Next Article in Journal
Terrestrial Aerophytic Cyanobacteria in the Canary Island Laurel-Forest (Laurisilva): Discovery of Brasilonema novocanariensis sp. nov. and Rhizonema melkonianarum sp. nov. from the Laurus Phyllosphere
Previous Article in Journal
The Gut Microbiome and Lignocellulose Digestion in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae): A Termite Incorporating Lichen into Its Diet
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Comparative Analysis of Island vs. Mainland Arthropod Communities in Coastal Grasslands Belonging to Two Distinct Regions: São Miguel Island (Azores) and Mainland Portugal

by
Hugo Renato M. G. Calado
1,*,
Paulo A. V. Borges
2,
Ruben Heleno
3 and
António O. Soares
1
1
University of Azores, cE3c—Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE—Global Change and Sustainability Institute, Faculty of Science and Technology, Rua da Mãe de Deus, 9500-321 Ponta Delgada, Azores, Portugal
2
University of Azores, cE3c—Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE—Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, Rua Capitão João d’Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Azores, Portugal
3
Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Distrito de Coimbra, Portugal
*
Author to whom correspondence should be addressed.
Diversity 2024, 16(10), 624; https://doi.org/10.3390/d16100624
Submission received: 26 July 2024 / Revised: 1 October 2024 / Accepted: 2 October 2024 / Published: 9 October 2024

Abstract

:
Coastal grasslands host diverse arthropod communities and provide important ecosystem services. Islands, being isolated environments, are expected to have simpler ecosystems than continental areas, with the few successful colonizing species often attaining high densities; however, these patterns are still poorly documented for coastal grassland arthropods. We conducted a comparative study of the biodiversity of arthropod communities in two distinct coastal grassland ecosystems (Portugal mainland and the Azores) with the following objectives: (a) to investigate the arthropod community composition in both locations; (b) to compare the diversity profiles in both locations; (c) to investigate potential density compensation in the island’s arthropod communities. For four months, arthropods were collected on the Island of São Miguel, Setúbal Peninsula, and Sine’s region and subsequently classified into taxonomic groups. With the data collected, Hill Numbers were calculated for each region. We confirmed that the richness on the mainland was higher than in the Azores, and we found some apparent abundance compensation in the Azores. At the same time, we also observed that many species in the Azores are also present in the continental coastal grasslands of mainland Portugal.

1. Introduction

Oceanic islands, which are characterized by their geographical isolation and natural barriers, present unique ecosystems with relatively simple architectures compared to mainland counterparts [1]. This simplicity makes island communities particularly susceptible to environmental perturbations [2], including biological invasions [3,4] and climate change [5,6]. The limited diversity and specialized niches in island species often lack the resilience necessary to withstand such disturbances. Consequently, these ecosystems face heightened vulnerability, which makes them crucial focal points for conservation efforts and scientific research [2,6,7]. At the same time, terrestrial arthropods are one of the most widely studied taxonomic groups and are also quite sensitive to environmental changes [8]. Although there are several studies of these communities in different island ecosystems, such as pristine and forest areas, crops, or marshes [9,10,11,12,13], there is still a lack of studies focused on arthropod communities in coastal island grasslands.
Grasslands are very rich and diverse ecosystems, not only due to their floristic and faunistic biodiversity but also for the diverse ecosystem services they provide (like nutrient recycling, carbon sequestration, and air purification, among others), most of which have already been identified and well-studied over the years [14,15,16,17]. Often called prairies, grasslands differ from the latter in that they no longer maintain most of their original native plants, having undergone major changes in their plant composition [18,19,20]. These environments also differ from their more inland counterparts in terms of temperature and humidity, typically being warmer and more humid [21].
Comparative studies on the composition and diversity of arthropod communities in coastal grasslands, contrasting ecosystems, such as insular and mainland, are very useful to ecology. They may provide greater insights regarding how these communities are organized, enabling us to discern the disparities in biodiversity, relative abundance, and ecosystem services these species provide [22]. In areas where specific richness is lower, an inverse relation to the density of organisms could occur (the so-called density compensation), which partially reduces the higher risk of extinction caused by the less complex communities [23]. There are species, such as birds and lizards, which, in island environments, show an increase in their abundance when compared to their continental counterparts [24,25,26,27]. There are also recent studies that have used trait-based approaches to explain patterns in organism densities [28,29]. For ladybirds, for example, species richness, diversity, and body mass tended to be lower in insular ecosystems [30,31].
In arthropods, however, there are still gaps in the knowledge about island coastal grasslands. Moreover, the islands are also seen as excellent places for studies on ecology and evolution [1,2,7], and this kind of study should include a comprehensive understanding of the causes of variation in species richness, how ecological communities are distributed, and what are the mechanisms that shape evolutionary processes [32,33,34]. By doing so, we gain insights into whether these distinctions are significant enough to drive ecological and evolutionary processes within existing communities. At the same time, these studies are also important for the establishment of new solutions for conservation and ecological restoration [35].
In this way and considering that current Azorean coastal grasslands are a highly modified ecosystem with a dominance of exotic and naturalized vegetation originating from nearby mainland with very few endemic plant species and, at the same time, have some similar characteristics to their mainland homologs (in terms of latitude and substrate), we investigate how arthropod communities are assembled in comparison with an equivalent mainland habitat. We aim to (a) investigate the arthropod community composition in both locations; (b) compare the diversity profiles in both locations; (c) investigate potential abundance compensation in the island’s arthropod communities. Since oceanic islands are species-poor and disharmonic systems, we predict that: (i) local arthropod taxonomic diversity will be lower on the island-modified coastal prairies compared with that from the mainland; (ii) arthropod communities from the Azorean coastal grasslands will be composed mostly of exotic arthropods; and (iii) some density compensation will likely occur in the island arthropod communities.

2. Materials and Methods

2.1. Study Area

The Azores archipelago is in the middle of the North Atlantic, approximately 1600 km from mainland Portugal, with an extension of about 600 km between Santa Maria and Corvo (37°–40° N latitude; 25°–31° W longitude). Three island groups compose the archipelago: Eastern (Santa Maria and São Miguel islands), Central (Terceira, Graciosa, São Jorge, Pico, and Faial islands), and Western (Corvo and Flores islands). The different islands are aligned in a NW–SE orientation. São Miguel is the largest of the islands of the Azores archipelago and the largest of all the islands that make up the territory of Portugal, with an area of 748.82 km2, measuring 64.7 km in length and 8–15 km in width [11,36] (Figure 1a). The archipelago’s climate is affected by the surrounding ocean, namely, the effects of the Gulf Stream, as well as by island topography, being mild and very wet, often reaching an average annual relative humidity of 95% in high-altitude forests [11]. The oceanic temperate climate is reflected in high annual precipitation, high relative humidity, persistent wind, and low thermal amplitude [37].
Mainland Portugal, on the other hand, is located in southwestern Europe and is confined between parallels 37° N and 42° N and within the relatively narrow meridional band that develops between 6.5° W and 9.5° W. It lies in the transitional region between the sub-tropical anticyclone and the sub-polar depression zones. In this territory, the latitude, orography, and effect of the Atlantic Ocean are the main driving forces of the climate [38].
The Setúbal district is located south of Lisbon, between parallels 37° N and 39° N, with an area of 5034 km2, and encompasses the regions of Sesimbra and Sines. Sesimbra is c. 30 km south of Lisbon and has an area of 194.98 km2, whereas Sines is located c. 150 km south of Lisbon and has an area of 195.47 km2. Portugal has a Mediterranean climate characterized by warm and dry summers and cool and wet winters [39]. Precipitation ranges from more than 2000 mm in the northwest to roughly 400 mm in the most south-eastern part of the country [40].

2.2. Arthropod Sampling

For the study of arthropod diversity, 31 plots were selected in coastal grasslands. Thirteen plots were located on São Miguel Island (Figure 1b) and 18 on the mainland west coast, distributed across Sesimbra and Sines, in Setúbal district (Figure 1c). Plots were selected in both regions to have a similar general substrate (rocky), latitude, and elevation (See Appendix ATable A1). For each one, an area of 2500 m2 (0.25 ha) was defined. All selected plots were visited four times between spring and summer 2022.
In each plot, a randomly sweeping section was carried out using a nylon mosquito net 40 cm in diameter, 50 cm in length, and 0.25 mm mesh. For each section, an effort of 15 min was spent (3 min for sweeping and 12 min for processing and labeling of the collected material). All collected organisms were placed in flasks with 96% ethyl alcohol for later sorting and identification.
Since the climate conditions that occur in spring in the Azores normally begin one month later than in the mainland, we assume, for the purposes of this study, that March, April, May, and June on the mainland will be similar to April, May, June, and July for the Azores, respectively.

2.3. Species Sorting, Identification, and Diversity Measurements

In the laboratory, all arthropod specimens were sorted into different morphospecies and stored in 2 ml Eppendorf tubes with 99% absolute alcohol. For each morphospecies, three exemplars were selected and photographed, using a LEICA S9i stereo microscope with LAS X 5.2.1.27831, to create a photographic database to help the taxon identification. The senior author (PAVB) identified all morphospecies of the Azorean samples to the species level when possible. All species collected in the Azores were categorized into three colonization categories following the last checklist of Azorean arthropods [41]: endemic, native non-endemic, and introduced (See Appendix ATable A2). In some cases, the colonization status was undetermined. A database for both events and occurrences was created using the Darwin Core criteria.
Accumulation curves were constructed using EstimateS program v. 9.1.0 [42], with 100 runs, for the observed number of species, species richness estimates, singletons, and doubletons, using the non-parametric estimators Chao 1 and Jackknife 1. From EstimateS, we also extracted the number of singletons, doubletons, uniques, and duplicates. Common indices of diversity were also calculated for the two geographic areas, following the Hill series: species richness (H0); Shannon–Wiener exponent (H1); inverse Simpson’s index (H2); inverse Berger–Parker index (H3) [43].
H0 = S (total number of species)
H1 = exponent of Shannon–Wiener index (H′)
Shannon–Wiener index:
H = i = 1 n p i   L n   p i
p i = n i N t
ni = species abundance;
Nt = Total species abundance;
pi = relative abundance for each species.
H2 = Simpson inverse = 1/D
Simpson index:
D = i = 1 n p i 2
H3 = Berger–Parker inverse = 1/d
Berger–Parker index:
d = N m a x N t
Evenness index:
E = H L n   ( S )
The use of biodiversity indices allows us to analyze and understand in more detail the difference between two distinct ecosystems, as it presents important and simple information on how species are distributed in terms of richness and abundance (dominance or rarity). Hill numbers, in this sense, act as an extremely important tool for research into biodiversity and ecological assessments [43,44]. The Fisher’s Alpha index was also calculated since it is considered to have low sensitivity to sampling effort.
Fisher’s Alpha index:
S = α l n   ( 1 + N α )
S = number of taxa;
N = number of individuals;
α = Fisher’s alpha.
To verify the dissimilarity between the Azores and Mainland communities, we computed a beta partition framework using the Jaccard index [44].
Jaccard index:
β J a c = β r e p l + β r i c h
β J a c = b + c a + b + c = 2 m i n   ( b , c ) a + b + c + | b c | a + b + c
a = the number of species common to both sites;
b = the number of species that occur in the first site but not in the second;
c = the number of species that occur in the second site but not in the first.

