The Gut Microbiome and Lignocellulose Digestion in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae): A Termite Incorporating Lichen into Its Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Termites and Study Site
2.2. Lichen and Bark Wood Consumption
2.3. DNA Extraction
2.4. 16S rRNA Library Preparation, Sequencing, and Taxonomic Assignment
2.5. Metagenomic Sequencing, Assembly, and Gene Annotation
2.6. Microbial Diversity and Community Structure Analyses
2.7. Assays of Cellulolytic and Hemicellulolytic Activities of Worker Guts
3. Results
3.1. The Gut Microbiota of a Lichen-Feeding Termite and Its Relation with Other Feeding Guilds
3.2. Glucose Polymers Enzymatic Activity and Encoding Genes in the Gut of Constrictotermes Cyphergaster
3.3. Lichen Availability Influences Gut Microbiota and CAZy Gene Abundance
4. Discussion
4.1. The Gut Microbiome of the Lichen-Feeder Termite Constrictotermes Cyphergaster
4.2. Does a Lichen Diet Affect Lignocellulose Digestion in Constrictotermes Cyphergaster?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krishna, K.; Grimaldi, D.A.; Krishna, V.; Engel, M.S. Treatise on the Isoptera of the World. Bull. Am. Mus. Nat. Hist. 2013, 377, 2433–2705. [Google Scholar] [CrossRef]
- Donovan, S.E.; Eggleton, P.; Bignell, D.E. Gut Content Analysis and a New Feeding Group Classification of Termites. Ecol. Entomol. 2001, 26, 356–366. [Google Scholar] [CrossRef]
- Eggleton, P.; Tayasu, I. Feeding Groups, Lifetypes and the Global Ecology of Termites. Ecol. Res. 2001, 16, 941–960. [Google Scholar] [CrossRef]
- Barbosa-Silva, A.M.; Farias, M.A.A.; de Mello, A.P.; de Souza, A.E.F.; Garcia, H.H.M.; Bezerra-Gusmão, M.A. Lignocellulosic Fungi in Nests and Food Content of Constrictotermes cyphergaster and Inquilinitermes fur (Isoptera, Termitidae) from the Semiarid Region of Brazil. Fungal Ecol. 2016, 20, 75–78. [Google Scholar] [CrossRef]
- Mikaelyan, A.; Dietrich, C.; Köhler, T.; Poulsen, M.; Sillam-Dussès, D.; Brune, A. Diet Is the Primary Determinant of Bacterial Community Structure in the Guts of Higher Termites. Mol. Ecol. 2015, 24, 5284–5295. [Google Scholar] [CrossRef] [PubMed]
- Moreira, E.A.; Alvarez, T.M.; Persinoti, G.F.; Paixão, D.A.A.; Menezes, L.R.; Cairo, J.P.F.; Squina, F.M.; Costa-Leonardo, A.M.; Carrijo, T.; Arab, A. Microbial Communities of the Gut and Nest of the Humus- and Litter-Feeding Termite Procornitermes araujoi (Syntermitinae). Curr. Microbiol. 2018, 75, 1609–1618. [Google Scholar] [CrossRef]
- Hawksworth, D.L.; Hill, D.J. The Lichen-Forming Fungi, 1st ed.; Springer US: Boston, MA, USA, 1984; ISBN 978-0-216-91634-0. [Google Scholar]
- Pöykkö, H.; Bačkor, M.; Bencúrová, E.; Molcanová, V.; Bačkorová, M.; Hyvärinen, M. Host Use of a Specialist Lichen-Feeder: Dealing with Lichen Secondary Metabolites. Oecologia 2010, 164, 423–430. [Google Scholar] [CrossRef]
- Martius, C.; Amelung, W.; Garcia, M.V.B. The Amazonian Forest Termite (Isoptera: Termitidae) (Constrictotermes cavifrons) Feeds on Microepiphytes. Sociobiology 2000, 35, 379–383. [Google Scholar]
- Roisin, Y.; Pasteels, J.M. The Nasute Termites (Isoptera: Nasutitermitinae) of Papua New Guinea. Invertebr. Syst. 1996, 10, 507–616. [Google Scholar] [CrossRef]
