Coverings on Pitfall Traps Influence the Abundance of Ground-Dwelling Arthropods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Procedure
2.2. Statistical Analyses
3. Results
3.1. Carabid Beetles’ Abundance and Diversity
3.2. Abundance and Diversity of Harvestmen
3.3. Adult Individuals
3.4. Pooled Data with Adults and Juvenile Individuals
3.5. Damage Rates of Pitfall Traps
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Study Sites | S1 | S2 | ||||||
---|---|---|---|---|---|---|---|---|
Type of covering | No cover | Black cover | Trans. cover | No cover | Black cover | Trans. cover | ||
Taxon | Size | |||||||
Carabidae Latreille, 1802 | Sp. act. | |||||||
Abax parallelepipedus (Piller and Mitterpacher, 1783) | mix | L | 1N | 2N | 2N | |||
Amara equestris (Duftschmid, 1812) | noc | S | 10F | 6F | 4F | |||
Bradycellus csikii Laczo, 1912 | noc | S | 1F | |||||
Calathus erratus (C.R. Sahlberg, 1827) | noc | L | 1F | 1F | 2F | |||
Calathus fuscipes (Goeze, 1777) | mix | L | 2F | 2F; 2N | 12F; 54N | 10F; 44N | 8F; 48N | |
Calathus melanocephalus (Linnaeus, 1758) | noc | S | 1N | 1N | 1N | |||
Calosoma sycophanta (Linnaeus, 1758) | noc | L | 1F | |||||
Carabus convexus Fabricius, 1775 | noc | L | 17N | 15N | 14N | |||
Carabus nemoralis O.F. Müller, 1764 | noc | L | 2N | 2N | 3N | |||
Carabus ulrichii Germar, 1823 | mix | L | 11N | 26N | 13N | |||
Harpalus atratus Latreille, 1804 | noc | L | 1N | 2N | 13F | 3F | 7F | |
Harpalus griseus (Panzer, 1796) | noc | L | 1F | 2F | ||||
Harpalus rufipes (DeGeer, 1774) | noc | L | 6F | 10F | 5F | 10F | 2F | |
Microlestes minutulus (Goeze, 1777) | noc | S | 1F | |||||
Nebria brevicollis (Fabricius, 1792) | noc | L | 1F | |||||
Notiophilus rufipes Curtis, 1829 | diur | S | 1F | 1F | ||||
Ophonus azureus (Fabricius, 1775) | noc | S | 2F | |||||
Ophonus puncticeps Stephens, 1828 | mix | S | 2F | 1F | 4F | |||
Poecilus cupreus (Linnaeus, 1758) | diur | L | 1F | |||||
Trechus quadristriatus (Schrank, 1781) | noc | S | 1F | 8F | 1F | 2F; 1N | ||
∑ individuals | 40 | 57 | 46 | 114 | 68 | 83 | ||
Opiliones Sundevall, 1833 | ||||||||
Lacinius horridus (Panzer, 1794) | 40; 1j | 28; 2j | 37; 3j | |||||
Nelima sempronii Szalay, 1951 | 1; 47j | 185j | 2; 177j | 1 | ||||
Zachaeus crista (Brullé, 1832) | 1 | 2 | ||||||
∑ individuals | 90 | 215 | 221 | 1 | 0 | 0 |
References
- Brown, G.R.; Matthews, I.M. A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground-active arthropod biodiversity. Ecol. Evol. 2016, 6, 3953–3964. [Google Scholar] [CrossRef]
- Bertoia, A.; Murray, T.; Robertson, B.C.; Monks, J.M. Pitfall trapping outperforms other methods for surveying ground-dwelling large-bodied alpine invertebrates. J. Insect Conserv. 2023, 27, 679–692. [Google Scholar] [CrossRef]
- Dahl, F. Vergleichende Untersuchungen über die Lebensweise wirbelloser Aasfresser. Sitz. Ber. Akad. Wiss. Berlin. 1896, 17–30. [Google Scholar]
- Barber, H.S. Traps for cave-inhabiting insects. J. Elisha Mitchell Sci. Soc. 1931, 46, 259–266. [Google Scholar]