2.4. Data Analysis

The Kolmogorov–Smirnov and Levene’s tests were performed to assess the normality and homogeneity of data variances, respectively. When the previous condition was not verified, data were log-transformed. The comparative analysis of arthropod species richness and abundance between the mainland and the Azores utilized either parametric t-tests or non-parametric Kruskal–Wallis tests. Mean values were considered significantly different when p < 0.05. All statistical analyses were conducted using SPSS v. 29.0.1 [45].
For the Hill numbers, Jaccard index, and Fisher’s Alpha index calculation, we used only the morphospecies identified at least until the family taxonomic group.

3. Results

3.1. Species Richness and Abundance

A total of 13,515 specimens were collected in the two coastal grasslands (Azores = 7861; Mainland = 5654) belonging to 534 arthropod species and morphospecies. In the Azores, 210 species and morphospecies belonging to 3 classes were collected: Arachnida (22), Diplopoda (1), and Insecta (187). On the mainland, a total of 391 species and morphospecies were collected, belonging to 2 classes: Arachnida (55) and Insecta (336) (Table 1).
Of the 210 morphospecies collected in the Azores, only four are endemic, with the others considered introduced (39), native non-endemic (42), or not yet specified (125) (see Appendix ATable A2). The class with the highest abundance in the Azores coastal grasslands was Class Insecta, with 7313 specimens, of which 2958 belonged to order Hemiptera (44 species and morphospecies). The group with the largest taxa number was the Hymenoptera, with a total of 51 morphospecies. In the mainland coastal grasslands, the class with the greatest abundance was also Insecta, with a total of 4816 specimens. Of these, 1634 belonged to the order Coleoptera, also the one with the largest number of identified morphospecies (109).
In total, 67 species were common in both ecosystems (Table 2), with 54 of these more abundant in the Azores than in the mainland coastal grasslands.
We found a significant difference in the abundance of the common species between the Azores (72.36 ± 13.33) and mainland (19.88 ± 4.53) coastal grasslands (Paired T-test: t = 4.073; df = 66; p ≤ 0.001) (Figure 2).
In relation to the completeness of the sampling, based on the Chao 1 and JackKnife 1 estimators (Figure 3), both ecosystems present a very high completeness for both estimators.
However, Uniques (species found in just one sample) and Singletons (species represented by one individual) are superior to Duplicates (species found in two samples) and Doubletons (species represented by two individuals) [46] in both locations (Table 3). This means that additional species are expected if more effort is applied in future surveys.
Concerning the total abundance of arthropods for communities of both locations, we found out that it was significantly higher in the Azores coastal grasslands (154.14 ± 18.34) than in the mainland (80.77 ± 11.33) (Kruskal–Wallis-test: K-W = 17.635; df = 1; p ≤ 0.001) (Figure 4).

3.2. Diversity Metrics for the Arthropod Communities of the Azores and Mainland Coastal Grasslands (Hill Series)

When we analyze the differences between species richness (H0) in coastal grasslands of the Azores (30.9 ± 1.96) and mainland (29.43 ± 2.05), we found no significant differences (Kruskal–Wallis-test: K-W = 0.322; df = 1; p = 0.571) (Figure 5). Concerning the Shannon–Wiener exponent (H1) for the arthropod communities, also no significant statistical differences were observed between Azores (16.36 ± 0.87) and mainland (18.75 ± 1.17) coastal grasslands (GLM test: Z = 2.345; df = 1; p = 0.128). No significant differences were found in the inverse Simpson’s index (H2) between coastal grasslands of arthropod communities of the Azores (10.71 ± 0.63) and mainland (12.86 ± 0.82) (GLM test: Z = 3.803; df = 1; p = 0.054). When the inverse of the Berger–Parker index (H3) was analyzed between the Azores (5.07 ± 0.29) and mainland (5.74 ± 0.34) coastal grasslands, no significant differences were observed either (GLM test: Z = 8.018; df = 1; p = 0.153).
When the Evenness was analyzed, significant differences were observed between the Azores (0.82 ± 0.010) and mainland (0.88 ± 0.011) coastal grasslands (Kruskal–Wallis test: K-W = 18.080; df = 1; p ≤ 0.001) (Figure 6).
When the Fisher’s Alpha index in each region was analyzed, we found significant differences between the Azores (13.98 ± 0.71) and mainland (24.07 ± 1.78) coastal grasslands (Kruskal–Wallis-test: K-W = 20.783; df = 1; p ≤ 0.001) (Figure 7).

3.3. Dissimilarity Index (Jaccard)

Analyzing the beta partition between sites in each region with the Jaccard index for the global beta diversity, we found significant dissimilarity between the Azores (0.897 ± 0.06) and mainland (0.923 ± 0.06) coastal grasslands (GLM test: Z = 38.615; df = 1; p ≤ 0.001). We also observed differences for the Beta Replacement between Azores (0.41 ± 0.26) and mainland (0.36 ± 0.23 (GLM test: Z = 8.794; df = 1; p= 0.003)), and for Beta Richness in both locals: Azores (0.49 ± 0.24) and mainland (0.56 ± 0.22) (GLM test: Z = 21.587; df = 1; p ≤ 0.001) (Figure 8).

4. Discussion

Our results indicate that there is a high difference in arthropod regional species richness (gamma diversity, sensu Magurran, 2004) [47] between the Azores and Portugal mainland coastal grasslands. Indeed, the total number of species and morphospecies in the Azorean coastal grasslands is almost half the number of the collected species in the mainland’s coastal grasslands (cf. Table 1). In certain taxonomic groups, this difference is particularly noteworthy; for instance, the proportion of beetles (Coleoptera) compared to other insect groups is particularly higher on the mainland than in the Azores. Other examples are the species richness of the Arachnida and Hemiptera Orders, with almost twice as many morphospecies in mainland coastal grasslands at the regional level. Nevertheless, other groups have very similar numbers of morphospecies collected in both areas (e.g., Diptera and Lepidoptera). This result partially confirms our first prediction that lower diversity would be expected on the island-modified coastal grassland when compared to the mainland grassland since insular systems tend to be species poor and disharmonic [32,33].
However, when we analyze the alpha diversity (local diversity), the results are mixed. On the one hand, there is no statistical difference in the diversity profiles measured by the Hill numbers (mean species richness, rarity, and dominance), but such differences were observed when computing Fisher’s alpha (Figure 7). Higher Fisher’s alpha values on the mainland indicate greater specific richness. The results also suggest that we are in the presence of a stable ecosystem. Those values also corroborate the evenness results (higher in the mainland coastal grasslands). Conversely, the low values in the Azores might suggest some environmental degradation, habitat loss, or other stressors that lead to ecosystem homogenization (e.g., similar resource availability, habitat types, or levels of competition), affecting biodiversity. Despite a large regional difference in species richness, both communities support similar effective species numbers at a local scale as measured by the Hill numbers. This is against our initial prediction in terms of diversity profiles in both grassland ecosystems. In a recent critique of the Hill numbers approach, Ricotta and Feoli [48] suggested that in some situations in which there is a non-linear response of diversity measures, the conversion of classical diversity measures to Hill numbers is not useful. At this stage, we have no evidence that our two investigated communities differ in the rate of uncertainty associated with species additions, and consequently, we assume that the patterns observed are similar in the two communities.
Nevertheless, despite this apparent similarity of local diversity profiles in both regions, when analyzing the results obtained through the beta diversity partition using the Jaccard dissimilarity index, we observe significant differences in arthropod community structure between the mainland and the Azorean coastal grasslands. In the Azores, sample sites are more similar in species composition when compared to the mainland (Figure 8A). In both cases, arthropod species compositional differences are mostly due to beta richness differences between sites within each region (Figure 8B,C). The anthropogenic replacement of specialist native species by generalist non-native ones can lead to “biotic homogenization” [49], which can cause a similarity in the composition of the various communities over time [50,51]. In the Azores, human action during the last five centuries has likely contributed to this process since most of the islands’ coastal areas are visibly altered in relation to their original ecosystems [52]. In contrast, some of the areas remain relatively little disturbed, which could further contribute to this differentiation.
We know that species spatial replacement refers to the well-known fact that species tend to replace each other along ecological gradients that are sufficiently long (i.e., turnover) [53,54]. Interestingly, species spatial replacement is higher across the Azorean sites than across mainland sites, and beta richness differences are higher on the mainland than in the Azores. One factor that may be responsible for these differences is the type of surrounding landscape. For example, the island of São Miguel is characterized by naturalized vegetation and semi-natural pastures with relatively high human activity, which increases habitat patchiness and might contribute to the observed higher turnover [55]. At the same time, many adjacent areas to the coastal grasslands in the Azores are heavily used for agriculture and pasture, particularly in spring, which may further contribute to the observed differences across locations. On the mainland, on the other hand, there might be greater regional stability on niche availability, allowing plant species to maintain their populations [56]. Some work on islands demonstrates that turnover decreases when naturalized vegetation, together with existing native forests, forms a layer of continuous vegetation [55].
However, when we observed the gamma richness in both regions, we observed a significant difference. That difference could be explained by the geographic distance between some collection sites, such as, for example, Sines and Setúbal, whose distances between both locations exceeded a few tens of kilometers. This distance may also have contributed to the increase in the collection area, which became bigger than in the Azores. Despite being in similar conditions (maritime influence, type of substrate, altitude), environmental conditions (type of vegetation) and/or climatic conditions (temperature, wind, or exposure to the sun) may contribute to the difference in species fixed in some locations, generating the high total beta diversity (Figure 8A).
Concerning the abundance, we found a significant difference between the two coastal grassland systems, with a significantly higher abundance in the Azores compared to the mainland. Indeed, most of the commonly identified species are more abundant in the insular than in the mainland coastal grasslands. The species Lasius grandis, Mecinus pascuorum, or Taylorilygus apicalis, for example, showed a great difference in their abundance. Other Hemiptera, like Nabis capsiformis, Kleidocerys ericae, or Sogatella nigeriensis, also show a high difference in their abundance in the Azores coastal grasslands when compared to the mainland. This discrepancy could be explained by an apparent abundance compensation in some arthropods [27]. These results are in line with our initial prediction that some abundance compensation could occur in the Azores’ coastal grasslands.
Lastly, when we analyzed the species composition of both areas, we found that many arthropod species in the Azorean coastal grassland are common to those found in the mainland, which suggests that the Portuguese mainland may have been an important source of arthropods for the colonization of the islands, what was expected for both geographic (proximity) and political reasons. Although the islands’ biodiversity depends on several well-known factors (e.g., migration and extinction rate, habitat diversity, and others [32,57,58]), anthropogenic factors, like commerce and tourism, could contribute to the species’ introduction and are thus an important determinant of biodiversity. Indeed, exotic species are continuously introduced in the Azores and found mostly in coastal areas [59,60].

