, L.; Picco, A.M. Phoma glomerata, a Potential New Threat to Italian Inland Waters. J. Nat. Conserv. 2011, 19, 370–373. [Google Scholar] [CrossRef]
- Dörr, A.J.; Elia, A.C.; Rodolfi, M.; Garzoli, L.; Picco, A.M.; D’Amen, M.; Scalici, M.A. Model of Co-Occurrence: Segregation and Aggregation Patterns in the Mycoflora of the Crayfish Procambarus clarkii in Lake Trasimeno (Central Italy). J. Limnol. 2012, 71, 135–143. [Google Scholar] [CrossRef]
- Isaacs, J.C.; Lavergne, D.R. Louisiana Commercial Crawfish Harvester’s Survey Report. La. Department of Wildlife and Fisheries, Socioeconomic Research and Development Section. 2010. Available online: https://www.lsuagcenter.com/NR/rdonlyres/CF07A02D-B4FA-4304-93A7-64809619B6FC/80317/CrawfishHarvestersReport2010.pdf (accessed on 11 April 2021).
- El-Kholie, E.M.; Khader, S.A.; Abdelreheem, M.A.T. Chemical, physical, microbiological and quality attributes studies on River Nile crayfish. Afr. J. Biotechnol. 2012, 11, 11262–11270. [Google Scholar] [CrossRef]
- Wang, W.; Gu, W.; Ding, Z.; Ren, Y.; Chen, J.; Hou, Y. A novel Spiroplasma pathogen causing systemic infection in the crayfish Procambarus clarkii Crustacea: Decapod, in China. FEMS Microbiol. Lett. 2005, 249, 131–137. [Google Scholar] [CrossRef]
- Xiao, X.; Han, D.; Zhu, X.; Yang, Y.; Xie, S.; Huang, Y. Effect of dietary cornstarch levels on growth performance, enzyme activity and hepatopancreas histology of juvenile red swamp crayfish, Procambarus clarkii (Girard). Aquaculture 2014, 426, 112–119. [Google Scholar] [CrossRef]
- Gutiérrez Yurrita, P.J. El Papel Ecológico del Cangrejo Rojo (“Procambarus clarkii”), en los Ecosistemas Acuáticos del Parque Nacional de Doñana una Perspectiva Ecofisiológica y Bioenértica. Doctoral Dissertation, Universidad Autónoma de Madrid, Madrid, Spain, 1997. [Google Scholar]
- Geiger, W.; Alcorlo, P.; Batanás, A.; Montes, C. Impact of an introduced Crustacean on the trophic webs of Mediterranean wetlands. Biol. Invasions 2005, 7, 49–73. [Google Scholar]
- Gil-Sánchez, J.M.; Alba-Tercedor, J. Ecology of the native and introduced crayfishes Austropotamobius pallipes and Procambarus clarkii in southern Spain and implications for conservation of the native species. Biol. Conserv. 2002, 105, 75–80. [Google Scholar] [CrossRef]
- Ramos, A.; Pereira, T. Un novo Astacidae para a fauna portuguesa: Procambarus clarkii (Girard, 1852). Bol. Inst. Nac. Investig. Pescas Lisb. 1981, 6, 37–47. [Google Scholar]
- Correira, A.M.; Costa, A.C. Introduction of Red Swamp Crayfish Procambarus clarkii (Crustacea, Decapoda) in São Miguel, Azores, Portugal. Archipiélago 12ª. 1994, pp. 67–73. Available online: https://repositorio.uac.pt/bitstream/10400.3/2124/1/LMSpp67-73_CORREIA_COSTA-N12A.pdf (accessed on 2 June 2021).
- Herrera-Arteaga, G.A.; Barquín Díez, J.; de los Santos Gómez, A. Colonización de la isla de Tenerife (Islas Canarias) por el cangrejo rojo americano Procambarus clarkii Girard (1852) (Decapoda, Cambaridae). Rev. Acad. Canar. Cienc. 2006, 4, 81–88. [Google Scholar]
- Mingorance, M.C.; Gómez, J.I. Una actividad de educación ambiental basada en observaciones del cangrejo de río americano (Procambrus clarkii) en el Barranco del Cercado (Tenerife, Islas Canarias). Ecosistemas 2002, 11, 1–5. Available online: https://www.academia.edu/121093318/Una_actividad_de_educaci%C3%B3n_ambiental_basada_en_observaciones_del_cangrejo_de_r%C3%ADo_americano_Procambarus_clarkii_en_el_Barranco_del (accessed on 2 June 2021).