- Hohbein, R.R.; Conway, C.J. Pitfall traps: A review of methods for estimating arthropod abundance. Wildl. Soc. Bull. 2018, 42, 597–606. [Google Scholar] [CrossRef]
- Privet, K.; Vedel, V.; Fortunel, C.; Orivel, J.; Martinez, Q.; Cerdan, A.; Baraloto, C.; Pétillon, J. Relative efficiency of pitfall trapping vs. nocturnal hand collecting in assessing soil-dwelling spider diversity along a structural gradient of neotropical habitats. Diversity 2020, 12, 81. [Google Scholar] [CrossRef]
- Southwood, T.R.E.; Henderson, P.A. Ecological Methods; Blackwell Science: Oxford, UK, 2000; 575p. [Google Scholar]
- Kim, D.; Cho, Y.B.; Kim, J.L.; Jeong Hong, E.; Kim, C.; Cha, J.Y.; Han, Y.G. Analysis of capture efficiency of pitfall traps for the National Ecosystem Survey of Korea. J. Asia-Pac. Biodivers. 2021, 14, 333–340. [Google Scholar] [CrossRef]
- Topping, C.J.; Sunderland, K.D. Limitations to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat. J. Appl. Ecol. 1992, 29, 485–491. [Google Scholar] [CrossRef]
- New, T.R. Invertebrate Surveys for Conservation; Oxford University Press: Oxford, UK, 1998; 204p. [Google Scholar]
- Santos, S.A.P.; Cabanas, J.E.; Pereira, J.A. Abundance and diversity of soil arthropods in olive grove ecosystem (Portugal), effect of pitfall trap type. Eur. J. Soil Biol. 2007, 43, 77–83. [Google Scholar] [CrossRef]
- Uetz, G.W.; Unzicker, J.D. Pitfall trapping in ecological studies of wandering spiders. J. Arachnol. 1975, 3, 101–111. [Google Scholar]
- Adis, J. Problems of interpreting arthropod sampling with pitfall traps. Zool. Anz. Jena 1979, 202, 177–184. [Google Scholar]
- Cardoso, P. Standardization and optimization of arthropod inventories—The case of Iberian spiders. Biodivers. Conserv. 2009, 18, 3949–3962. [Google Scholar] [CrossRef]
- Curtis, D.J. Pitfalls in spider community studies (Arachnida, Araneae). J. Arachnol. 1980, 8, 271–280. [Google Scholar]
- Ericson, D. The interpretation of pitfall catches of Pterostichus cupreus and Pt. melanarius (Coloeoptera, Carabidae) in cereal fields. Pedobiologia 1979, 19, 320–328. [Google Scholar] [CrossRef]
- Siewers, J.; Schirmel, J.; Buchholz, S. The efficiency of pitfall traps as a method of sampling epigeal arthropods in litter rich forest habitats. Eur. J. Entomol. 2014, 111, 69–74. [Google Scholar] [CrossRef]
- Balogh, J. Lebensgemeinschaften der Landtiere; Akademie Verlag: Berlin, Germany, 1958; 560p. [Google Scholar]
- Aristophanous, M. Does your preservative preserve? A comparison of the efficacy of some pitfall trap solutions in preserving the internal reproductive organs of dung beetles. ZooKeys 2010, 34, 1–16. [Google Scholar] [CrossRef]
- Pekár, S. Differential effects of formaldehyde concentration and detergent on the catching efficiency of surface active arthropods by pitfall traps. Pedobiologia 2002, 46, 539–547. [Google Scholar] [CrossRef]
- Schmidt, M.H.; Clough, Y.; Schutz, W.; Westphalen, A.; Tscharntke, T. Capture efficiency and preservation attributes of different fluids in pitfall traps. J. Arachnol. 2006, 34, 159–162. [Google Scholar] [CrossRef]