5. Conclusions

This comparison of the coastal grasslands of the Azores and mainland Portugal allowed us to gain a deeper understanding of the composition and diversity profiles of the arthropod communities in both regions and the main differences between island and continental environments. As arthropod communities belong to numerous types of ecosystem services, the loss of many of these organisms could have devastating consequences. For example, as the Azores is an agricultural region, many organisms could play an important role in adjacent agricultural areas, whether through pollination, recycling of materials, or pest control (e.g., [61,62]). Even on the mainland, in some coastal areas, this could also occur, considering that some of the areas are also located in rural regions. Thus, losses in arthropod communities could greatly affect the productivity of these agricultural regions. Furthermore, some of these organisms may also be closely linked to the host plants they share. Although situations may occur in which some organisms can functionally replace others in some of the ecological services provided, they may not be able to achieve the same performance as the former [63,64]. Moreover, as these coastal communities host many exotic species, they could be the reservoirs of potential agricultural pests or invasive species.
Lastly, comparative studies are important tools for conservation and restoration programs, and thus, they should be continued and monitored over longer time scales [65]. This knowledge will allow us to develop better strategies to mitigate the anthropogenic changes suffered over the years in these areas, trying, if possible, to reverse their effects. Work carried out in the Azores and elsewhere shows that it is possible to restore part of some of these lost ecosystems, as well as some of the characteristics they had, through the repopulation of native species [35,66,67]. More work must be done to understand which factors could influence the arthropod communities in the Azores and mainland coastal grasslands.

Author Contributions

Conceptualization, H.R.M.G.C., P.A.V.B., R.H. and A.O.S.; methodology, H.R.M.G.C. and P.A.V.B.; formal analysis, H.R.M.G.C. and P.A.V.B.; investigation, H.R.M.G.C., P.A.V.B., R.H. and A.O.S.; resources, A.O.S.; data curation, H.R.M.G.C. and P.A.V.B.; writing—original draft preparation, H.R.M.G.C.; writing—review and editing, H.R.M.G.C., P.A.V.B., R.H. and A.O.S.; supervision, P.A.V.B., R.H. and A.O.S.; project administration, A.O.S.; funding acquisition, P.A.V.B. and A.O.S. All authors have read and agreed to the published version of the manuscript.

Funding

H.R.M.G.C. was funded by the Regional FRCT Ph.D. Grant M3.1.a/F/012/2021: Phenotypic Plasticity of Pest and Biological Control Agents: Contrasting Mainland and Insular Coastal Ecosystems. A.O.S. and P.A.V.B. were also funded by the projects Pluriannual Funding FCT-UIDB/00329/2020-2024—DOI 10.54499/UIDB/00329/2020 (Thematic Line 1—integrated ecological assessment of environmental change on biodiversity), Azores DRCT Pluriannual Funding (M1.1.A/FUNC.UI&D/010/2021-2024) and PAVB by the project AZORESBIOPORTAL—PORBIOTA (ACORES-01-0145-FEDER-000072).