- Miura, T.; Matsumoto, T. Diet and Nest Material of the Processional Termite Hospitalitermes, and Cohabitation of Termes (Isoptera, Termitidae) on Borneo Island. Insectes Soc. 1997, 44, 267–275. [Google Scholar] [CrossRef]
- Gay, F.J. Notes on Grallatotermes grallator (Desneux) and the Taxonomic Status of the Genus Grallatotermes (Isoptera: Termitidae: Nasutitermitinae). Pac. Insects 1971, 13, 41–48. [Google Scholar]
- Melo, A.C.S.; Bandeira, A.G. A Qualitative and Quantitative Survey of Termites (Isoptera) in an Open Shrubby Caatinga in Northeast Brazil. Sociobiology 2004, 44, 707–716. [Google Scholar]
- Torales, G.J.; Laffont, E.R.; Godoy, M.C.; Coronel, J.M.; Arbino, M.O. Update on Taxonomy and Distribution of Isoptera from Argentina. Sociobiology 2005, 45, 853–886. [Google Scholar]
- Barbosa-Silva, A.M. Líquens Associados à Alimentação de Constrictotermes cyphergaster (Silvestre, 1901) (Isoptera: Termitidae) No Semiárido Brasileiro. Master’s Thesis, Universidade Estadual da Paraiba, Campina Grande, Brasil, 2014. [Google Scholar]
- Barbosa-Silva, A.M.; Silva, A.C.; Pereira, E.C.G.; Buril, M.L.L.; Silva, N.H.; Cáceres, M.E.S.; Aptroot, A.; Bezerra- Gusmão, M.A. Richness of Lichens Consumed by Constrictotermes cyphergaster in the Semi-Arid Region of Brazil. Sociobiology 2019, 66, 154–160. [Google Scholar] [CrossRef]
- Barbosa-Silva, A.M.; Vasconcellos, A. Consumption Rate of Lichens by Constrictotermes cyphergaster (Isoptera): Effects of C, N, and P Contents and Ratios. Insects 2019, 10, 23. [Google Scholar] [CrossRef]
- Beckett, R.P.; Zavarzina, A.G.; Liers, C. Oxidoreductases and Cellulases in Lichens: Possible Roles in Lichen Biology and Soil Organic Matter Turnover. Fungal Biol. 2013, 117, 431–438. [Google Scholar] [CrossRef]
- Bates, S.T.; Cropsey, G.W.G.; Caporaso, J.G.; Knight, R.; Fierer, N. Bacterial Communities Associated with the Lichen Symbiosis. Appl. Environ. Microbiol. 2011, 77, 1309–1314. [Google Scholar] [CrossRef]
- Prado, D.E. As Caatingas Da América Do Sul. In Ecologia e Conservação da Caatinga; Leal, I.R., Tabarelli, M., Cardoso, J.M.S., Eds.; Universidade Federal de Pernambuco: Recife, Brasil, 2003; pp. 3–73. ISBN 978-8573152159. [Google Scholar]
- Caceres, M.E.S. Corticolous Crustose and Microfoliose Lichens of Northeastern Brazil; IHW Verlag: Eching, Germany, 2007; ISBN 9783930167685. [Google Scholar]
- Menezes, L.; Alvarez, T.M.; Persinoti, G.F.; Franco, J.P.; Squina, F.; Moreira, E.A.; Alvaredo Paixão, D.A.; Costa-Leonardo, A.M.; da Silva, V.X.; Clerici, M.T.P.S.; et al. Food Storage by the Savanna Termite Cornitermes cumulans (Syntermitinae): A Strategy to Improve Hemicellulose Digestibility? Microb. Ecol. 2018, 76, 492–505. [Google Scholar] [CrossRef]
- Brooks, M.E.; Kristensen, K.; Benthem, K.J.V.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. GlmmTMB Balances Speed and Flexibility Among Packages for Zero-Inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Lenth, R.V. Least-Squares Means: The R Package Lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R Package 2022. Available online: https://cir.nii.ac.jp/crid/1370580229833186830 (accessed on 29 September 2024).