- Jud, P.; Schmidt-Entling, M.H. Fluid type, dilution, and bitter agent influence spider preservation in pitfall traps. Entomol. Exp. Appl. 2008, 129, 356–359. [Google Scholar] [CrossRef]
- Brennan, K.E.; Majer, J.D.; Reygaert, N. Determination of an optimal pitfall trap size for sampling spiders in a Western Australian Jarrah forest. J. Insect Conserv. 1999, 3, 297–307. [Google Scholar] [CrossRef]
- Stašiov, S.; Čiliak, M.; Wiezik, M.; Svitok, M.; Wieziková, A.; Diviaková, A. Pitfall trap design affects the capture efficiency of harvestmen (Opiliones) and millipedes (Diplopoda). Ecol. Evol. 2021, 11, 9864–9875. [Google Scholar] [CrossRef]
- Luff, M.L. Some features influencing the efficiency of pitfall traps. Oecologia 1975, 19, 345–357. [Google Scholar] [CrossRef]
- Buchholz, S.; Jess, A.M.; Hertenstein, F.; Schirmel, J. Effect of the colour of pitfall traps on their capture efficiency of carabid beetles (Coleoptera: Carabidae), spiders (Araneae) and other arthropods. Eur. J. Entomol. 2010, 107, 277–280. [Google Scholar] [CrossRef]
- Waage, B.E. Trapping efficiency of carabid beetles in glass and plastic pitfall traps containing different solutions. Fauna Nor. Ser. B 1985, 32, 33–36. [Google Scholar]
- Császár, P.; Torma, A.; Gallé-Szpisjak, N.; Tölgyesi, C.; Gallé, R. Efficiency of pitfall traps with funnels and/or roofs in capturing ground-dwelling arthropods. Eur. J. Entomol. 2018, 115, 15–24. [Google Scholar] [CrossRef]
- Buchholz, S.; Hannig, K. Do covers influence the capture efficiency of pitfall traps? Eur. J. Entomol. 2009, 106, 667–671. [Google Scholar] [CrossRef]
- Greenslade, P.J.M. Pitfall trapping as a method for studying populations of Carabidae (Coleoptera). J. Anim. Ecol. 1964, 33, 301–310. [Google Scholar] [CrossRef]
- Ward, D.F.; New, T.R.; Yen, A.L. Effects of pitfall trap spacing on the abundance, richness and composition of invertebrate catches. J. Insect Conserv. 2001, 5, 47–53. [Google Scholar] [CrossRef]
- Phillips, I.D.; Cobb, T.P. Effects of habitat structure and lid transparency on pitfall catches. Environ. Entomol. 2005, 34, 875–882. [Google Scholar] [CrossRef]
- Bell, A.J.; Phillips, I.D.; Floate, K.D.; Hoemsen, B.M.; Phillips, C.E. Effects of pitfall trap lid transparency and habitat structure on the catches of Carabid beetles (Coleoptera: Carabidae) in tame pasture. Environ. Entomol. 2014, 43, 139–145. [Google Scholar] [CrossRef]
- Litavský, J.; Majzlan, O.; Stašiov, S.; Svitok, M.; Fedor, P. The associations between ground beetle (Coleoptera: Carabidae) communities and environmental condition in floodplain forests in the Pannonian Basin. Eur. J. Entomol. 2021, 118, 14–23. [Google Scholar] [CrossRef]
- Litavský, J.; Stašiov, S.; Svitok, M.; Michalková, E.; Majzlan, O.; Žarnovičan, H.; Fedor, P. Epigean communities of harvestmen (Opiliones) in Pannonian Basin floodplain forests: An interaction with environmental parameters. Biologia 2018, 73, 753–763. [Google Scholar] [CrossRef]
- Ruchin, A.; Alekseev, S.; Khapugin, A.; Esin, M. Fauna and Species Diversity of Ground Beetles (Coleoptera, Carabidae) in Meadows. Entomol. Appl. Sci. Lett. 2021, 8, 28–39. [Google Scholar] [CrossRef]