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Data will be available soon in GBIF and in a Data Paper to be published in a Data Journal. Please contact the Correspondence Author for details in due course.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. Location, coordinates, and verbatim locality of plots in São Miguel Island, Setubal Peninsula, and Sines.
Table A1. Location, coordinates, and verbatim locality of plots in São Miguel Island, Setubal Peninsula, and Sines.
Location IDCoordinatesLocality
AZ_0137°44′48″ N   25°42′46″ WRelva
AZ_0237°51′40″ N   25°51′12″ WFerraria
AZ_0337°53′57″ N   25°49′04″ WMosteiros
AZ_0437°49′53″ N   25°39′30″ WSão Vicente
AZ_0537°49′26″ N   25°36′15″ WCalhetas
AZ_0637°50′05″ N   25°30′40″ WRibeira Grande
AZ_0737°50′31″ N   25°30′01″ WRibeirinha
AZ_0837°46′43″ N   25°37′25″ WPonta Delgada
AZ_0937°45′34″ N   25°39′31″ WPonta Delgada
AZ_1037°45′00″ N   25°37′17″ WPonta Delgada
AZ_1137°45′05″ N   25°34′58″ WLagoa
AZ_1237°43′07″ N   25°27′04″ WVila Franca do Campo
AZ_1337°47′37″ N   25°11′34″ WFajã do Araújo
ML_0138°25′01″ N   9°12′43″ WCabo Espichel
ML_0238°25′11″ N   9°12′42″ WCabo Espichel
ML_0338°25′12″ N   9°12′04″ WCabo Espichel
ML_0438°25′56″ N   9°10′25″ WAzoia
ML_0538°26′32″ N   9°08′42″ WAzoia
ML_0638°26′47″ N   9°09′17″ WAzoia
ML_0738°26′58″ N   9°12′01″ WMeco
ML_0838°27′16″ N   9°11′51″ WMeco
ML_0938°27′43″ N   9°11′34″ WMeco
ML_1037°50′59″ N   8°47′41″ WPorto Covo
ML_1137°51′42″ N   8°47′36″ WPorto Covo
ML_1237°53′27″ N   8°47′45″ WPorto Covo
ML_1337°53′57″ N   8°47′52″ WSines
ML_1437°54′30″ N   8°47′58″ WSines
ML_1537°54′57″ N   8°48′08″ WSines
ML_1638°27′08″ N   9°11′27″ WMeco
ML_1738°26′13″ N   9°11′52″ WAzoia
ML_1838°26′38″ N   9°11′50″ WAzoia
Table A2. List of morphospecies of arthropods identified for the Azores and Mainland. Legend: MS ID—morphospecies identification; E—endemic from the Azores; N—native non-endemic; I—introduced; NA—not attributed.
Table A2. List of morphospecies of arthropods identified for the Azores and Mainland. Legend: MS ID—morphospecies identification; E—endemic from the Azores; N—native non-endemic; I—introduced; NA—not attributed.
MS IDClassOrderFamilyAzoresMainlandEstablishment Mean
73ArachnidaAraneaeAraneidae4266I
102ArachnidaAraneaeAraneidae16117NA
138ArachnidaAraneaeAraneidae81I
279ArachnidaAraneaeAraneidae05NA
282ArachnidaAraneaeAraneidae013NA
284ArachnidaAraneaeAraneidae022NA
306ArachnidaAraneaeAraneidae013NA
307ArachnidaAraneaeAraneidae011NA
308ArachnidaAraneaeAraneidae06NA
316ArachnidaAraneaeAraneidae012NA
318ArachnidaAraneaeAraneidae03NA
347ArachnidaAraneaeAraneidae08NA
447ArachnidaAraneaeAraneidae01NA
477ArachnidaAraneaeAraneidae02NA
519ArachnidaAraneaeAraneidae02NA
530ArachnidaAraneaeAraneidae04NA
722ArachnidaAraneaeAraneidae10NA
723ArachnidaAraneaeAraneidae10NA
725ArachnidaAraneaeAraneidae80NA
728ArachnidaAraneaeAraneidae10NA
374ArachnidaAraneaeCheiracanthiidae06NA
446ArachnidaAraneaeDictynidae01NA
349ArachnidaAraneaeGnaphosidae05NA
375ArachnidaAraneaeGnaphosidae01NA
605ArachnidaAraneaeGnaphosidae01NA
32ArachnidaAraneaeLinyphiidae250I
33ArachnidaAraneaeLinyphiidae5215I
130ArachnidaAraneaeLinyphiidae180N
131ArachnidaAraneaeLinyphiidae114I
312ArachnidaAraneaeLinyphiidae013NA
350ArachnidaAraneaeLinyphiidae029NA
370ArachnidaAraneaeLinyphiidae041NA
371ArachnidaAraneaeLinyphiidae07NA
596ArachnidaAraneaeLinyphiidae10NA
597ArachnidaAraneaeLinyphiidae016NA
310ArachnidaAraneaeLycosidae01NA
407ArachnidaAraneaeLycosidae02NA
529ArachnidaAraneaeLycosidae08NA
317ArachnidaAraneaePhilodromidae012NA
329ArachnidaAraneaePhilodromidae023NA
445ArachnidaAraneaePhilodromidae09NA
553ArachnidaAraneaePisauridae01NA
18ArachnidaAraneaeSalticidae7313I
45ArachnidaAraneaeSalticidae3128I
85ArachnidaAraneaeSalticidae617I
104ArachnidaAraneaeSalticidae166N
313ArachnidaAraneaeSalticidae05NA
551ArachnidaAraneaeSalticidae01NA
552ArachnidaAraneaeSalticidae02NA
563ArachnidaAraneaeSalticidae30NA
724ArachnidaAraneaeSalticidae10NA
729ArachnidaAraneaeSalticidae01NA
265ArachnidaAraneaeTetragnathidae052NA
437ArachnidaAraneaeTetragnathidae520NA
726ArachnidaAraneaeTetragnathidae03NA
278ArachnidaAraneaeTheridiidae03NA
311ArachnidaAraneaeTheridiidae018NA
368ArachnidaAraneaeTheridiidae011NA
518ArachnidaAraneaeTheridiidae03NA
606ArachnidaAraneaeTheridiidae01NA
17ArachnidaAraneaeThomisidae9097I
315ArachnidaAraneaeThomisidae032NA
373ArachnidaAraneaeThomisidae013NA
440ArachnidaAraneaeThomisidae059NA
727ArachnidaAraneaeThomisidae40NA
76ArachnidaOpilionesLeiobunidae320N
548ArachnidaOpilionesPhalangiidae02NA
143DiplopodaJulidaJulidae10I
61InsectaColeopteraApionidae723I
478InsectaColeopteraCantharidae01NA
488InsectaColeopteraCantharidae06NA
354InsectaColeopteraCarabidae065NA
539InsectaColeopteraCarabidae02NA
542InsectaColeopteraCarabidae01NA
591InsectaColeopteraCarabidae02NA
421InsectaColeopteraCerambycidae049NA
429InsectaColeopteraCerambycidae05NA
23InsectaColeopteraChrysomelidae1149N
71InsectaColeopteraChrysomelidae120I
106InsectaColeopteraChrysomelidae300I
208InsectaColeopteraChrysomelidae20I
215InsectaColeopteraChrysomelidae80N
239InsectaColeopteraChrysomelidae200I
280InsectaColeopteraChrysomelidae020NA
289InsectaColeopteraChrysomelidae015NA
327InsectaColeopteraChrysomelidae032NA
366InsectaColeopteraChrysomelidae07NA
367InsectaColeopteraChrysomelidae072NA
381InsectaColeopteraChrysomelidae024NA
401InsectaColeopteraChrysomelidae016NA
417InsectaColeopteraChrysomelidae018NA
435InsectaColeopteraChrysomelidae010NA
450InsectaColeopteraChrysomelidae025NA
455InsectaColeopteraChrysomelidae051NA
459InsectaColeopteraChrysomelidae015NA
462InsectaColeopteraChrysomelidae01NA
469InsectaColeopteraChrysomelidae03NA
476InsectaColeopteraChrysomelidae05NA
480InsectaColeopteraChrysomelidae04NA
491InsectaColeopteraChrysomelidae044NA
525InsectaColeopteraChrysomelidae062NA
544InsectaColeopteraChrysomelidae01NA
545InsectaColeopteraChrysomelidae02NA
547InsectaColeopteraChrysomelidae02NA
574InsectaColeopteraChrysomelidae01NA
585InsectaColeopteraChrysomelidae01NA
587InsectaColeopteraChrysomelidae02NA
592InsectaColeopteraChrysomelidae01NA
598InsectaColeopteraChrysomelidae028NA
600InsectaColeopteraChrysomelidae013NA
602InsectaColeopteraChrysomelidae09NA
604InsectaColeopteraChrysomelidae014NA
40InsectaColeopteraCoccinellidae370I
111InsectaColeopteraCoccinellidae1292I
135InsectaColeopteraCoccinellidae385N
154InsectaColeopteraCoccinellidae220I
155InsectaColeopteraCoccinellidae20N
156InsectaColeopteraCoccinellidae21I
231InsectaColeopteraCoccinellidae024NA
233InsectaColeopteraCoccinellidae10NA
361InsectaColeopteraCoccinellidae03NA
426InsectaColeopteraCoccinellidae016NA
466InsectaColeopteraCoccinellidae05NA
573InsectaColeopteraCoccinellidae01NA
603InsectaColeopteraCoccinellidae011NA
67InsectaColeopteraCryptophagidae10I
599InsectaColeopteraCryptophagidae08NA
81InsectaColeopteraCurculionidae100I
101InsectaColeopteraCurculionidae60I
136InsectaColeopteraCurculionidae28618I
243InsectaColeopteraCurculionidae02I
274InsectaColeopteraCurculionidae04NA
277InsectaColeopteraCurculionidae05NA
299InsectaColeopteraCurculionidae09NA