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global Patterns of 16S RRNA Diversity at a Depth of Millions of Sequences per Sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME Improves Sensitivity and Speed of Chimera Detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.M.; Luo, R.; Sadakane, K.; Lam, T.W. MEGAHIT: An Ultra-Fast Single-Node Solution for Large and Complex Metagenomics Assembly via Succinct de Bruijn Graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [PubMed]
- Hauser, M.; Steinegger, M.; Söding, J. MMseqs Software Suite for Fast and Deep Clustering and Searching of Large Protein Sequence Sets. Bioinformatics 2016, 32, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Zhang, H.; Yohe, T.; Huang, L.; Entwistle, S.; Wu, P.; Yang, Z.; Busk, P.K.; Xu, Y.; Yin, Y. DbCAN2: A Meta Server for Automated Carbohydrate-Active Enzyme Annotation. Nucleic Acids Res. 2018, 46, W95–W101. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R. Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: http://www.R-project.org (accessed on 29 September 2024).
- Liu, C.; Cui, Y.; Li, X.; Yao, M. Microeco: An R Package for Data Mining in Microbial Community Ecology. FEMS Microbiol. Ecol. 2021, 97, fiaa255. [Google Scholar] [CrossRef]
- Xu, S.; Zhan, L.; Tang, W.; Wang, Q.; Dai, Z.; Zhou, L.; Feng, T.; Chen, M.; Wu, T.; Hu, E.; et al. MicrobiotaProcess: A Comprehensive R Package for Deep Mining Microbiome. Innovation 2023, 4, 100388. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Naumann, U.; Wright, S.T.; Warton, D.I. Mvabund- an R Package for Model-Based Analysis of Multivariate Abundance Data. Methods Ecol. Evol. 2012, 3, 471–474. [Google Scholar] [CrossRef]
- Nearing, J.T.; Douglas, G.M.; Hayes, M.G.; MacDonald, J.; Desai, D.K.; Allward, N.; Jones, C.M.A.; Wright, R.J.; Dhanani, A.S.; Comeau, A.M.; et al. Microbiome Differential Abundance Methods Produce Different Results across 38 Datasets. Nat. Commun. 2022, 13, 342. [Google Scholar] [CrossRef]
- Fernandes, A.D.; Reid, J.N.S.; Macklaim, J.M.; McMurrough, T.A.; Edgell, D.R.; Gloor, G.B. Unifying the Analysis of High-Throughput Sequencing Datasets: Characterizing RNA-Seq, 16S RRNA Gene Sequencing and Selective Growth Experiments by Compositional Data Analysis. Microbiome 2014, 2, 15. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Franco Cairo, J.P.L.; Leonardo, F.C.; Alvarez, T.M.; Ribeiro, D.A.; Büchli, F.; Costa-Leonardo, A.M.; Carazzolle, M.F.; Costa, F.F.; Paes Leme, A.F.; Pereira, G.A.; et al. Functional Characterization and Target Discovery of Glycoside Hydrolases from the Digestome of the Lower Termite Coptotermes gestroi. Biotechnol. Biofuels 2011, 4, 50. [Google Scholar] [CrossRef]
- Ellis, A.R.; Burchett, W.W.; Harrar, S.W.; Bathke, A.C. Nonparametric Inference for Multivariate Data: The R Package Npmv. J. Stat. Softw. 2017, 76, 1–18. [Google Scholar] [CrossRef]