- Ivanič Porhajašová, J.; Babošová, M. Impact of arable farming management on the biodiversity of Carabidae (Coleoptera). Saudi J. Biol. Sci. 2022, 29, 103371. [Google Scholar] [CrossRef]
- Gajdoš, P.; Majzlan, O.; David, S.; Purgat, P.; Litavský, J. Assemblages of ground-living spiders (Araneae) and harvestmen (Opiliones) of the recultivated old chemical waste dump in Vrakuňa (Bratislava, Slovakia). Biologia 2023, 78, 149–162. [Google Scholar] [CrossRef]
- Krajčovičová, K.; Šestáková, A.; Christophoryová, J.; Litavský, J.; Purkart, A.; Fenďa, P. Základy Arachnologického Výskumu; Univerzita Komenského v Bratislave: Bratislava, Slovakia, 2022; 168p. [Google Scholar]
- Martens, J. Spinnentiere, Arachnida: Weberknechte, Opiliones. In Die Tierwelt Deutschlands; VEB Gustav Fischer Verlag: Jena, Germany, 1978; Volume 64, 464p. [Google Scholar]
- Trautner, J.; Geigenmüller, K. Tiger Beetles, Ground Beetles: Illustrated Key to the Cicindelidae and Carabidae of Europe; Josef Margraf: Aichtal, Germany, 1987; 487p. [Google Scholar]
- Hůrka, K. Carabidae of the Czech and Slovak Republics; Kabourek: Zlín, Czech Republic, 1996; 565p, (In Czech and English). [Google Scholar]
- Müller-Motzfeld, G. Adephaga 1. Carabidae (Laufkäfer). In Die Käfer Mitteleuropas, 2nd ed.; Freude, H., Harde, K.W., Lohse, G.A., Klausnitzer, B., Eds.; Spektrum: Berlin/Heidelberg, Germany, 2004; pp. 1–521. [Google Scholar]
- Tuf, I.H.; Dedek, P.; Veselý, M. Does the diurnal activity pattern of carabid beetles depend on season, ground temperature and habitat? Arch. Biol. Sci. 2012, 64, 721–732. [Google Scholar] [CrossRef]
- Lorenz, W. Carabcat database. In Catalogue of Life Checklist (v.03 (08/2021) 2021; Bánki, O., Roskov, Y., Döring, M., Ower, G., Hernández Robles, D.R., Plata Corredor, C.A., Stjernegaard Jeppesen, T., Örn, A., Vandepitte, L., et al., Eds.; Available online: https://www.catalogueoflife.org/data/dataset/1146 (accessed on 1 November 2023).
- Kury, A.B.; Mendes, A.C.; Cardoso, L.; Kury, M.S.; Granado, A.A.; Giribet, G.; Cruz-López, J.A.; Longhorn, S.J.; Medrano, M.A.; de Oliveira, A.B.R.; et al. Catalogue of Life Checklist (Version 2023-09-06) 2023. Available online: https://www.catalogueoflife.org/data/dataset/2256 (accessed on 1 November 2023).
- Jopp, F.; Reuter, H. Dispersal of carabid beetles—Emergence of distribution patterns. Ecol. Model. 2005, 186, 389–405. [Google Scholar] [CrossRef]
- Venn, S. To fly or not to fly: Factors influencing the flight capacity of carabid beetles (Coleoptera: Carabidae). Eur. J. Entomol. 2016, 113, 587–600. [Google Scholar] [CrossRef]
- Machado, G.; Burns, M. Reproductive biology of harvestmen (Arachnida: Opiliones): A review of a rapidly evolving research field. Curr. Zool. 2023, 1–21. [Google Scholar] [CrossRef]
- Kim, Y.; Cho, S.; Choung, Y. Habitat preference of wild boar (Sus scrofa) for feeding in cool-temperate forests. J. Ecol. Environ. 2019, 43, 30. [Google Scholar] [CrossRef]