321InsectaColeopteraCurculionidae015NA
332InsectaColeopteraCurculionidae05NA
357InsectaColeopteraCurculionidae06NA
358InsectaColeopteraCurculionidae06NA
359InsectaColeopteraCurculionidae05NA
360InsectaColeopteraCurculionidae012NA
427InsectaColeopteraCurculionidae02NA
448InsectaColeopteraCurculionidae02NA
473InsectaColeopteraCurculionidae03NA
486InsectaColeopteraCurculionidae01NA
508InsectaColeopteraCurculionidae011NA
579InsectaColeopteraCurculionidae01NA
580InsectaColeopteraCurculionidae01NA
581InsectaColeopteraCurculionidae01NA
594InsectaColeopteraCurculionidae01NA
336InsectaColeopteraDasytidae0202NA
495InsectaColeopteraDermestidae0107NA
496InsectaColeopteraDryophthoridae01NA
234InsectaColeopteraElateridae20E
353InsectaColeopteraElateridae04NA
414InsectaColeopteraElateridae01NA
556InsectaColeopteraElateridae06NA
576InsectaColeopteraElateridae02NA
339InsectaColeopteraMalachiidae021NA
419InsectaColeopteraMalachiidae03NA
513InsectaColeopteraMalachiidae042NA
422InsectaColeopteraMelyridae014NA
460InsectaColeopteraMelyridae025NA
528InsectaColeopteraMelyridae04NA
451InsectaColeopteraMordellidae0130NA
52InsectaColeopteraNitidulidae548I
75InsectaColeopteraNitidulidae260I
192InsectaColeopteraNitidulidae100NA
301InsectaColeopteraNitidulidae047NA
356InsectaColeopteraNitidulidae09NA
402InsectaColeopteraNitidulidae04NA
601InsectaColeopteraNitidulidae02NA
720InsectaColeopteraNitidulidae01NA
461InsectaColeopteraOedemeridae020NA
489InsectaColeopteraOedemeridae07NA
41InsectaColeopteraPhalacridae1410N
340InsectaColeopteraPhalacridae010NA
501InsectaColeopteraPhalacridae01NA
566InsectaColeopteraPhalacridae02NA
567InsectaColeopteraPhalacridae08NA
535InsectaColeopteraRutelidae04NA
540InsectaColeopteraRutelidae07NA
394InsectaColeopteraScarabaeidae017NA
22InsectaColeopteraStaphylinidae10NA
115InsectaColeopteraStaphylinidae11NA
134InsectaColeopteraStaphylinidae80I
213InsectaColeopteraStaphylinidae01NA
291InsectaColeopteraStaphylinidae01NA
351InsectaColeopteraStaphylinidae01NA
352InsectaColeopteraStaphylinidae01NA
543InsectaColeopteraStaphylinidae03NA
487InsectaColeopteraTenebrionidae01NA
507InsectaColeopteraTenebrionidae024NA
520InsectaColeopteraTenebrionidae013NA
593InsectaColeopteraTenebrionidae02NA
26InsectaDipteraAgromyzidae640NA
126InsectaDipteraAgromyzidae101NA
616InsectaDipteraAgromyzidae026NA
53InsectaDipteraCalliphoridae163NA
194InsectaDipteraCalliphoridae10NA
560InsectaDipteraCalliphoridae01NA
453InsectaDipteraCarnidae07NA
7InsectaDipteraCecidomyiidae440NA
624InsectaDipteraCecidomyiidae020NA
8InsectaDipteraChloropidae3235NA
150InsectaDipteraChloropidae40NA
15InsectaDipteraDrosophilidae1020NA
27InsectaDipteraDrosophilidae790NA
615InsectaDipteraDrosophilidae06NA
617InsectaDipteraDrosophilidae04NA
43InsectaDipteraHybotidae50NA
159InsectaDipteraHybotidae10NA
619InsectaDipteraHybotidae07NA
622InsectaDipteraHybotidae02NA
34InsectaDipteraLauxaniidae70NA
618InsectaDipteraLauxaniidae07NA
46InsectaDipteraLonchopteridae6769NA
3InsectaDipteraMuscidae12371NA
14InsectaDipteraMuscidae690NA
30InsectaDipteraMuscidae658NA
142InsectaDipteraMuscidae706NA
151InsectaDipteraMuscidae40NA
166InsectaDipteraMuscidae50NA
177InsectaDipteraMuscidae40NA
214InsectaDipteraMuscidae10NA
225InsectaDipteraMuscidae950NA
230InsectaDipteraMuscidae10NA
263InsectaDipteraMuscidae013NA
614InsectaDipteraMuscidae057NA
621InsectaDipteraMuscidae01NA
623InsectaDipteraMuscidae0112NA
625InsectaDipteraMuscidae01NA
626InsectaDipteraMuscidae07NA
721InsectaDipteraMuscidae04NA
127InsectaDipteraOpomyzidae43NA
28InsectaDipteraRhinophoridae8215NA
2InsectaDipteraScathophagidae520NA
181InsectaDipteraSciaridae230NA
627InsectaDipteraSciaridae01NA
10InsectaDipteraSepsidae3520NA
144InsectaDipteraSepsidae820NA
161InsectaDipteraSepsidae590NA
193InsectaDipteraSepsidae60NA
613InsectaDipteraSepsidae02NA
575InsectaDipteraStratiomyidae07NA
4InsectaDipteraSyrphidae157NA
5InsectaDipteraSyrphidae3412NA
56InsectaDipteraSyrphidae43NA
205InsectaDipteraSyrphidae20NA
254InsectaDipteraSyrphidae10NA
258InsectaDipteraSyrphidae10NA
288InsectaDipteraSyrphidae30NA
294InsectaDipteraSyrphidae02NA
383InsectaDipteraSyrphidae09NA
550InsectaDipteraSyrphidae02NA
628InsectaDipteraSyrphidae015NA
629InsectaDipteraSyrphidae01NA
55InsectaDipteraTephritidae770NA
210InsectaDipteraTephritidae2201NA
335InsectaDipteraTephritidae04NA
386InsectaDipteraTephritidae02NA
514InsectaDipteraTephritidae02NA
620InsectaDipteraTephritidae031NA
29InsectaDipteraTipulidae20NA
204InsectaDipteraTipulidae10NA
490InsectaDipteraUlidiidae01NA
433InsectaHemipteraAlydidae06NA
125InsectaHemipteraAnthocoridae443I
140InsectaHemipteraAnthocoridae160NA
203InsectaHemipteraAnthocoridae20NA
293InsectaHemipteraAnthocoridae05NA
314InsectaHemipteraAnthocoridae10NA
380InsectaHemipteraAnthocoridae04NA
410InsectaHemipteraAnthocoridae01NA
523InsectaHemipteraAnthocoridae01NA
6InsectaHemipteraAphididae25748N
16InsectaHemipteraAphididae422NA
24InsectaHemipteraAphididae582NA
88InsectaHemipteraAphididae12745N
89InsectaHemipteraAphididae310N
108InsectaHemipteraAphididae130N
112InsectaHemipteraAphididae10N
124InsectaHemipteraAphididae1910N
376InsectaHemipteraAphididae130NA
474InsectaHemipteraAphididae01NA
50InsectaHemipteraAphrophoridae285241I
319InsectaHemipteraAphrophoridae02NA
387InsectaHemipteraAphrophoridae03NA
467InsectaHemipteraAphrophoridae01NA
465InsectaHemipteraBlissidae043NA
31InsectaHemipteraCicadellidae1850NA
113InsectaHemipteraCicadellidae570I
133InsectaHemipteraCicadellidae30114NA
189InsectaHemipteraCicadellidae350N
236InsectaHemipteraCicadellidae80NA
244InsectaHemipteraCicadellidae10I
245InsectaHemipteraCicadellidae170N
253InsectaHemipteraCicadellidae10N
257InsectaHemipteraCicadellidae30NA
342InsectaHemipteraCicadellidae10N
369InsectaHemipteraCicadellidae01NA
378InsectaHemipteraCicadellidae025NA
393InsectaHemipteraCicadellidae04NA
470InsectaHemipteraCicadellidae03NA
483InsectaHemipteraCicadellidae01NA
522InsectaHemipteraCicadellidae03NA
48InsectaHemipteraCixiidae013NA
272InsectaHemipteraCixiidae014NA
409InsectaHemipteraCixiidae08NA
423InsectaHemipteraCixiidae015NA
418InsectaHemipteraCoreidae013NA
479InsectaHemipteraCoreidae04NA
412InsectaHemipteraCydnidae02NA
12InsectaHemipteraDelphacidae2430N
49InsectaHemipteraDelphacidae25245N
77InsectaHemipteraDelphacidae443N
271InsectaHemipteraDelphacidae05NA
331InsectaHemipteraDelphacidae05NA
428InsectaHemipteraDelphacidae03NA
557InsectaHemipteraDelphacidae020NA
153InsectaHemipteraFlatidae30N
328InsectaHemipteraFlatidae01NA
114InsectaHemipteraLiviidae10E
20InsectaHemipteraLygaeidae496N
51InsectaHemipteraLygaeidae400NA
141InsectaHemipteraLygaeidae1415N
338InsectaHemipteraLygaeidae019NA
341InsectaHemipteraLygaeidae012NA
355InsectaHemipteraLygaeidae04NA
87InsectaHemipteraMiridae43326N
195InsectaHemipteraMiridae30N
211InsectaHemipteraMiridae740NA
413InsectaHemipteraMiridae01NA
438InsectaHemipteraMiridae10NA
569InsectaHemipteraMiridae08NA
571InsectaHemipteraMiridae01NA
58InsectaHemipteraNabidae270N
72InsectaHemipteraNabidae1803N
377InsectaHemipteraNabidae0100NA
439InsectaHemipteraOxycarenidae10I
117InsectaHemipteraPentatomidae5313I