- Verdú, J.R.; Numa, C.; Galante, E. Atlas y Libro Rojo de los Invertebrados Amenazados de España (Especies Vulnerables) Volumen II. Dirección General de Medio Natural y Política Forestal; Ministerio de Medio Ambiente, Medio Rural y Marino: Madrid, Spain, 2011; 595p. [Google Scholar]
- Dong, X.; Li, Z.; Wang, X.; Zhou, M.; Lin, L.; Zhou, Y.; Li, J. Characteristics of Vibrio parahaemolyticus isolates obtained from crayfish (Procambarus clarkii) in freshwater. Int. J. Food Microbiol. 2016, 238, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Palillo, J.A.; Mollenkopf, D.; Marsh, A.E.; Wittum, T.E.; James, J.P.B.; Reichley, S.R.; Ghosh, S.; Palillo, M.B.; Malbrue, R. Detection of Zoonotic Bacteria and Paragonimus kellicotti in Red Swamp Crayfish (Procambarus clarkii) and the Assessment of Traditional Crayfish Boils. J. Food Prot. 2022, 85, 1388–1396. [Google Scholar] [CrossRef]
- Elmossalami, M.K.; Emara, M.T. Safety and quality of freshwater crayfish Procambarus clarkii in the river Nile. Food/Nahrung 1999, 43, 126–128. [Google Scholar] [CrossRef]
- Saad El-Deen, A.G. Isolation and identification of enterobacteriaceae from freshwater grayfish (Procambarus clarkii). Assiut Vet. Med. J. 2009, 55, 1–11. [Google Scholar] [CrossRef]
- Kia, G.S.N.; Mathias, S.; Esonu, D.O.; Benjamin, E. Ocurrence of Salmonella and Shigella on dried crayfish (Procambarus clarkii) sold in Zaria and Kaduna central market, Kaduna State, Nigeria. Niger. Vet. J. 2020, 41, 32–40. [Google Scholar] [CrossRef]
- Anda, P.; Segura del Pozo, J.; Díaz García, J.M.; Escudero, R.; García Peña, J.; López Velasco, M.C. Waterborne outbreak of Turalemia associated with Crayfish Fishing. Emerg. Infect. Dis. 2001, 7, 575–582. [Google Scholar] [CrossRef]
- Ordax, J. Turalemia posiblemente transmitida por cangrejos. Gac. Sanit. 2003, 17, 164–165. [Google Scholar] [CrossRef] [PubMed]
- Ikerd, J.L.; Burnett, K.G.; Burnett, L.E. Effects of salinity on the accumulation of hemocyte aggregates and bacteria in the gills of Callinectes sapidus, the Atlantic blue crab, injected with Vibrio campbellii. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 183, 97106. [Google Scholar] [CrossRef] [PubMed]
- Cuellar-Gempeler, C.; Munguia, P. Habitat filters mediate successional trajectories in bacterial communities associated with the striped shore crab. Oecologia 2019, 191, 957–970. [Google Scholar] [CrossRef]
- Ma, R.; Wang, Y.; Zhao, S.; Ma, Q.; Yin, M.; Li, X.; Fang, W. Bacterial Flora in the gill tissues and intestinal tracts of male and female chinese mitten crabs (Eriocheir sinensis) with different diets in a mud pond. Curr. Microbiol. 2021, 78, 2291–2297. [Google Scholar] [CrossRef]
- Kawamura, K.; Kanelso, M. Microbial quality of human wastes and treatment plant effluent. Water Sci Technol. 1986, 18, 257–265. [Google Scholar] [CrossRef]
- Lowman, F.G.; Rice, T.R.; Richards, F.A. Radioactivity in the Marine Environment; National Academy of Sciences: Washington, DC, USA, 1971; pp. 161–199. [Google Scholar] [CrossRef]
- Tretsven, W.I. Bacteriological survey of filleting processes in the Greater Northwest. III. Bacterial and physical effects of pughing fish incorrectly. J. Food Prot. 1964, 27, 13–17. [Google Scholar] [CrossRef]
- Amer, H.A.; Sedik, M.F.; Khalafalla, F.A.; El-Ghany Awad, H. Results of chemical análisis of prawn muscle as influenced by sex variations. Food/Nahrung 1991, 35, 133–138. [Google Scholar] [CrossRef]
- López, C.; Clemente, S.; Almeida, C.; Brito, A.; Hernández, M. A genetic approach to the origin of Millepora sp. in the Eastern Atlantic. Coral Reefs. 2015, 34, 631–638. [Google Scholar] [CrossRef]
- Guimarães de Freitas, C.; Patrícia Santana, A.; Helena Caldeira da Silva, P.; Salvador Picão Gonçalves, V.; Ferreira Barros, M.A.; Gonçalves Torres, F.A.; Sayori Murata, L.; Perecmanis, S. PCR multiplex for detection of Salmonella Enteritidis, Typhi and Typhimurium and occurrence in poultry meat. Int. J. Food Mirobiol. 2010, 139, 15–22. [Google Scholar] [CrossRef]
- Pérez-Roth, E.; Claverie-Martín, F.; Villar, J.; Méndez-Álvarez, S. Multiplex PCR for simultaneous identification of Staphylococcus aureus and detection of methicillin and mupirocin resistance. J. Clin. Microbiol. 2001, 39, 4037–4041. [Google Scholar] [CrossRef]
- Schets, F.M.; List, C.; Kadar, M.; Ruiter, H.; Medema, G.J. Suppression of Plesiomonas shigelloides Growth in the Direct Plating Method for the Enumeration of Escherichia coli in Water. RIVM Report No. 289202020. 1998. Bilthoven, The Netherlands: RIVM. Available online: https://www.rivm.nl/publicaties/suppression-of-plesiomonas-shigelloides-growth-in-direct-plating-method-for-enumeration#abstract_en (accessed on 2 June 2021).
- Monteil, H.; Harf-Monteil, C. Les infections à Aeromonas. Presse Méd. 1997, 26, 1790–1798. [Google Scholar] [PubMed]
- Medema, G.; Schets, C. Occurrence of Plesiomonas shigelloides in surface water: Relationship with faecal pollution and trophic state. Int. J. Hyg. Environ. Health 1993, 194, 398–404. [Google Scholar]
- Schubert, R.H.W.; Beichert, R. The influence of treated sewage effluents on the numbers of Plesiomonas shigelloides isolated from river waters. Hyg. Med. 1993, 18, 57–59. [Google Scholar]
- Gonzalez-Rey, C.; Svenson, S.B.; Eriksson, L.M.; Ciznar, I.; Krovacek, K. Unexpected finding of the “tropical” bacterial pathogen Plesiomonas shigelloides from lake water north of the Polar Circle. Polar Biol. 2003, 26, 495–499. [Google Scholar] [CrossRef]
- Bravo, L.; Ramírez, M.; Cabrera, R.; Cabrera, L.; Rodríguez, A.; Hernández, R.; Castañeda, N.; Fernández, A. Serotypes and antibiotypes of Plesiomonas shigelloides in Cuba. Rev. Panam. Infectol. 2004, 6, 23–27. [Google Scholar]
- Marshall, D.L.; Kim, J.J.; Donnelly, S.P. Antimicrobial susceptibility and plasmid-mediated streptomycin resistance of Plesiomonas shigelloides isolated from blue crab. J. Appl. Bacteriol. 1996, 81, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Ingham, S. Growth of Aeromonas hydrophila and Plesiomonas shigelloides on cooked crayfish tails during cold storage under air, vacuum, and a modified atmosphere. J. Food Prot. 1990, 53, 665–667. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, Q.; Zhang, T.; Chen, J.; Wang, S.; Hao, J.; Lin, Y.; Li, A. Association of the microbiota dysbiosis in the hepatopáncreas of farmed crayfish (Procambarus clarkii) with disease outbreaks. Aquaculture 2021, 536, 736492. [Google Scholar] [CrossRef]