- Collins, N.M. Observations on the Foraging Activity of Hospitalitermes umbrinus (Haviland), (Isoptera, Termitidae) in the Gunong-Mulu-National-Park, Sarawak. Ecol. Entomol. 1979, 4, 231–238. [Google Scholar] [CrossRef]
- Asplund, J.; Wardle, D.A. The Impact of Secondary Compounds and Functional Characteristics on Lichen Palatability and Decomposition. J. Ecol. 2013, 101, 689–700. [Google Scholar] [CrossRef]
- Pöykkö, H.; Hyvärinen, M.; Bačkor, M. Removal of Lichen Secondary Metabolites Affects Food Choice and Survival of Lichenivorous Moth Larvae. Ecology 2005, 86, 2623–2632. [Google Scholar] [CrossRef]
- de Oliveira, M.H.; Lacerda-Rolim, M.D.S.; Barbosa-Silva, A.M.; Abad, A.C.A.; Mota, R.A.; Pereira, E.C.; Martins, M.C.B.; de Lima, L.M.; Bezerra-Gusmão, M.A. Inhibitory Effect of Usnic Acid on the Gut Microbiota of the Termite Constrictotermes cyphergaster. Symbiosis 2023, 89, 329–335. [Google Scholar] [CrossRef]
- Auer, L.; Lazuka, A.; Sillam-Dussès, D.; Miambi, E.; O’Donohue, M.; Hernandez-Raquet, G. Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors. Front. Microbiol. 2017, 8, 2623. [Google Scholar] [CrossRef] [PubMed]
- Stackebrandt, E. The Family Lachnospiraceae. In The Prokaryotes; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 197–201. ISBN 978-3-642-30120-9. [Google Scholar]
- Warnecke, F.; Luginbühl, P.; Ivanova, N.; Ghassemian, M.; Richardson, T.H.; Stege, J.T.; Cayouette, M.; McHardy, A.C.; Djordjevic, G.; Aboushadi, N.; et al. Metagenomic and Functional Analysis of Hindgut Microbiota of a Wood-Feeding Higher Termite. Nature 2007, 450, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, C.; Köhler, T.; Brune, A. The Cockroach Origin of the Termite Gut Microbiota: Patterns in Bacterial Community Structure Reflect Major Evolutionary Events. Appl. Environ. Microbiol. 2014, 80, 2261–2269. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.P.; Sanders, J.G.; Byrne, M.J.; Pierce, N.E. Gut Microbiota of Dung Beetles Correspond to Dietary Specializations of Adults and Larvae. Mol. Ecol. 2016, 25, 6092–6106. [Google Scholar] [CrossRef]
- Romero Victorica, M.; Soria, M.A.; Batista-García, R.A.; Ceja-Navarro, J.A.; Vikram, S.; Ortiz, M.; Ontañon, O.; Ghio, S.; Martínez-Ávila, L.; Quintero García, O.J.; et al. Neotropical Termite Microbiomes as Sources of Novel Plant Cell Wall Degrading Enzymes. Sci. Rep. 2020, 10, 3864. [Google Scholar] [CrossRef]
- Arora, J.; Kinjo, Y.; Šobotník, J.; Buček, A.; Clitheroe, C.; Stiblik, P.; Roisin, Y.; Žifčáková, L.; Park, Y.C.; Kim, K.Y.; et al. The Functional Evolution of Termite Gut Microbiota. Microbiome 2022, 10, 78. [Google Scholar] [CrossRef]
- Almeida, M.C.P.d.S.; Silva, J.E.d.; Batista, W.G.d.S.; Alves, J.L.F.; Melo, D.M.d.A.; Pimenta, A.S.; Braga, R.M. Valorization of Wood Residues from Vegetation Suppression during Wind Energy Plant Implementation and Its Potential for Renewable Phenolic Compounds through Flash Pyrolysis: A Case Study in Northeast Brazil’s Semi-Arid Region. Forests 2024, 15, 621. [Google Scholar] [CrossRef]