408InsectaHemipteraPentatomidae01NA
430InsectaHemipteraPentatomidae08NA
463InsectaHemipteraPentatomidae09NA
500InsectaHemipteraPentatomidae012NA
68InsectaHemipteraPsyllidae1521I
546InsectaHemipteraPsyllidae02NA
379InsectaHemipteraReduviidae02NA
396InsectaHemipteraReduviidae06NA
406InsectaHemipteraReduviidae01NA
524InsectaHemipteraReduviidae02NA
531InsectaHemipteraReduviidae01NA
554InsectaHemipteraReduviidae01NA
443InsectaHemipteraRhopalidae01NA
504InsectaHemipteraRhopalidae010NA
532InsectaHemipteraRhopalidae01NA
198InsectaHemipteraRhyparochromidae20N
218InsectaHemipteraRhyparochromidae19N
588InsectaHemipteraRhyparochromidae01NA
19InsectaHemipteraSaldidae41N
589InsectaHemipteraSaldidae01NA
475InsectaHemipteraScutelleridae022NA
568InsectaHemipteraTettigometridae01NA
411InsectaHemipteraTingidae04NA
492InsectaHemipteraTingidae010NA
9InsectaHymenopteraAphelinidae960NA
93InsectaHymenopteraAphelinidae100NA
128InsectaHymenopteraAphelinidae92NA
561InsectaHymenopteraAphelinidae013NA
661InsectaHymenopteraAphelinidae0587NA
35InsectaHymenopteraApidae196I
36InsectaHymenopteraApidae163NA
345InsectaHymenopteraApidae011NA
390InsectaHymenopteraApidae07NA
399InsectaHymenopteraApidae03NA
549InsectaHymenopteraApidae02NA
559InsectaHymenopteraApidae01NA
572InsectaHymenopteraApidae03NA
578InsectaHymenopteraApidae01NA
13InsectaHymenopteraBraconidae160NA
25InsectaHymenopteraBraconidae550NA
109InsectaHymenopteraBraconidae30NA
207InsectaHymenopteraBraconidae30NA
251InsectaHymenopteraBraconidae02NA
276InsectaHymenopteraBraconidae06NA
645InsectaHymenopteraBraconidae012NA
653InsectaHymenopteraBraconidae01NA
660InsectaHymenopteraBraconidae10NA
662InsectaHymenopteraBraconidae06NA
663InsectaHymenopteraBraconidae022NA
485InsectaHymenopteraChalcididae03NA
389InsectaHymenopteraColletidae08NA
502InsectaHymenopteraColletidae30NA
674InsectaHymenopteraColletidae03NA
47InsectaHymenopteraEncyrtidae50NA
91InsectaHymenopteraEncyrtidae132NA
121InsectaHymenopteraEncyrtidae30NA
123InsectaHymenopteraEncyrtidae30NA
646InsectaHymenopteraEncyrtidae04NA
665InsectaHymenopteraEncyrtidae04NA
100InsectaHymenopteraEulophidae64NA
122InsectaHymenopteraEulophidae6986NA
536InsectaHymenopteraEumenidae03NA
42InsectaHymenopteraFigitidae70NA
97InsectaHymenopteraFigitidae20NA
157InsectaHymenopteraFigitidae70NA
343InsectaHymenopteraFigitidae02NA
595InsectaHymenopteraFigitidae02NA
643InsectaHymenopteraFigitidae01NA
644InsectaHymenopteraFigitidae01NA
648InsectaHymenopteraFigitidae03NA
21InsectaHymenopteraFormicidae5936N
44InsectaHymenopteraFormicidae55N
137InsectaHymenopteraFormicidae204N
139InsectaHymenopteraFormicidae300N
219InsectaHymenopteraFormicidae120I
220InsectaHymenopteraFormicidae20N
241InsectaHymenopteraFormicidae90N
262InsectaHymenopteraFormicidae0177NA
268InsectaHymenopteraFormicidae050NA
292InsectaHymenopteraFormicidae018NA
320InsectaHymenopteraFormicidae013NA
322InsectaHymenopteraFormicidae020NA
425InsectaHymenopteraFormicidae03NA
436InsectaHymenopteraFormicidae01NA
449InsectaHymenopteraFormicidae09NA
464InsectaHymenopteraFormicidae08NA
482InsectaHymenopteraFormicidae05NA
654InsectaHymenopteraFormicidae02NA
657InsectaHymenopteraFormicidae05NA
669InsectaHymenopteraFormicidae06NA
672InsectaHymenopteraFormicidae04NA
37InsectaHymenopteraHalictidae1130NA
145InsectaHymenopteraHalictidae300NA
190InsectaHymenopteraHalictidae50NA
362InsectaHymenopteraHalictidae011NA
388InsectaHymenopteraHalictidae01NA
441InsectaHymenopteraHalictidae09NA
456InsectaHymenopteraHalictidae06NA
512InsectaHymenopteraHalictidae02NA
652InsectaHymenopteraHalictidae02NA
664InsectaHymenopteraHalictidae019NA
670InsectaHymenopteraHalictidae015NA
38InsectaHymenopteraIchneumonidae324NA
148InsectaHymenopteraIchneumonidae200NA
160InsectaHymenopteraIchneumonidae20NA
175InsectaHymenopteraIchneumonidae80NA
209InsectaHymenopteraIchneumonidae11NA
235InsectaHymenopteraIchneumonidae20NA
237InsectaHymenopteraIchneumonidae70NA
249InsectaHymenopteraIchneumonidae10NA
296InsectaHymenopteraIchneumonidae05NA
326InsectaHymenopteraIchneumonidae03NA
337InsectaHymenopteraIchneumonidae02NA
363InsectaHymenopteraIchneumonidae03NA
420InsectaHymenopteraIchneumonidae04NA
472InsectaHymenopteraIchneumonidae03NA
484InsectaHymenopteraIchneumonidae01NA
647InsectaHymenopteraIchneumonidae03NA
649InsectaHymenopteraIchneumonidae01NA
650InsectaHymenopteraIchneumonidae03NA
655InsectaHymenopteraIchneumonidae09NA
656InsectaHymenopteraIchneumonidae01NA
658InsectaHymenopteraIchneumonidae02NA
442InsectaHymenopteraMegachilidae10NA
673InsectaHymenopteraMegachilidae02NA
92InsectaHymenopteraMymaridae62NA
252InsectaHymenopteraMymaridae60NA
659InsectaHymenopteraMymaridae09NA
516InsectaHymenopteraPelecinidae02NA
65InsectaHymenopteraPteromalidae130NA
96InsectaHymenopteraPteromalidae240NA
212InsectaHymenopteraPteromalidae87NA
666InsectaHymenopteraPteromalidae07NA
667InsectaHymenopteraPteromalidae013NA
199InsectaHymenopteraSphecidae40NA
671InsectaHymenopteraSphecidae04NA
11InsectaHymenopteraTenthredinidae120NA
39InsectaHymenopteraTenthredinidae40NA
165InsectaHymenopteraTenthredinidae05NA
176InsectaHymenopteraTenthredinidae90NA
642InsectaHymenopteraTenthredinidae01NA
651InsectaHymenopteraTenthredinidae032NA
98InsectaHymenopteraTrichogrammatidae100NA
668InsectaHymenopteraTrichogrammatidae01NA
191InsectaHymenopteraVespidae10NA
333InsectaHymenopteraVespidae011NA
404InsectaHymenopteraVespidae01NA
458InsectaHymenopteraVespidae10NA
184InsectaLepidopteraChoreutidae200N
692InsectaLepidopteraChoreutidae08NA
129InsectaLepidopteraCrambidae190NA
687InsectaLepidopteraCrambidae09NA
74InsectaLepidopteraGeometridae80NA
107InsectaLepidopteraGeometridae20E
186InsectaLepidopteraGeometridae30NA
686InsectaLepidopteraGeometridae04NA
689InsectaLepidopteraGeometridae01NA
232InsectaLepidopteraLycaenidae30NA
690InsectaLepidopteraLycaenidae03NA
1InsectaLepidopteraNoctuidae240NA
183InsectaLepidopteraNoctuidae110NA
185InsectaLepidopteraNoctuidae20NA
509InsectaLepidopteraNoctuidae07NA
685InsectaLepidopteraNoctuidae04NA
688InsectaLepidopteraNoctuidae01NA
171InsectaLepidopteraPieridae10E
415InsectaLepidopteraPieridae41N
691InsectaLepidopteraPieridae04NA
382InsectaLepidopteraPyralidae027NA
217InsectaLepidopteraTortricidae90I
693InsectaLepidopteraTortricidae08NA
444InsectaMantodeaEmpusidae01NA
240InsectaNeuropteraHemerobiidae20NA
255InsectaOrthopteraAcrididae31N
267InsectaOrthopteraAcrididae042NA
270InsectaOrthopteraAcrididae016NA
493InsectaOrthopteraAcrididae05NA
503InsectaOrthopteraAcrididae099NA
511InsectaOrthopteraAcrididae010NA
468InsectaOrthopteraProphalangopsidae01NA
63InsectaOrthopteraTetrigidae70NA
64InsectaOrthopteraTetrigidae40NA
682InsectaOrthopteraTetrigidae010NA
202InsectaOrthopteraTettigoniidae90NA
229InsectaOrthopteraTettigoniidae440NA
309InsectaOrthopteraTettigoniidae06NA
416InsectaOrthopteraTettigoniidae30NA
683InsectaOrthopteraTettigoniidae07NA
82InsectaOrthopteraTrigonidiidae693I
196InsectaPhasmidaPhasmatidae10I
94InsectaPsocodeaCaeciliusidae483N
120InsectaPsocodeaEctopsocidae210I
206InsectaPsocodeaTrichopsocidae70N
200InsectaThysanopteraThripidae01N
Total 78615654