- Wilson, D.K.; Cleary, T.G. Escherichia coli, Aeromonas y Plesiomonas. In Nelson. Tratado de Pediatría, 15th ed.; Behrman, R.E., Kliegman, R.M., Jenson, H.B., Eds.; Editorial Ciencias Médicas: La Habana, Cuba, 1998; pp. 95–99. [Google Scholar]
- Brooks, G.F.; Carrol, K.C.; Butel, J.S.; Morse, S.; Mitzner, T.A. Microbiología Médica de Jawetz, Melnick & Adelberg, 25th ed.; MAcGraw Hill, Ed.; El Manual Moderno: Ciudad de México, México, 2010. [Google Scholar]
- Bravo, L.; Cabrera, R.; Ramírez, M.; Llop, A.; Fernández, A.; García, B. Plesiomonas shigelloides, a Vibrionaceae to be account. Rev. Cuba 2000, 52, 10–14. [Google Scholar]
- Guevara, J.; Tafur, C. Bilicultivos de colecistectomizados en el Hospital Nacional “Edgardo Rabagliati Martin” del IPSS. Perú. Diagnóstico 1998, 17, 116–120. [Google Scholar]
- Young, A.Z.; Neujahr, D.; Estok, L. Case report. Epididymo-orchitis and bacterimia caused by Plesiomonas shigelloides in an HIV infected patient. AIDS Read. 2001, 11, 617–619. [Google Scholar] [PubMed]
- Abbott, S.L. Klebsiella, Enterobacter, Citrobacter, Serratia, Plesiomonas, and other Enterobacteriaceae. In Manual of Clinical Microbiology, 8th ed.; Murray, P.R., Baron, E.J., Jorgensen, J.H., Pfaller, M.A., Yolken, R.H., Eds.; mBio: Washington, DC, USA, 2003; Volume 44, pp. 684–700. [Google Scholar]
- Miller, M.L.; Koburger, J.A. Plesiomonas shigelloides: An Opportunistic Food and Waterborne Pathogen. J. Food Prot. 1985, 48, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Hernández, P.; Rodríguez de García, R. Prevalence of Plesiomonas shigelloides in surface water. Arch. Latinoam. Nutr. 1997, 47, 47–49. [Google Scholar] [PubMed]
- Woo, P.C.Y.; Lau, S.K.P.; Wong, S.S.Y.; Yuen, K. Two cases of continuous ambulatory peritoneal dialysis-associated peritonitis due to Plesiomonas shigelloides. J. Clin. Microbiol. 2003, 42, 933–935. [Google Scholar] [CrossRef]
- Barkate, J.A. Incidence and Growth of Some Pathogens in Freshwater Crayfish (Procambarus clarkii, Girard). Ph.D. Thesis, Louisiana State University and Agricultural & Mechanical College, Baton Rouge, LA, USA, 1967. [Google Scholar]
- CDC. Typhoid Fever. 2018. Available online: https://www.cdc.gov/typhoid-fever/ (accessed on 6 May 2024).
- Dorrestein, G.M. Diagnostic approaches and management of diseases in captive passerines. In Seminars in Avian and Exotic Pet Medicine; WB Saunders: Philadelphia, PA, USA, 2003; Volume 12, pp. 11–20. [Google Scholar]
- Madadgar, O.; Zahraei Salehi, T.; Ghafari, M.M.; Ashrafi Tamai, I.; Madani, S.A.; Yahyareyat, R. Study of an unusual paratyphoid epornitic in canaries (Serinus canaria). Avian Pathol. 2009, 38, 437–441. [Google Scholar] [CrossRef]
- Spinu, M.; Gurzau, A.E.; Niculae, M.; Brudasca, G.F.; Sandru, C.D.; Kireb, C.; Pall, E. Reciprocal relationships in antibiotic resistance of Salmonella spp. carried by wild birds and fish in the danube delta. Int. J. Infect. Dis. 2019, 79, 43. [Google Scholar] [CrossRef]
- Fit, N.I.; Mureşan, C.; Chirilă, F.; Răpuntean, S.; Criste, A.; Nadăş, G. Bacterial isolates in Asio otus and Strix aluco birds of prey. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Vet. Med. 2015, 72, 424–429. [Google Scholar] [CrossRef]
- Kirkpatrick, C.E.; Colvin, B.A. Salmonella spp. in nestling common barn-owls (Tyto alba) from southwestern New Jersey. J. Wild. Dis. 1986, 22, 340–343. [Google Scholar] [CrossRef]
- Vasconcelos, R.H.; De Castro Teixeira, R.S.; Goes da Silva, I.N.; de Souza Lopes, E.; Cardoso Maciel, W. Feral pigeons (Columbia livia) as potential reservoirs of Salmonella sp. and Escherichia coli. Arq. Inst. Biológico 2018, 85, e0412017. [Google Scholar] [CrossRef]
- Lapuz, R.; Tani, H.; Sasai, K.; Shirota, K.; Katoh, H.; Baba, E. An epidemiological analysis of Salmonella enteritidis contamination in a rat-infested chicken layer farm, an egg processing facility, and liquid egg samples by pulsed-field gel electrophoresis. J. Vet. Med. Sci. 2007, 69, 649–652. [Google Scholar] [CrossRef] [PubMed]
- Lapuz, R.; Tani, H.; Sasai, K.; Shirota, K.; Katoh, H.; Baba, E. The role of roof rats (Rattus rattus) in the spread of Salmonella enteritidis and S. infantis contamination in layer farms in eastern Japan. Epidemiol. Infect. 2008, 136, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Meerburg, B.G.; Kijlstra, A. Role of rodents in transmisión of Salmonella and Campylobacter. J. Sci. Food Agric. 2007, 87, 2774–2781. [Google Scholar] [CrossRef]
- Clarkson, L.S.; Tobin-D’Angelo, M.; Shuler, C.; Hanna, S.; Benson, J.; Voetsch, A.C. Sporadic Salmonella entérica serotype Javiana infections in Georgia and Tennesse: A hypothesis-generating study. Epidemiol. Infcect. 2009, 138, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.R.; Neil, K.P.; Barton Behravesh, C.; Sortir, M.J.; Angulo, F.J. Recent multistate outbreaks of human Salmonella infections acquired from turtles: A continuing public health challenge. Clin. Infect. Dis. 2010, 50, 554–559. [Google Scholar] [CrossRef]
- González-Lama, Z.; Rodríguez Melián, R.; Lupiola Gómez, P.A. Salmonelas en lagartos de la Isla de Tenerife. Rev. Canar. Cienc. Vet. 2005, 2, 27–31. [Google Scholar]
- Fitter, S.; Heuzenroeder, M.; Thomas, C.J. A combined PCR and selective enrichment method for rapid detection of Listeria monocytogenes. J. Appl. Bacteriol. 1992, 73, 53–59. [Google Scholar] [CrossRef]
- Dróżdż, M.; Malaszczuk, M.; Paluch, E.; Pawlak, A. Zoonotic potential and prevalence of Salmonella serovars isolated from pets. Infect. Ecol. Epidemiol. 2021, 11, 1975530. [Google Scholar] [CrossRef]
- Acha, P.; Szyfres, B. Zoonosis y Enfermedades Transmisibles Comunes al Hombre y a los Animales, 2nd ed.; Publicación Científica y Técnica No. 580; OPAS: Washington, DC, USA, 1986; 420p. [Google Scholar]
- RENAVE, 2022a. Informe Epidemiológico Sobre la Situación de la Salmonelosis en España. Año 2022. Centro Nacional de Epidemiología. Instituto de Salud Carlos III. 7 pp. Available online: https://cne.isciii.es/documents/d/cne/vigilancia_salmonelosis_2022-pdf (accessed on 9 January 2024).