- Perrot, T.; Pauly, M.; Ramírez, V. Emerging Roles of β-Glucanases in Plant Development and Adaptative Responses. Plants 2022, 11, 1119. [Google Scholar] [CrossRef]
- Lenardon, M.D.; Munro, C.A.; Gow, N.A.R. Chitin Synthesis and Fungal Pathogenesis. Curr. Opin. Microbiol. 2010, 13, 416–423. [Google Scholar] [CrossRef]
- Arakane, Y.; Muthukrishnan, S. Insect Chitinase and Chitinase-like Proteins. Cell. Mol. Life Sci. 2010, 67, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Sützl, L.; Foley, G.; Gillam, E.M.J.; Bodén, M.; Haltrich, D. The GMC Superfamily of Oxidoreductases Revisited: Analysis and Evolution of Fungal GMC Oxidoreductases. Biotechnol. Biofuels 2019, 12, 118. [Google Scholar] [CrossRef]
- Ruiz-Dueñas, F.J.; Martínez, Á.T. Microbial Degradation of Lignin: How a Bulky Recalcitrant Polymer Is Efficiently Recycled in Nature and How We Can Take Advantage of This. Microb. Biotechnol. 2009, 2, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Brune, A. Symbiotic Digestion of Lignocellulose in Termite Guts. Nat. Rev. Microbiol. 2014, 12, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, Y.; Piumi, F.; Valli, R.; Aramburu, J.C.; Ferreira, P.; Faulds, C.B.; Record, E. Activities of Secreted Aryl Alcohol Quinone Oxidoreductases from Pycnoporus cinnabarinus Provide Insights into Fungal Degradation of Plant Biomass. Appl. Environ. Microbiol. 2016, 82, 2411–2423. [Google Scholar] [CrossRef] [PubMed]
- Levasseur, A.; Drula, E.; Lombard, V.; Coutinho, P.M.; Henrissat, B. Expansion of the Enzymatic Repertoire of the CAZy Database to Integrate Auxiliary Redox Enzymes. Biotechnol. Biofuels 2013, 6, 41. [Google Scholar] [CrossRef]
- Daniel, G.; Volc, J.; Filonova, L.; Plíhal, O.; Kubátová, E.; Halada, P. Characteristics of Gloeophyllum trabeum Alcohol Oxidase, an Extracellular Source of H2O2 in Brown Rot Decay of Wood. Appl. Environ. Microbiol. 2007, 73, 6241–6253. [Google Scholar] [CrossRef]
- Franco Cairo, J.P.L.; Carazzolle, M.F.; Leonardo, F.C.; Mofatto, L.S.; Brenelli, L.B.; Gonçalves, T.A.; Uchima, C.A.; Domingues, R.R.; Alvarez, T.M.; Tramontina, R.; et al. Expanding the Knowledge on Lignocellulolytic and Redox Enzymes of Worker and Soldier Castes from the Lower Termite Coptotermes gestroi. Front. Microbiol. 2016, 7, 1518. [Google Scholar] [CrossRef]
- Geng, A.; Cheng, Y.; Wang, Y.; Zhu, D.; Le, Y.; Wu, J.; Xie, R.; Yuan, J.S.; Sun, J. Transcriptome Analysis of the Digestive System of a Wood-Feeding Termite (Coptotermes formosanus) Revealed a Unique Mechanism for Effective Biomass Degradation. Biotechnol. Biofuels 2018, 11, 24. [Google Scholar] [CrossRef]
- Calusinska, M.; Marynowska, M.; Bertucci, M.; Untereiner, B.; Klimek, D.; Goux, X.; Sillam-Dussès, D.; Gawron, P.; Halder, R.; Wilmes, P.; et al. Integrative Omics Analysis of the Termite Gut System Adaptation to Miscanthus Diet Identifies Lignocellulose Degradation Enzymes. Commun. Biol. 2020, 3, 275. [Google Scholar] [CrossRef]
- Tramontina, R.; Brenelli, L.B.; Sodré, V.; Franco Cairo, J.P.; Travália, B.M.; Egawa, V.Y.; Goldbeck, R.; Squina, F.M. Enzymatic Removal of Inhibitory Compounds from Lignocellulosic Hydrolysates for Biomass to Bioproducts Applications. World J. Microbiol. Biotechnol. 2020, 36, 166. [Google Scholar] [CrossRef] [PubMed]
- Kfoury, B.; Rodrigues, W.F.C.; Kim, S.J.; Brandizzi, F.; Del-Bem, L.E. Multiple Horizontal Gene Transfer Events Have Shaped Plant Glycosyl Hydrolase Diversity and Function. New Phytol. 2024, 242, 809–824. [Google Scholar] [CrossRef] [PubMed]
- Merzendorfer, H.; Zimoch, L. Chitin Metabolism in Insects: Structure, Function and Regulation of Chitin Synthases and Chitinases. J. Exp. Biol. 2003, 206, 4393–4412. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; da Costa, R.R.; Pilgaard, B.; Schiøtt, M.; Lange, L.; Poulsen, M. Fungiculture in Termites Is Associated with a Mycolytic Gut Bacterial Community. mSphere 2019, 4. [Google Scholar] [CrossRef]
- Rosengaus, R.B.; Schultheis, K.F.; Yalonetskaya, A.; Bulmer, M.S.; DuComb, W.S.; Benson, R.W.; Thottam, J.P.; Godoy-Carter, V. Symbiont-Derived β-1,3-Glucanases in a Social Insect: Mutualism beyond Nutrition. Front. Microbiol. 2014, 5, 607. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arab, A.; Paulino, L.C.; Rolim, M.S.L.; Menezes, L.R.d.; Oliveira, M.H.d.; dos Santos, R.A.C.; Cairo, J.P.L.F.; Bezerra-Gusmão, M.A.; Costa-Leonardo, A.M.; Cunha, H.; et al. The Gut Microbiome and Lignocellulose Digestion in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae): A Termite Incorporating Lichen into Its Diet. Diversity 2024, 16, 623. https://doi.org/10.3390/d16100623
Arab A, Paulino LC, Rolim MSL, Menezes LRd, Oliveira MHd, dos Santos RAC, Cairo JPLF, Bezerra-Gusmão MA, Costa-Leonardo AM, Cunha H, et al. The Gut Microbiome and Lignocellulose Digestion in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae): A Termite Incorporating Lichen into Its Diet. Diversity. 2024; 16(10):623. https://doi.org/10.3390/d16100623
Chicago/Turabian StyleArab, Alberto, Luciana Campos Paulino, Maria Socorro Lacerda Rolim, Letícia Ramos de Menezes, Mário Herculano de Oliveira, Renato Augusto Corrêa dos Santos, João Paulo Lourenço Franco Cairo, Maria Avany Bezerra-Gusmão, Ana Maria Costa-Leonardo, Hélida Cunha, and et al. 2024. "The Gut Microbiome and Lignocellulose Digestion in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae): A Termite Incorporating Lichen into Its Diet" Diversity 16, no. 10: 623. https://doi.org/10.3390/d16100623
APA StyleArab, A., Paulino, L. C., Rolim, M. S. L., Menezes, L. R. d., Oliveira, M. H. d., dos Santos, R. A. C., Cairo, J. P. L. F., Bezerra-Gusmão, M. A., Costa-Leonardo, A. M., Cunha, H., & Sillam-Dussès, D. (2024). The Gut Microbiome and Lignocellulose Digestion in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae): A Termite Incorporating Lichen into Its Diet. Diversity, 16(10), 623. https://doi.org/10.3390/d16100623