References

  1. Graham, N.R.; Gruner, D.S.; Lim, J.Y.; Gillespie, R.G. Island Ecology and Evolution: Challenges in the Anthropocene. Environ. Conserv. 2017, 44, 323–335. [Google Scholar] [CrossRef]
  2. Fernández-Palacios, J.M.; Kreft, H.; Irl, S.D.H.; Norder, S.; Ah-Peng, C.; Borges, P.A.V.; Burns, K.C.; De Nascimento, L.; Meyer, J.-Y.; Montes, E.; et al. Scientists’ Warning—The Outstanding Biodiversity of Islands Is in Peril. Glob. Ecol. Conserv. 2021, 31, e01847. [Google Scholar] [CrossRef] [PubMed]
  3. Tylianakis, J.M.; Didham, R.K.; Bascompte, J.; Wardle, D.A. Global Change and Species Interactions in Terrestrial Ecosystems. Ecol. Lett. 2008, 11, 1351–1363. [Google Scholar] [CrossRef] [PubMed]
  4. Heleno, R.H.; Ripple, W.J.; Traveset, A. Scientists’ Warning on Endangered Food Webs. Web Ecol. 2020, 20, 1–10. [Google Scholar] [CrossRef]
  5. Harter, D.E.V.; Irl, S.D.H.; Seo, B.; Steinbauer, M.J.; Gillespie, R.; Triantis, K.A.; Fernández-Palacios, J.-M.; Beierkuhnlein, C. Impacts of Global Climate Change on the Floras of Oceanic Islands—Projections, Implications and Current Knowledge. Perspect. Plant Ecol. Evol. Syst. 2015, 17, 160–183. [Google Scholar] [CrossRef]
  6. Harvey, J.A.; Heinen, R.; Armbrecht, I.; Basset, Y.; Baxter-Gilbert, J.H.; Bezemer, T.M.; Böhm, M.; Bommarco, R.; Borges, P.A.V.; Cardoso, P.; et al. International Scientists Formulate a Roadmap for Insect Conservation and Recovery. Nat. Ecol. Evol. 2020, 4, 174–176. [Google Scholar] [CrossRef]
  7. Kueffer, C.; Kinney, K. What Is the Importance of Islands to Environmental Conservation? Environ. Conserv. 2017, 44, 311–322. [Google Scholar] [CrossRef]
  8. Murphy, S.M.; Richards, L.A.; Wimp, G.M. Editorial: Arthropod Interactions and Responses to Disturbance in a Changing World. Front. Ecol. Evol. 2020, 8, 93. [Google Scholar] [CrossRef]
  9. Marcelino, J.A.P.; Silva, L.; Garcia, P.V.; Weber, E.; Soares, A.O. Using Species Spectra to Evaluate Plant Community Conservation Value along a Gradient of Anthropogenic Disturbance. Environ. Monit. Assess. 2013, 185, 6221–6233. [Google Scholar] [CrossRef]
  10. Marcelino, J.A.P.; Giordano, R.; Borges, P.A.V.; Garcia, P.V.; Soares, A.O. Distribution and Genetic Variability of Staphylinidae across a Gradient of Anthropogenically Influenced Insular Landscapes. Bull. Insectology 2016, 69, 117–126. [Google Scholar]
  11. Borges, P.A.V.; Santos, A.M.C.; Elias, R.B.; Gabriel, R. The Azores Archipelago: Biodiversity Erosion and Conservation Biogeography. In Encyclopedia of the World’s Biomes; Elsevier: Amsterdam, The Netherlands, 2019; pp. 101–113. ISBN 978-0-12-816097-8. [Google Scholar]
  12. Hembry, D.H.; Bennett, G.; Bess, E.; Cooper, I.; Jordan, S.; Liebherr, J.; Magnacca, K.N.; Percy, D.M.; Polhemus, D.A.; Rubinoff, D.; et al. Insect Radiations on Islands: Biogeographic Pattern and Evolutionary Process in Hawaiian Insects. Q. Rev. Biol. 2021, 96, 247–296. [Google Scholar] [CrossRef]
  13. Marcelino, J.; Borges, P.; Borges, I.; Pereira, E.; Santos, V.; Soares, A. Standardised Arthropod (Arthropoda) Inventory across Natural and Anthropogenic Impacted Habitats in the Azores Archipelago. BDJ 2021, 9, e62157. [Google Scholar] [CrossRef] [PubMed]
  14. Jones, M.B.; Donnelly, A. Carbon Sequestration in Temperate Grassland Ecosystems and the Influence of Management, Climate and Elevated CO2. New Phytol. 2004, 164, 423–439. [Google Scholar] [CrossRef]
  15. Blair, J.; Nippert, J.; Briggs, J. Grassland Ecology. In Ecology and the Environment; Monson, R.K., Ed.; Springer New York: New York, NY, USA, 2014; pp. 389–423. ISBN 978-1-4614-7500-2. [Google Scholar]
  16. Elizalde, L.; Arbetman, M.; Arnan, X.; Eggleton, P.; Leal, I.R.; Lescano, M.N.; Saez, A.; Werenkraut, V.; Pirk, G.I. The Ecosystem Services Provided by Social Insects: Traits, Management Tools and Knowledge Gaps. Biol. Rev. 2020, 95, 1418–1441. [Google Scholar] [CrossRef]
  17. Feher, L.C.; Allain, L.K.; Osland, M.J.; Pigott, E.; Reid, C.; Latiolais, N. A Comparison of Plant Communities in Restored, Old Field, and Remnant Coastal Prairies. Restor. Ecol. 2021, 29, e13325. [Google Scholar] [CrossRef]
  18. Holstein, G. Prairies and Grasslands: What’s in a Name? Fremontia 2011, 39, 2–5. [Google Scholar]
  19. Mooney, H.A.; Zavaleta, E. Ecosystems of California; University of California Press: Berkeley, CA, USA, 2016. [Google Scholar]
  20. Lark, T.J. Protecting Our Prairies: Research and Policy Actions for Conserving America’s Grasslands. Land Use Policy 2020, 97, 104727. [Google Scholar] [CrossRef]
  21. Diamond, D.D.; Smeins, F.E. Gradient Analysis of Remnant True and Upper Coastal Prairie Grasslands of North America. Can. J. Bot. 1988, 66, 2152–2161. [Google Scholar] [CrossRef]
  22. Ameixa, O.M.C.C.; Soares, A.O.; Soares, A.M.V.M.; Lillebø, A.I. Ecosystem Services Provided by the Little Things That Run the World. In Selected Studies in Biodiversity; Şen, B., Grillo, O., Eds.; InTech: Vienna, Austria, 2018; ISBN 978-1-78923-232-5. [Google Scholar]
  23. McGrady-Steed, J.; Morin, P.J. Biodiversity, Density Compensation, and the Dynamics of Populations and Functional Groups. Ecology 2000, 81, 361–373. [Google Scholar] [CrossRef]
  24. MacArthur, R.H.; Diamond, J.M.; Karr, J.R. Density Compensation in Island Faunas. Ecology 1972, 53, 330–342. [Google Scholar] [CrossRef]
  25. Wright, S.J. Density Compensation in Island Avifaunas. Oecologia 1980, 45, 385–389. [Google Scholar] [CrossRef] [PubMed]
  26. Novosolov, M.; Raia, P.; Meiri, S. The Island Syndrome in Lizards. Glob. Ecol. Biogeogr. 2013, 22, 184–191. [Google Scholar] [CrossRef]
  27. Stadler, S.R.; Brock, K.M.; Bednekoff, P.A.; Foufopoulos, J. More and Bigger Lizards Reside on Islands with More Resources. J. Zool. 2022, 319, 163–174. [Google Scholar] [CrossRef]
  28. Jonsson, M.; Yeates, G.W.; Wardle, D.A. Patterns of Invertebrate Density and Taxonomic Richness across Gradients of Area, Isolation, and Vegetation Diversity in a Lake-island System. Ecography 2009, 32, 963–972. [Google Scholar] [CrossRef]
  29. Zakharova, L.; Meyer, K.M.; Seifan, M. Trait-Based Modelling in Ecology: A Review of Two Decades of Research. Ecol. Model. 2019, 407, 108703. [Google Scholar] [CrossRef]
  30. Soares, A.O.; Honěk, A.; Martinkova, Z.; Skuhrovec, J.; Cardoso, P.; Borges, I. Harmonia Axyridis Failed to Establish in the Azores: The Role of Species Richness, Intraguild Interactions and Resource Availability. BioControl 2017, 62, 423–434. [Google Scholar] [CrossRef]
  31. Soares, A.; Borges, I.; Calado, H.; Borges, P. An Updated Checklist to the Biodiversity Data of Ladybeetles (Coleoptera: Coccinellidae) of the Azores Archipelago (Portugal). BDJ 2021, 9, e77464. [Google Scholar] [CrossRef]
  32. Warren, B.H.; Simberloff, D.; Ricklefs, R.E.; Aguilée, R.; Condamine, F.L.; Gravel, D.; Morlon, H.; Mouquet, N.; Rosindell, J.; Casquet, J.; et al. Islands as Model Systems in Ecology and Evolution: Prospects Fifty Years after MacArthur-Wilson. Ecol. Lett. 2015, 18, 200–217. [Google Scholar] [CrossRef]
  33. Whittaker, R.J.; Fernández-Palacios, J.M.; Matthews, T.J.; Borregaard, M.K.; Triantis, K.A. Island Biogeography: Taking the Long View of Nature’s Laboratories. Science 2017, 357, eaam8326. [Google Scholar] [CrossRef] [PubMed]
  34. Whittaker, R.J.; Fernández-Palacios, J.M.; Matthews, T.J. Island Biogeography: Geo-Environmental Dynamics, Ecology, Evolution, Human Impact, and Conservation; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
  35. Heleno, R.; Lacerda, I.; Ramos, J.A.; Memmott, J. Evaluation of Restoration Effectiveness: Community Response to the Removal of Alien Plants. Ecol. Appl. 2010, 20, 1191–1203. [Google Scholar] [CrossRef]
  36. Elias, R.B.; Gil, A.; Silva, L.; Fernández-Palacios, J.M.; Azevedo, E.B.; Reis, F. Natural Zonal Vegetation of the Azores Islands: Characterization and Potential Distribution. Phytocoenologia 2016, 46, 107–123. [Google Scholar] [CrossRef]
  37. Pavão, D.C.; Jevšenak, J.; Engblom, J.; Borges Silva, L.; Elias, R.B.; Silva, L. Tree Growth-Climate Relationship in the Azorean Holly in a Temperate Humid Forest with Low Thermal Amplitude. Dendrochronologia 2023, 77, 126050. [Google Scholar] [CrossRef]
  38. De Lima, M.I.P.; Santo, F.E.; Ramos, A.M.; Trigo, R.M. Trends and Correlations in Annual Extreme Precipitation Indices for Mainland Portugal, 1941–2007. Theor. Appl. Clim. 2015, 119, 55–75. [Google Scholar] [CrossRef]
  39. Carvalho, A.; Schmidt, L.; Santos, F.D.; Delicado, A. Climate Change Research and Policy in Portugal. WIREs Clim. Chang. 2014, 5, 199–217. [Google Scholar] [CrossRef]
  40. Santos, M.; Fonseca, A.; Fragoso, M.; Santos, J.A. Recent and Future Changes of Precipitation Extremes in Mainland Portugal. Theor. Appl. Clim. 2019, 137, 1305–1319. [Google Scholar] [CrossRef]
  41. Borges, P.; Lamelas-Lopez, L.; Andrade, R.; Lhoumeau, S.; Vieira, V.; Soares, A.; Borges, I.; Boieiro, M.; Cardoso, P.; Crespo, L.C.; et al. An Updated Checklist of Azorean Arthropods (Arthropoda). BDJ 2022, 10, e97682. [Google Scholar] [CrossRef]
  42. Colwell, R.K.; Elsensohn, J.E. EstimateS Turns 20: Statistical Estimation of Species Richness and Shared Species from Samples, with Non-parametric Extrapolation. Ecography 2014, 37, 609–613. [Google Scholar] [CrossRef]
  43. Chao, A.; Chiu, C.-H.; Jost, L. Unifying Species Diversity, Phylogenetic Diversity, Functional Diversity, and Related Similarity and Differentiation Measures Through Hill Numbers. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 297–324. [Google Scholar] [CrossRef]
  44. Carvalho, J.C.; Cardoso, P.; Gomes, P. Determining the Relative Roles of Species Replacement and Species Richness Differences in Generating Beta-diversity Patterns. Glob. Ecol. Biogeogr. 2012, 21, 760–771. [Google Scholar] [CrossRef]
  45. IBM Corporation. IBM SPSS Statistics for Windows; Version 29.0.2.0; IBM Corporation: Armonk, NY, USA, 2023. [Google Scholar]
  46. Meredith, C.S.; Trebitz, A.S.; Hoffman, J.C. Resolving Taxonomic Ambiguities: Effects on Rarity, Projected Richness, and Indices in Macroinvertebrate Datasets. Ecol. Indic. 2019, 98, 137–148. [Google Scholar] [CrossRef]
  47. Magurran, A. Measuring Biological Diversity; Wiley: New York, NY, USA, 2004. [Google Scholar]
  48. Ricotta, C.; Feoli, E. Hill Numbers Everywhere. Does It Make Ecological Sense? Ecol. Indic. 2024, 161, 111971. [Google Scholar] [CrossRef]
  49. McKinney, M.L.; Lockwood, J.L. Biotic Homogenization: A Few Winners Replacing Many Losers in the next Mass Extinction. Trends Ecol. Evol. 1999, 14, 450–453. [Google Scholar] [CrossRef] [PubMed]
  50. Olden, J.D. Biotic Homogenization: A New Research Agenda for Conservation Biogeography. J. Biogeogr. 2006, 33, 2027–2039. [Google Scholar] [CrossRef]
  51. Baeten, L.; Vangansbeke, P.; Hermy, M.; Peterken, G.; Vanhuyse, K.; Verheyen, K. Distinguishing between Turnover and Nestedness in the Quantification of Biotic Homogenization. Biodivers. Conserv. 2012, 21, 1399–1409. [Google Scholar] [CrossRef]
  52. Cardoso, P.; Aranda, S.C.; Lobo, J.M.; Dinis, F.; Gaspar, C.; Borges, P.A.V. A Spatial Scale Assessment of Habitat Effects on Arthropod Communities of an Oceanic Island. Acta Oecologica 2009, 35, 590–597. [Google Scholar] [CrossRef]
  53. Whittaker, R.H. A Study of Summer Foliage Insect Communities in the Great Smoky Mountains. Ecol. Monogr. 1952, 22, 1–44. [Google Scholar] [CrossRef]
  54. Legendre, P. Interpreting the Replacement and Richness Difference Components of Beta Diversity. Glob. Ecol. Biogeogr. 2014, 23, 1324–1334. [Google Scholar] [CrossRef]