- Meriggi, A.; Sacchi, O. Habitat requirements of wild boars in the northern Apennines (N Italy): A multi-level approach. Ital. J. Zool. 2001, 68, 47–55. [Google Scholar] [CrossRef]
- Mayer, J.J. Wild pig behavior. In Wild Pigs Biology, Damage, Control, Techniques, and Management; Savannah River National Laboratory: Aiken, SC, USA, 2009; pp. 77–104. [Google Scholar]
- Melbourne, B.A. Bias in the effect of habitat structure on pitfall traps: An experimental evaluation. Aust. J. Ecol. 1999, 24, 228–239. [Google Scholar] [CrossRef]
- Litavský, J.; Žarnovičan, H.; Majzlan, O. Vplyv manažmentových opatrení na spoločenstvá koscov (Opiliones) vo výskumnej stanici Šúr a jej okolí. In 20. Arachnologická Konferencia: Zborník Abstraktov, 1st ed.; Slovenská Arachnologická Spoločnosť: Bratislava, Slovakia, 2022; p. 20. [Google Scholar]
F | df1 | df2 | p | |
---|---|---|---|---|
Locality | 1.17 | 1 | 215 | 0.28 |
Treatment | 2.88 | 2 | 215 | 0.058 |
Activity | 5.11 | 2 | 215 | 0.007 |
Flying ability | 5.60 | 1 | 215 | 0.02 |
Size | 2.36 | 1 | 215 | 0.13 |
Locality | Activity | Flying Ability | Size | ||||||
---|---|---|---|---|---|---|---|---|---|
Forest | Meadow | Nocturnal | Diurnal | Mixed | Brachypterous | Macropterous | Small | Large | |
Abundance | 4.93 (2.37, 4.04) | 6.14 (3.97, 6.12) | 1.44 (0.82, 1.08) | 1.0 (0.0, 0.0) | 2.22 (1.73, 2.26) | 2.12 (1.77, 2.39) | 1.60 (0.97, 1.24) | 1.54 (0.85, 2.22) | 1.88 (1.33, 2.43) |
Richness | 2.83 (0.97, 1.66) | 2.49 (1.15, 1.79) | 2.70 (1.03, 1.70) | 3.0 (0.0, 0.0) | 2.56 (1.14, 1.83) | 3.03 (0.99, 1.67) | 2.33 (1.09, 1.71) | 3.25 (1.77, 4.73) | 2.94 (1.60, 4.28) |
F | df1 | df2 | p | |
---|---|---|---|---|
Locality | 0.001 | 1 | 64 | 0.98 |
Treatment | 2.04 | 2 | 64 | 0.14 |
Activity | 0.19 | 2 | 64 | 0.83 |
Flying ability | 3.36 | 1 | 64 | 0.07 |
Size | 0.05 | 1 | 64 | 0.83 |
95% CI | ||||
---|---|---|---|---|
Treatment | Mean | Lower | Upper | |
Abundance | No cover | 15.50 | 12.65 | 18.99 |
Black cover | 19.55 | 17.10 | 22.34 | |
Translucent cover | 18.00 | 15.75 | 20.57 | |
Diversity | No cover | 2.00 | 1.14 | 3.52 |
Black cover | 1.73 | 1.10 | 2.71 | |
Translucent cover | 1.92 | 1.27 | 2.88 |
No Cover | Black Cover | Translucent Cover | |
---|---|---|---|
Forest | 9 (60) | 4 (27%) | 3 (20%) |
Meadow | 0 (0) | 3 (20%) | 1 (7%) |
Fisher exact test | <0.001 | 1.0 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Litavský, J.; Prokop, P. Coverings on Pitfall Traps Influence the Abundance of Ground-Dwelling Arthropods. Diversity 2024, 16, 19. https://doi.org/10.3390/d16010019
Litavský J, Prokop P. Coverings on Pitfall Traps Influence the Abundance of Ground-Dwelling Arthropods. Diversity. 2024; 16(1):19. https://doi.org/10.3390/d16010019
Chicago/Turabian StyleLitavský, Juraj, and Pavol Prokop. 2024. "Coverings on Pitfall Traps Influence the Abundance of Ground-Dwelling Arthropods" Diversity 16, no. 1: 19. https://doi.org/10.3390/d16010019
APA StyleLitavský, J., & Prokop, P. (2024). Coverings on Pitfall Traps Influence the Abundance of Ground-Dwelling Arthropods. Diversity, 16(1), 19. https://doi.org/10.3390/d16010019