- Foster, N.; Tang, Y.; Berchieri, A.; Geng, S.; Jiao, X.; Barrow, P. Revisiting persistent Salmonella infection and the carrier state: What do we know? Pathogens 2021, 10, 1299. [Google Scholar] [CrossRef]
- González-Escobedo, G.; Marshall, J.M.; Gunn, J.S. Chronic and acute infection of the gall bladder by Salmonella Typhi: Understanding the carrier state. Nat. Rev. Microbiol. 2011, 9, 9–14. [Google Scholar] [CrossRef]
- Huang, Z.; Li, Y.; Cai, C.; Dong, N. Isolation, molecular characterization and antimicrobial resistance of selected culturable bacteria from crayfish (Procambarus clarkii). Front. Microbiol. 2022, 13, 911777. [Google Scholar] [CrossRef] [PubMed]
- Kambire, O.; Adingra, A.A.; Yao, K.M.; Koffi-Nevry, R. Prevalence of virulence genes associated with diarrheagenic pathotypes of Escherichia coli isolates from water, sediment, fish and crab in Aby Lagoon, Côte d’Ivorie. Int. J. Microbiol. 2017, 2017, 9532170. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Graniel, J.E. Escherichia coli enteropatógena (EPEC): Una causa frecuente de diarrea infantil. Salud Tabasco 2003, 9, 188–193. [Google Scholar]
- Mare, A.D.; Ciurea, C.N.; Man, A.; Tudor, B.; Moldovan, V.; Decean, L.; Toma, F. Enteropathogenic Escherichia coli—A summary of the literature. Gastroenterol. Insights 2021, 12, 28–40. [Google Scholar] [CrossRef]
- Trabulsi, L.R.; Keller, R.; Gomes, T.A.T. Typical and atypical enteropathogenic Escherichia coli. Emerg. Infect. Dis. 2002, 8, 508. [Google Scholar] [CrossRef]
- Deborah Chen, H.; Frankel, G. Enteropathogenic Escherichia coli: Unravelling pathogenesis. FEMS Microbiol. Rev. 2005, 29, 83–98. [Google Scholar] [CrossRef]
- Yang, K.; Pagaling, E.; Yan, T. Estimating the prevalence of potential enteropathogenic Escherichia coli and intimin gene diversity in a human community by monitoring sanitary sewage. Appl. Environ. Microbiol. 2014, 80, 119–127. [Google Scholar] [CrossRef]
- Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 2013, 26, 822–880. [Google Scholar] [CrossRef] [PubMed]
- Ronin, I.; Katsowich, N.; Rosenshine, I.; Balaban, N.Q. A long-term epigenetic memory switch controls bacterial virulence bimodality. eLife 2017, 6, e19599. [Google Scholar] [CrossRef]
- Hernandes, R.T.; Elias, W.P.; Vieira, M.A.M.; Gomes, T.A.T. An overview of atypical enteropathogenic Escherichia coli. FEMS Microbiol. Lett. 2009, 297, 137–149. [Google Scholar] [CrossRef]
- Swennes, A.G.; Buckley, E.M.; Parry, N.M.A.; Madden, C.M.; García, A.; Morgan, P.B.; Astrofsky, K.M.; Fox, J.G. Enzootic enteropathogenic Escherichia coli Infection in laboratory rabbits. J. Clin. Microbiol. 2012, 50, 2353–2358. [Google Scholar] [CrossRef] [PubMed]
- Sekse, C.; Sunde, M.; Lindstedt, B.A.; Hopp, P.; Bruheim, T.; Cudjoe, K.S.; Kvitle, B.; Urdahl, A.M. Potentially human-pathogenic Escherichia coli O26 in Norwegian sheep flocks. Appl. Environ. Microbiol. 2011, 77, 4949–4958. [Google Scholar] [CrossRef]
- Moura, R.A.; Sircili, M.P.; Leomil, L.; Matté, M.H.; Trabulsi, L.R.; Elias, W.P.; Irino, K.; Pestana de Castro, A.F. Clonal relationship among atypical enteropathogenic Escherichia coli strains isolated from different animal species and humans. Appl. Environ. Microbiol. 2009, 75, 7399–7408. [Google Scholar] [CrossRef]
- Sanches, L.A.; da Silva, M.; Friciello Teixeira, R.H.; Vieira Cunha, M.P.; Xavier de Oliveria, M.G.; Midolli Vieira, M.A.; Tardelli Gomes, T.A.; Knobl, T. Captive wild birds as reservoirs of enteropathogenic E. coli (EPEC) and Shiga-toxin producing E. coli (STEC). Braz. J. Microbiol. 2017, 48, 760–763. [Google Scholar] [CrossRef]
- Gomes, T.A.T.; Elias, W.P.; Scaletsky, I.C.A.; Guth, B.E.C.; Rodrigues, J.F.; Piazza, R.M.F. Diarrheagenic Escherichia coli. Braz. J. Microbiol. 2016, 47, 3–30. [Google Scholar] [CrossRef] [PubMed]
- Escher, M.; Scavia, G.; Morabito, S.; Tozzoli, R.; Maugliani, A.; Cantoni, S. A severe foodborne outbreak of diarrhoea linked to a canteen in Italy caused by enteroinvasive Escherichia coli, an uncommon agent. Epidemiol. Infect. 2014, 142, 2559–2566. [Google Scholar] [CrossRef]
- Michelacci, V.; Prosseda, G.; Maugliani, A.; Tozzoli, R.; Sanchez, S.; Herrera-León, S. Characterization of an emergent clone of enteroinvasive Escherichia coli circulating in Europe. Clin. Microbiol. Infect. 2016, 22, 287.e11–287.e19. [Google Scholar] [CrossRef] [PubMed]
- Newitt, S.; MacGregor, V.; Robbins, V.; Bayliss, L.; Chattaway, M.A.; Dallman, T. Two linked enteroinvasive Escherichia coli outbreaks, Nottingham, UK, June 2014. Emerg. Infect. Dis. 2016, 22, 1178–1184. [Google Scholar] [CrossRef]
- Pasqua, M.; Michelacci, V.; Di Martino, M.L.; Tozzoli, R.; Grossi, M.; Colonnam, B.; Morabitom, S.; Prosseda, G. The intriguing evolutionary journey of enteroinvasive E. coli (EIEC) toward pathogenicity. Front. Microbiol. 2017, 8, 312178. [Google Scholar] [CrossRef]
- Huang, S.W.; Hsu, B.M.; Su, Y.J.; Ji, D.D.; Lin, W.C.; Chen, J.L.; Shih, F.C.; Kao, P.M.; Chiu, Y.C. Ocurrence of diarreheagenic Escherichia coli genes in raw water of water treatment plant. Environ. Sci. Pollut. Res. 2012, 19, 2776–2783. [Google Scholar] [CrossRef]
- Franz, E.; Veenman, C.; Van Hoek, A.H.A.M.; de Roda Husman, A.; Blaak, H. Pathogenic Escherichia coli producing extended spectrum β-lactamases isolates from Surface water and wastewater. Sci. Rep. 2015, 5, 14372. [Google Scholar] [CrossRef] [PubMed]
- Liu, D. Diarrhoeagenic Escherichia coli. In Molecular Medical Microbiology; Academic Press: Cambridge, MA, USA, 2015; pp. 1133–1146. [Google Scholar] [CrossRef]
- RENAVE, 2022b. Informe Epidemiológico Sobre la Situación de la Campilobacteriosis en España. Año 2022. Centro Nacional de Epidemiología. Instituto de Salud Carlos III. 9pp. Available online: https://cne.isciii.es/documents/d/cne/informe_campylobacter_2022_final-pdf (accessed on 30 January 2024).
- Humphrey, T.; O’Brien, S.; Madsen, M. Campylobacters as zoonotic pathogens: A food production perspective. Int. J. Food Microbiol. 2007, 117, 237–257. [Google Scholar] [CrossRef]
- Sippy, R.; Sandoval-Green, C.M.J.; Sahin, O.; Plummer, P.; Sue Fairbanks, W.; Zhang, Q.; Blanchong, J.A. Ocurrence and molecular analysis in wildlife on livestock farms. Vet. Microbiol. 2012, 157, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Mishu Allos, B.; Lastovica, A.J. Campylobacter Infections. In Tropical Infectious Diseases: Principles, Pathogens and Practice, 3rd ed.; Saunders Elsevier: Boston, MA, USA, 2011; Volume 19, pp. 145–149. [Google Scholar] [CrossRef]
- RCVE 2022. Red Canaria de Vigilancia Epidemiológica. Informe 2022. Servicio Canario de la Salud. Gobierno de Canarias. Available online: https://www3.gobiernodecanarias.org/sanidad/scs/content/a74fe267-1c22-11ee-bd63-17442ee4d369/InformeRCVE2022.pdf (accessed on 30 January 2024).
- RENAVE, 2022c. Informe Epidemiológico Sobre la Situación de la Yersiniosis en España. Año 2022. Centro Nacional de Epidemiología. Instituto de Salud Carlos III. 6 pp. Available online: https://cne.isciii.es/documents/d/cne/informe_yersinia_2022_final-pdf (accessed on 30 January 2024).
- Krauss, H.; Weber, A.; Appel, M.; Enders, B.; Isenberg, H.D.; Schiefer, H.G.; Slenczka, W.; Von Graevenitz, A.; Zahner, H. Zoonoses Infectious Diseases Transmissible from Animals to Humans, 3rd ed.; ASM Press: Washington, DC, USA, 2003. [Google Scholar]
- Murray, P.R.; Baron, E.J.; Jorgensen, J.H.; Landry, M.L.; Pfaller, M.A. Manual of Clinical Microbiology, 9th ed.; ASM Press: Washington, DC, USA, 2007. [Google Scholar]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union one health 2019 zoonoses report. EFSA J. 2021, 19, e06406. [Google Scholar] [CrossRef]
- Bucher, M.; Meyer, C.; Grötzbach, B.; Wacheck, S.; Stolle, A.; Fredriksson-Ahomaa, M. Epidemiological data on pathogenic Yersinia enterocolitica in southern Germany during 2000–2006. Foodborne Pathog. Dis. 2008, 5, 273–280. [Google Scholar] [CrossRef]
- Rouffaer, L.O.; Baert, K.; Van den Abeele, A.M.; Cox, I.; Vanantwerpen, G.; De Zutter, L.; Strubbe, D.; Vranckx, K.; Lens, L.; Haesebrouck, F.; et al. Low prevalence of human enteropathogenic Yersinia spp. in brown rats (Rattus norvegicus) in Flanders. PLoS ONE 2017, 12, e0175648. [Google Scholar] [CrossRef]
- Platt-Samoraj, A.; Klaudia Konczyk-Kmiecik, K.; Bakuła, T. Occurrence and genetic correlations of Yersinia spp. isolated. from commensal rodents in Northeastern Poland. Pathogens 2021, 10, 1247. [Google Scholar] [CrossRef] [PubMed]
- Actis, L.A.; Tolmasky, M.E.; Crosa, J.H. Vibriosis. In Fish Diseases and Disorders Viral, Bacterial and Fungal Infections, 2nd ed.; Woo, P.K., Bruno, D.W., Eds.; CAB International: London, UK, 2011; pp. 570–605. [Google Scholar]
- Thune, R.L.; Hawke, J.P.; Siebeling, R.J. Vibriosis in the red swamp crawfish. J. Aquat. Anim. Health 1991, 3, 188–191. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, H.; Huang, Z.; Ye, X.; Zhang, L.; Li, Q.; Zhao, Z.; Su, X.; Liu, G.; Du, J. Differential transcriptomic análisis of crayfish (Procambarus clarkii) from a rice coculture system challenged by Vibrio parahaemoyticus. CBP Genom. Proteom. 2020, 36, 100741. [Google Scholar] [CrossRef]
- Austin, B.; Austin, D.A. Diseases of farmed and wild fish. In Bacterial Fish Pathogens, 5th ed.; Springer Praxis: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Austin, B. Vibrios as causal agents of zoonoses. Vet. Microbiol. 2009, 140, 310–317. [Google Scholar] [CrossRef]
- Teng, L.; Zou, G.; Zhou, Y.; Li, J.; Song, Z.; Dong, X.; Ma, Z.; Zheng, Z.; Chen, H.; Li, J. Phage controlling method against novel freshwater-derived Vibrio parahaemolyticus in ready-to-eat crayfish (Procambarus clarkii). Food Res. Int. 2022, 162, 111986. [Google Scholar] [CrossRef] [PubMed]
- Sack, R.B. A search for canine carriers of Vibrio. J. Infect. Dis. 1973, 127, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Rodríguez, E.; Martín-Carrillo, N.; Valladares, B.; Foronda, P. Study of zoonotic enteric pathogens of Atelerix algirus in Tenerife, Canary Islands, Spain. Front. Vet. Sci. 2020, 7, 579602. [Google Scholar] [CrossRef]
- Sanyal, S.C.; Singh, S.J.; Tiwari, P.C.; Sen, I.C.; Marwah, S.M.; Hazarika, U.R.; Singh, H.; Shimada, T.; Sakazaki, R. Role of household animals in maintenance of cholerae infection in a community. J. Infect. Dis. 1974, 130, 575–579. [Google Scholar] [CrossRef]
- Rodríguez, C.; Taminiau, B.; Van Broeck, J.; Delmée, M.; Daube, G. Clostridium difficile in food and animals: A comprehensive review. Adv. Microbiol. Infect. Dis. Public Health 2016, 4, 65–92. [Google Scholar]
- Simango, C. Prevalence of Clostridium difficile in the environment in a rural community in Zimbabwe. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 1146–1150. [Google Scholar] [CrossRef]
- Zidaric, V.; Beigot, S.; Lapajne, S.; Rupnik, M. The occurrence and high diversity of Clostridium difficile genotypes in rivers. Anaerobe 2010, 16, 371–375. [Google Scholar] [CrossRef]
- Romano, V.; Pasquale, V.; Krovacek, K.; Mauri, F.; Demarta, A.; Dumontet, S. Toxigenic Clostridium difficile PCR ribotypes from wastewater treatment plants in Southern Switzerland. Appl. Environ. Microbiol. 2012, 78, 6643–6646. [Google Scholar] [CrossRef]
- Viau, E.; Peccia, J. Survey of wastewater indicators and human pathogen genomes in biosolids produced by class A and class B stabilization treatments. Appl. Environ. Microbiol. 2009, 75, 164–174. [Google Scholar] [CrossRef]
- Bazaid, F. Distribution and Sources of Clostridium difficile Present in Water Sources. Doctoral Dissertation, University of Guelph, Guelph, ON, Canada, 2012. [Google Scholar]
- Krijger, I.M.; Meerburg, B.G.; Harmanus, C.; Burt, S.A. Clostridium difficile in wild rodents and insectivores in Nertherlands. Lett. Appl. Microbiol. 2019, 69, 35–40. [Google Scholar] [CrossRef]
- Hernández, M.; Ramos, M.; Lecuona, M. P032: Clostridium difficile infection in Tenerife Canary Island, Spain. Antimicrob. Resist. Infect. Control 2013, 2, P32. [Google Scholar] [CrossRef]
- Aroca-Ferri, M.; Tosco-Núñez, T.; Peñate-Bolaños, M.; Molina-Cabrilla, J.; Ojeda-Vargas, M. Primer brote de Clostridioides difficile ribotipo 027 en Canarias. Rev. Esp. Quimioter. 2023, 36, 317. [Google Scholar] [CrossRef] [PubMed]
- Phan, A.; Tabashsum, Z.; Alvarado-Martínez, Z.; Scriba, A.; Sellers, G.; Kapadia, S.; Canagarajah, C.; Biswas, D. Ecological distribution of Staphylococcus in integrated farmas withn Washington DC-Maryland. J. Food Saf. 2024, 44, e13123. [Google Scholar] [CrossRef]
- Dong, X.; Wang, X.; Chen, X.; Yan, Z.; Cheng, J.; Gao, L.; Liu, Y.; Li, J. Genetic diversity and virulence potential of Staphylococcus aureus isolated from crayfish (Procambarus clarkii). Curr. Microbiol. 2017, 74, 28–33. [Google Scholar] [CrossRef]
- Shao, L.; Qiu, X.; Li, J.; Chen, J.; Wang, R.; Han, Q.; Yang, P. Isolation and identification of intestinal cellulolytic bacteria from red swamp crayfish (Procambarus clarkii). Isr. J. Aquac. Bamidgeh 2024, 76, 1–7. [Google Scholar] [CrossRef]
- Solliman, W.; Abbas, W.T.; Ibrahim, T.B.; Kenawy, A.M.; Elgendy, M.Y. Disease causing organisms in Procambarus clarkii and Gambusia affinis with emphasis on their role in biomonitoring of aquatic pollution. Egypt J. Vet. Sci. 2016, 47, 63–81. [Google Scholar] [CrossRef]
- Sousa, M.; Silva, N.; Igrejas, G.; Silva, F.; Sargo, R.; Alegria, N.; Benito, D.; Gómez, P.; Lozano, C.; Gómez-Sanz, E.; et al. Antimicrobial resistance determinants in Staphylococcus spp. recovered from birds of prey in Portugal. Vet. Microbiol. 2014, 171, 436–440. [Google Scholar] [CrossRef]
- Hunter, P.R.; Thompson, R.A. The zoonotic transmission of Giardia and Cryptosporidium. Int. J. Parasitol. 2005, 35, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Ryan, U.; Zahedi, A.; Paparini, A. Cryptosporidium in humans and animals—A one health approach to prophylaxis. Parasite Immunol. 2016, 38, 535–547. [Google Scholar] [CrossRef]
- Rosado-García, F.M.; Guerrero-Flórez, M.; Karanis, G.; Hinojosa, M.D.C.; Karanis, P. Water-borne protozoa parasites: The Latin American perspective. Int. J. Hyg. Environ. Health 2017, 220, 783–798. [Google Scholar] [CrossRef]
- Khan, A.; Shaik, J.S.; Grigg, M.E. Genomics and molecular epidemiology of Cryptosporidium species. Acta Trop. 2018, 184, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ryan, U.; Hijjawi, N.; Xiao, L. Foodborne cryptosporidiosis. Int. J. Parasitol. 2018, 48, 1–12. [Google Scholar] [CrossRef]
- Karanis, P. Cryptosporidium: Waterborne and foodborne transmission and worldwide outbreaks. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, Proceedings of the Euro-Mediterranean Conference for Environmental Integration (EMCEI-1), Sousse, Tunisia, 20–25 November 2017; Springer International Publishing: Heidelberg, Germany, 2018; pp. 41–44. [Google Scholar] [CrossRef]
- Abreu-Acosta, N.; Foronda-Rodríguez, P.; López, M.; Valladares, B. Occurrence of Cryptosporidium hominis in pigeons (Columbia livia). Acta Parasitol. 2009, 54, 1–5. [Google Scholar] [CrossRef]
- Feliu, C.; López, M.; Gómez, M.S.; Torres, J.; Sánchez, S.; Miquel, J.; Abreu-Acosta, N.; Segovia, J.M.; Martín-Alonso, A.; Montoliu, I.; et al. Parasite fauna of rodents (Murinae) from El Hierro (Canary Islands, Spain): A multidisciplinary approach. Acta Parasitol. 2012, 57, 171–178. [Google Scholar] [CrossRef]
- García-Livia, K.; Martín-Alonso, A.; Foronda, P. Diversity of Cryptosporidium spp. in wild rodents from the Canary Islands, Spain. Parasit. Vectors 2020, 13, 445. [Google Scholar] [CrossRef] [PubMed]
- Baz-González, E.; Martín-Carrillo, N.; García-Livia, K.; Foronda, P. Rabbits (Oryctolagus cuniculus) from Tenerife, Canary Islands, Spain. Vet. Sci. 2022, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Abreu-Acosta, N.; Quispe, M.A.; Foronda-Rodríguez, P.; Alcoba-Florez, J.; Lorenzo-Morales, J.; Ortega-Rivas, A.; Valladares, B. Cryptosporidium in patients with diarrhoea, on Tenerife, Canary Islands, Spain. Ann. Trop. Med. Parasitol. 2007, 101, 539–545. [Google Scholar] [CrossRef]
- RENAVE, 2022e. Informe Epidemiológico Sobre la Situación de la Criptosporidiosis en España. Años 2019 y 2020. Centro Nacional de Epidemiología. Instituto de Salud Carlos III. 8 pp. Available online: https://cne.isciii.es/documents/d/cne/informe_criptosporidium_2022-pdf (accessed on 30 January 2024).
- Raef, A.M.; Mohamed, A.A.; Mohamed, M.E.M.; Abd El-Maksoud, S.A. Further studies on the role of crayfish “Procambarus clarki” in transmisión of some zoonotic parasites in East Delta. In The Third International Scientific Conference; Faculty of Veterinary Medicine Mansoura University: Mansoura, Egypt, 2003; pp. 29–30. [Google Scholar]
- Amro, M.; Magda, A.; Amer, O.; Merwad, A. Studies on the role of shellfish as a source for transmitting some parasites of zoonotic importance. Mansoura Vet. Med. J. 2005, 7, 1–25. [Google Scholar] [CrossRef]
- Graczyk, T.; McOliver, C.; Silbergeld, E.K.; Tamang, L.; Roberts, J.D. Risk of handling as a route of esposure to infectious waterborne Cryptosporidium parvum oocysts via Atlantic Blue Crabs (Callinectes sapidus). Appl. Environ. Microbiol. 2007, 73, 4069–4070. [Google Scholar] [CrossRef]
- Santin, M. Cryptosporidium and Giardia in ruminants. Vet. Clin. N. Am. Food A 2020, 36, 223–238. [Google Scholar] [CrossRef]
- Dixon, B.R. Giardia duodenalis in humans and animals—Transmission and disease. FEMS Microbiol. Rev. 2021, 135, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Álvarez, A.; Martín-Alonso, A.; Abreu-Acosta, N.; Feliu, C.; Hugot, J.P.; Valladares, B.; Foronda, F. Identification of a novel assemblage G subgenotype and a zoonotic assemblage B in rodent isolates of Giardia duodenalis in the Canary Islands, Spain. Parasitology 2014, 141, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Ruíz, A.; Foronda, P.; González, J.F.; Guedes, A.; Abreu-Acosta, N.; Molina, J.M.; Valladares, B. Ocurrence and genotype characterization of Giardia duodenalis in goat kids from the Canary Islands, Spain. Vet. Parasitol. 2008, 154, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Abreu-Acosta, N.; Martín-Delgado, M.; Ortega-Rivas, A.; del Castillo Remiro, A.; Aguiar González, E.; Valladares Hernández, B. Presencia de Giardia lamblia y Cryptosporidium spp. en aguas residuales depuradas reutilizadas para riego agrícola en la isla de Tenerife, España. Efectos del transporte a larga distancia sobre la calidad del agua reutilizada. Rev. Salud Ambient. 2002, 2, 2–7. [Google Scholar]
- Abreu-Acosta, N.; Vera, L. Ocurrence and removal of parasites, enteric bacteria and faecal contamination indicators in wastewater natural reclamation systems in Tenerife-Canary Islands, Spain. Ecol. Eng. 2011, 37, 496–503. [Google Scholar] [CrossRef]
- RENAVE, 2022f. Informe Epidemiológico Sobre la Situación de la Giardiasis en España. Años 2019 y 2020. Centro Nacional de Epidemiología. Instituto Carlos III. 8 pp. Available online: https://cne.isciii.es/documents/d/cne/informe_giardia_2022_final-pdf (accessed on 1 February 2024).
- Graczyk, T.K.; Farley, C.A.; Fayer, R.; Lewis, E.J.; Trout, J.M. Detection of Cryptosporidium oocysts and Giardia cysts in the tissues of Eastern Oysters (Crassostrea virginica) carrying principal oyster infectious diseases. J. Parasitol. 1998, 84, 1039–1042. [Google Scholar] [CrossRef]
- Gómez-Couso, H.; Méndez-Hermida, F.; Castro-Hermida, J.A.; Ares-Mazás, E. Giardia in shellfish-farming areas: Detection in mussels, river water and waste Waters. Vet. Parasitol. 2005, 133, 13–18. [Google Scholar] [CrossRef]
Bacterial Strain |
---|
Salmonella enterica serovar Typhimurium ATCC® 14028 |
Salmonella enterica serovar Enteritidis ATCC® 13076 |
Salmonella enterica serovar Typhi strain ATCC® 19430 |
Staphylococcus aureus ATCC® 653 |
Staphylococcus epidermidis ATCC® 12228 |
Staphylococcus saprophyticus ATCC® 15305 |
Staphylococcus aureus derived from ATCC® BAA-1708™ (Methicillin and Mupirocin resistant) |
Staphylococcus haemolyticus ATCC® 29970 |
Staphylococcus lugdunensis ATCC® 49576 |
Staphylococcus hominis ATCC® 19536 |
Bacteria | Target Gene | Primers | Sequence (5′-3′) | Size (bp) |
---|---|---|---|---|
Salmonella spp. | ompC | OMPCF | ATC GCT GAC TTA TGC AAT CG | 204 |
OMPCR | CGG GTT GCG TTA TAG GTC TG | |||
S. enterica ser. Enteritidis | Sdf1 | ENTF | TGT GTT TTA TCT GAT GCA AGA GG | 304 |
ENTR | TGA ACT ACG TTC GTT CTTCTG G | |||
S. enterica ser. Typhi | ViaB | ViaBF | CAC GCA CCA TCA TTT CAC CG | 738 |
ViaBR | AAC AGG CTG TAG CGA TTT AGG | |||
S. enterica ser. Typhimurium | Spy | TyphF | TTG TTC ACT TTT TAC CCC TGA A | 401 |
TyphR | CCC TGA CAG CCG TTA GAT ATT |
Specie (Locus) | Primer | Sequence (5′-3′) | Size (pb) |
---|---|---|---|
S. lugdunensis (fbI) | fbIF | AAA TCT CCA AGT TGA CCA AAC ATA C | 550 |
fbIR | GAT TGC GCT GAA AGA ATT GC | ||
Mupirocin resistance (ileS2) | ileS2F | TAT ATT ATG CGA TGG AAG GTT GG | 456 |
ileS2R | AAT AAA ATC AGC TGG AAA GTG TTG | ||
S. saprophyticus (sap) | sapF | AAC GGG CGT CTC GAT AGA AAA | 380 |
sapR | AAC GGG CGT CCA CAA AAT CA | ||
S. aureus (nuc) | nucF | TCG CTT GCT ATG ATT GTG G | 359 |
nucR | GCC AAT GTT CTA CCA TAG C | ||
Methicillin resistance (mecA) | mecA1 | GTA GAA ATG ACT GAA CGT CCG ATA A | 310 |
mecA2 | CCA ATT CCA CAT TGT TTC GGT CTA A | ||
S. haemolyticus (mvaA) | mvaA1 | GGT CGC TTA GTC GGA ACA AT | 271 |
mvaA2 | CAC GAG CAA TCT CAT CAC CT | ||
S. epidermidis (sep) | sepF | CAG TTA TAC GGT ATG AGA GC | 219 |
sepR | CTG TAG AGT GAC AGT TTG GT | ||
S. hominis (hom) | homF | TAC AGG GCC ATT TAA AGA CG | 177 |
homR | GTT TCT GGT GTA TCA ACA CC |
Bacteria | + (Prevalence) [95% CI] (n = 22) |
---|---|
Plesiomonas shigelloides | 9 (40.90%) [20.71, 63.64] |
Enteroinvasive E. coli | 7 (31.81%) [13.86, 54.87] |
Enteropathogenic E. coli | 2 (9.09%) [1.12, 29.16] |
Salmonella spp. | 4 (18.18%) [5.19, 40.28] |
Bacteria | + (Prevalence) [95% CI] (n = 13) |
---|---|
Salmonella ser. Enteritidis | 2 (15.38%) [1.92, 45.45] |
Salmonella ser. Typhimurium | 2 (15.38%) [1.92, 45.45] |
Salmonella ser. Typhi | 1 (7.69%) [0.19, 36.03] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu-Acosta, N.; Martín-Carrillo, N.; Foronda, P. Zoonotic Pathogens Isolated from an Introduced Population of Red Swamp Crayfish (Procambarus clarkii) in Tenerife (Canary Islands, Spain). Diversity 2024, 16, 643. https://doi.org/10.3390/d16100643
Abreu-Acosta N, Martín-Carrillo N, Foronda P. Zoonotic Pathogens Isolated from an Introduced Population of Red Swamp Crayfish (Procambarus clarkii) in Tenerife (Canary Islands, Spain). Diversity. 2024; 16(10):643. https://doi.org/10.3390/d16100643
Chicago/Turabian StyleAbreu-Acosta, Néstor, Natalia Martín-Carrillo, and Pilar Foronda. 2024. "Zoonotic Pathogens Isolated from an Introduced Population of Red Swamp Crayfish (Procambarus clarkii) in Tenerife (Canary Islands, Spain)" Diversity 16, no. 10: 643. https://doi.org/10.3390/d16100643
APA StyleAbreu-Acosta, N., Martín-Carrillo, N., & Foronda, P. (2024). Zoonotic Pathogens Isolated from an Introduced Population of Red Swamp Crayfish (Procambarus clarkii) in Tenerife (Canary Islands, Spain). Diversity, 16(10), 643. https://doi.org/10.3390/d16100643