  55. Leo, M.; Rigal, F.; Ronquillo, C.; Borges, P.A.V.; Brito De Azevedo, E.; Santos, A.M.C. The Drivers of Plant Turnover Change across Spatial Scales in the Azores. Ecography 2024, 2024, e06697. [Google Scholar] [CrossRef]
  56. Soininen, J. Species Turnover along Abiotic and Biotic Gradients: Patterns in Space Equal Patterns in Time? BioScience 2010, 60, 433–439. [Google Scholar] [CrossRef]
  57. Portillo, J.T.D.M.; Ouchi-Melo, L.S.; Crivellari, L.B.; De Oliveira, T.A.L.; Sawaya, R.J.; Duarte, L.D.S. Area and Distance from Mainland Affect in Different Ways Richness and Phylogenetic Diversity of Snakes in Atlantic Forest Coastal Islands. Ecol. Evol. 2019, 9, 3909–3917. [Google Scholar] [CrossRef]
  58. Walter, H.S. The Mismeasure of Islands: Implications for Biogeographical Theory and the Conservation of Nature. J. Biogeogr. 2004, 31, 177–197. [Google Scholar] [CrossRef]
  59. Borges, P.; Reut, M.; da Ponte, N.B.; Soares, A.O.; Marcelino, J.; Rego, C.; Cardoso, P. New Records of Exotic Spiders and Insects to the Azores, and New Data on Recently Introduced Species. Arquipélago Life Mar. Sci. 2013, 30, 57–70. [Google Scholar]
  60. Borges, P.; Lamelas-Lopez, L.; Stüben, P.; Ros-Prieto, A.; Gabriel, R.; Boieiro, M.; Tsafack, N.; Ferreira, M.T. SLAM Project—Long Term Ecological Study of the Impacts of Climate Change in the Natural Forest of Azores: II—A Survey of Exotic Arthropods in Disturbed Forest Habitats. BDJ 2022, 10, e81410. [Google Scholar] [CrossRef] [PubMed]
  61. Cock, M.J.W.; Biesmeijer, J.C.; Cannon, R.J.C.; Gerard, P.J.; Gillespie, D.; Jiménez, J.J.; Lavelle, P.M.; Raina, S.K. The Positive Contribution of Invertebrates to Sustainable Agriculture and Food Security. CABI Rev. 2012, 7, 43. [Google Scholar] [CrossRef]
  62. Sodhi, N.S.; Ehrlich, P.R. Conservation Biology for All; Oxford University Press: Oxford, UK, 2010; ISBN 978-0-19-955423-2. [Google Scholar]
  63. Aslan, C.E.; Aslan, A.; Croll, D.; Tershy, B.; Zavaleta, E. Building Taxon Substitution Guidelines on a Biological Control Foundation. Restor. Ecol. 2014, 22, 437–441. [Google Scholar] [CrossRef]
  64. Heleno, R.H.; Mendes, F.; Coelho, A.P.; Ramos, J.A.; Palmeirim, J.M.; Rainho, A.; De Lima, R.F. The Upsizing of the São Tomé Seed Dispersal Network by Introduced Animals. Oikos 2022, 2022, oik.08279. [Google Scholar] [CrossRef]
  65. Patiño, J.; Whittaker, R.J.; Borges, P.A.V.; Fernández-Palacios, J.M.; Ah-Peng, C.; Araújo, M.B.; Ávila, S.P.; Cardoso, P.; Cornuault, J.; De Boer, E.J.; et al. A Roadmap for Island Biology: 50 Fundamental Questions after 50 Years of the Theory of Island Biogeography. J. Biogeogr. 2017, 44, 963–983. [Google Scholar] [CrossRef]
  66. Luong, J.C.; Turner, P.L.; Phillipson, C.N.; Seltmann, K.C. Local Grassland Restoration Affects Insect Communities. Ecol. Entomol. 2019, 44, 471–479. [Google Scholar] [CrossRef]
  67. Sexton, A.N.; Emery, S.M. Grassland Restorations Improve Pollinator Communities: A Meta-Analysis. J. Insect Conserv. 2020, 24, 719–726. [Google Scholar] [CrossRef]
Figure 1. Maps of sampling areas with the plots indicated: (a) Azores Archipelago and Portugal mainland; (b) São Miguel’s Island; (c) Setúbal district; (i) Sesimbra; (ii) Sines.
Figure 1. Maps of sampling areas with the plots indicated: (a) Azores Archipelago and Portugal mainland; (b) São Miguel’s Island; (c) Setúbal district; (i) Sesimbra; (ii) Sines.
Diversity 16 00624 g001
Figure 2. Abundance of common species between the Azores and Mainland coastal grasslands.
Figure 2. Abundance of common species between the Azores and Mainland coastal grasslands.
Diversity 16 00624 g002
Figure 3. Species accumulation curves for species and morphospecies recorded on the Azores and mainland coastal grasslands based on 100 randomized curves.
Figure 3. Species accumulation curves for species and morphospecies recorded on the Azores and mainland coastal grasslands based on 100 randomized curves.
Diversity 16 00624 g003
Figure 4. Abundance means for Azores and Mainland. Different letters indicate significant differences (Kruskal–Wallis-test; p < 0.05).
Figure 4. Abundance means for Azores and Mainland. Different letters indicate significant differences (Kruskal–Wallis-test; p < 0.05).
Diversity 16 00624 g004
Figure 5. Differences between mean Specific Richness (H0), mean Shannon–Wiener exponent (H1), mean Simpson’s inverse (H2), and mean Berger–Parker’s inverse (H3) in the Azores and mainland coastal grasslands communities.
Figure 5. Differences between mean Specific Richness (H0), mean Shannon–Wiener exponent (H1), mean Simpson’s inverse (H2), and mean Berger–Parker’s inverse (H3) in the Azores and mainland coastal grasslands communities.
Diversity 16 00624 g005
Figure 6. Evenness means for Azores and mainland coastal grasslands. Different letters indicate significant differences (Kruskal–Wallis test; p < 0.05).
Figure 6. Evenness means for Azores and mainland coastal grasslands. Different letters indicate significant differences (Kruskal–Wallis test; p < 0.05).
Diversity 16 00624 g006
Figure 7. Fisher’s Alpha means for Azores and mainland coastal grasslands. Different letters indicate significant differences (Kruskal–Wallis test; p < 0.05).
Figure 7. Fisher’s Alpha means for Azores and mainland coastal grasslands. Different letters indicate significant differences (Kruskal–Wallis test; p < 0.05).
Diversity 16 00624 g007
Figure 8. Comparison between Azores and mainland coastal grasslands of the between sites mean Jaccard dissimilarity index (A), mean Beta Replacement (B), and mean Beta Richness (C) indexes between sites. Different letters indicate significant differences (GLM test; p < 0.05).
Figure 8. Comparison between Azores and mainland coastal grasslands of the between sites mean Jaccard dissimilarity index (A), mean Beta Replacement (B), and mean Beta Richness (C) indexes between sites. Different letters indicate significant differences (GLM test; p < 0.05).
Diversity 16 00624 g008
Table 1. Number of morphospecies and species collected in the Azores and mainland coastal grasslands by Class and Order.
Table 1. Number of morphospecies and species collected in the Azores and mainland coastal grasslands by Class and Order.
ClassOrderAzoresMainland
Arachnida 2255
Araneae2154
Opiliones11
Diplopoda 1
Julida1
Insecta 187336
Coleoptera26109
Diptera4242
Hemiptera4473
Hymenoptera5186
Lepidoptera1212
Mantodea 1
Neuroptera1
Orthoptera711
Phasmida1
Psocodea31
Thysanoptera 1
Total 210391
Table 2. Common species in the Azores and mainland grasslands.
Table 2. Common species in the Azores and mainland grasslands.
ClassOrderFamilySpeciesTotal Abundance AzoresTotal Abundance
Mainland
ArachnidaAraneaeAraneidaeMangora acalypha (Walckenaer, 1802)16117
Neoscona crucifera (Lucas, 1838)81
Zygiella x-notata (Clerck, 1757)4266
LinyphiidaeOedothorax fuscus (Blackwall, 1834)114
Prinerigone vagans (Audouin, 1826)5215
SalticidaeChalcoscirtus infimus (Simon, 1868)7313
Macaroeris diligens (Blackwall, 1867)166
Salticus mutabilis Lucas, 18463128
Synageles venator (Lucas, 1836)617
ThomisidaeXysticus nubilus Simon, 18759097
InsectaColeopteraApionidaeAspidapion radiolus (Marsham, 1802)723
ChrysomelidaePsylliodes marcida (Illiger, 1807)1149
CoccinellidaeRhyzobius litura (Fabricius, 1787)385
Scymnus interruptus (Goeze, 1777)1292
Scymnus suturalis Thunberg, 179521
CurculionidaeMecinus pascuorum (Gyllenhal, 1813)28618
NitidulidaeBrassicogethes aeneus (Fabricius, 1775)548
PhalacridaeStilbus testaceus (Panzer, 1797)1410
StaphylinidaeTachyporus chrysomelinus (Linnaeus, 1758)11
DipteraAgromyzidaeChromatomyia nigra (Meigen, 1830)101
CalliphoridaeLucilia sericata (Meigen, 1826)163
ChloropidaeThaumatomyia notata (Meigen, 1830)3235
LonchopteridaeLonchoptera bifurcata (Fallén, 1810)6769
MuscidaeCoenosia humilis Meigen, 1826 658
Musca osiris Wiedemann, 1830706
Stomoxys calcitrans (Linnaeus, 1758)12371
OpomyzidaeGeomyza tripunctata (Fallén, 1823)43
RhinophoridaeMelanophora roralis (Linnaeus, 1758)8215
SyrphidaeEristalis tenax (Linnaeus, 1758)43
Eupeodes corollae (Fabricius, 1794)157
Sphaerophoria scripta (Linnaeus, 1758)3412
TephritidaeDioxyna sororcula (Wiedemann, 1830)2201
HemipteraAnthocoridaeOrius laevigatus laevigatus (Fieber, 1860)443
AphididaeAphis fabae Scopoli, 1763582
Aphis nerii Boyer de Fonscolombe, 1841422
Melanaphis donacis (Passerini, 1862)25748
Myzus persicae (Sulzer, 1776)12745
Therioaphis trifolii (Monell, 1882)1910
AphrophoridaePhilaenus spumarius (Linnaeus, 1758)285241
CicadellidaeMacrosteles sexnotatus (Fallen, 1806)30114
DelphacidaeMegamelodes quadrimaculatus (Signoret, 1865)443
Sogatella nigeriensis (Muir, 1920)25245
LygaeidaeKleidocerys ericae (Horváth, 1909)496
Nysius ericae ericae (Blackwall, 1867)1415
MiridaeTaylorilygus apicalis (Fieber, 1861)43326
NabidaeNabis capsiformis Germar, 18381803
PentatomidaeNezara viridula (Linnaeus, 1758)5313
PsyllidaeAcizzia uncatoides (Ferris & Klyver, 1932)1521
RhyparochromidaeBeosus maritimus (Scopoli, 1763)19
SaldidaeSaldula palustris (Douglas, 1874)41
HymenopteraAphelinidaeEncarsia formosa Gahan, 1924 92
ApidaeApis mellifera Linnaeus, 1758196
Bombus terrestris (Linnaeus, 1758)163
EncyrtidaePseudaphycus maculipennis Mercet, 1923132
EulophidaeBaryscapus galactopus (Ratzeburg, 1844)6986
Diglyphus isaea (Walker, 1838)64
FormicidaeHypoponera eduardi (Forel, 1894)55
Lasius grandis Forel, 19095936
Tetramorium caespitum (Linnaeus, 1758)204
IchneumonidaeAritranis director (Thumberg, 1822)11
Diplazon laetatorius (Fabricius, 1781)324
MymaridaeLitus cynipseus Haliday, 183362
PteromalidaePteromalus puparum (Linnaeus, 1758)87
LepidopteraPieridaeColias croceus (Fourcroy, 1785)41
OrthopteraAcrididaeLocusta migratoria (Linnaeus, 1758)31
TrigonidiidaeTrigonidium cicindeloides Rambur, 1838693
PsocodeaCaeciliusidaeValenzuela flavidus (Stephens, 1836)483
Total 48481332
Table 3. Diversity metrics for the Azores and Mainland: N—number of individuals; S—number of species.
Table 3. Diversity metrics for the Azores and Mainland: N—number of individuals; S—number of species.
AzoresMainland
N78615654
S210392
Chao 1245.06464.18
Jackknife1252.16491.56
Completeness Chao10.860.84
Completeness
Jackknife1
0.830.80
Singletons3482
Doubletons1545
Uniques43101
Duplicates4579
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Calado, H.R.M.G.; Borges, P.A.V.; Heleno, R.; Soares, A.O. A Comparative Analysis of Island vs. Mainland Arthropod Communities in Coastal Grasslands Belonging to Two Distinct Regions: São Miguel Island (Azores) and Mainland Portugal. Diversity 2024, 16, 624. https://doi.org/10.3390/d16100624

AMA Style

Calado HRMG, Borges PAV, Heleno R, Soares AO. A Comparative Analysis of Island vs. Mainland Arthropod Communities in Coastal Grasslands Belonging to Two Distinct Regions: São Miguel Island (Azores) and Mainland Portugal. Diversity. 2024; 16(10):624. https://doi.org/10.3390/d16100624

Chicago/Turabian Style

Calado, Hugo Renato M. G., Paulo A. V. Borges, Ruben Heleno, and António O. Soares. 2024. "A Comparative Analysis of Island vs. Mainland Arthropod Communities in Coastal Grasslands Belonging to Two Distinct Regions: São Miguel Island (Azores) and Mainland Portugal" Diversity 16, no. 10: 624. https://doi.org/10.3390/d16100624

APA Style

Calado, H. R. M. G., Borges, P. A. V., Heleno, R., & Soares, A. O. (2024). A Comparative Analysis of Island vs. Mainland Arthropod Communities in Coastal Grasslands Belonging to Two Distinct Regions: São Miguel Island (Azores) and Mainland Portugal. Diversity, 16(10), 624. https://doi.org/10.3390/d16100624

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop