Germination and Early Seedling Growth of High Andean Native Plants under Heavy Metal Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Seed Collection and Storage
2.3. Heavy Metal Treatments
2.4. Germination Assay
2.5. Germination Response Variables
2.6. Metal Tolerance
2.7. Fresh Weight and Dry Weight of Early Seedlings
2.8. Statistical Analyses
3. Results
3.1. Germination Percentage
3.2. Mean Time to Germinate
3.3. Radicle Length
3.4. Metal Tolerance Index
3.5. Fresh Weight and Dry Weight of Early Seedlings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brenning, A.; Azócar, G.F. Minería y glaciares rocosos: Impactos ambientales, antecedentes políticos y legales, y perspectivas futuras. Rev. Geogr. Norte. Gd. 2010, 47, 143–158. [Google Scholar] [CrossRef]
- [SSPE] Subsecretaría de Planificación Económica. Secretaría de Política Económica y Planificación del Desarrollo. Ministerio de Hacienda y Finanzas Públicas. Informes de Cadenas de Valor: Minería Metalífera y Rocas de Aplicación. 2016. ISSN 2525-2221. Available online: https://www.argentina.gob.ar/sites/default/files/sspe_cadena_de_valor_mineria.pdf (accessed on 10 July 2022).
- Mendez, M.; Maier, R.M. Phytostabilization of Mine Tailings in Arid and Semiarid Environments-An Emerging Remediation Technology. Environ. Health Perspect. 2008, 3, 278–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcantara, H.J.P.; Doronila, A.I.; Nicolas, M.; Ebbs, S.D.; Kolev, S.D. Growth of selected plant species in biosolids-amended mine tailings. Min. Eng. 2015, 80, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Xu, D.M.; Chen, T.; Yan, Z.A.; Li, L.L.; Wang, M.H. Leachability characteristic of heavy metals and associated health risk study in typical copper mining-impacted sediments. Chemosphere 2020, 239, 124748. [Google Scholar] [CrossRef]
- Schwegler, F. Air quality management: A mining perspective. WIT Trans. Ecol. Environ. 2006, 86, e1339. [Google Scholar] [CrossRef] [Green Version]
- Al-Taani, A.A.; Nazzal, Y.; Howari, F.M. Assessment of heavy metals in roadside dust along the Abu Dhabi–Al Ain National Highway, UAE. Environ. Earth Sci. 2019, 78, 411. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Kiran; Bharti, R.; Sharma, R. Effect of heavy metals: An overview. Mater. Today Proc. 2022, 51, 880–885. [Google Scholar] [CrossRef]
- Liu, S.; Yang, B.; Liang, Y.; Xiao, Y.; Fang, J. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environ. Sci. Pollut. Res. 2020, 27, 16069–16085. [Google Scholar] [CrossRef]
- Shen, X.; Dai, M.; Yang, J.; Sun, L.; Tan, X.; Peng, C.; Imran, A.; Naz, I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere 2021, 291, 132979. [Google Scholar] [CrossRef]
- Cameselle, C.; Gouveia, S.; Urréjola, S. Benefits of phytoremediation amended with DC electric field. Application to soils contaminated with heavy metals. Chemosphere 2019, 229, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M. Enhancing phytoremediation of soils polluted with heavy metals. Curr. Opin. Biotechnol. 2022, 74, 21–31. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Yang, H.; Li, X.; Cui, Z. Physiological responses of Suaeda glauca and Arabidopsis thaliana in phytoremediation of heavy metals. J. Environ. Manag. 2018, 223, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, S.S.; Singh, J.; Taneja, P.K.; Mandal, A. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: A review. Environ. Sci. Pollut. Res. 2020, 27, 1319–1333. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, M.; Rajakaruna, N.; Rizwan, M.; Madawala, H.M.S.P.; Ok, Y.S.; Vithanage, M. Heavy metal-induced oxidative stress on seed germination and seedling development: A critical review. Environ. Geochem. Health 2019, 41, 1813–1831. [Google Scholar] [CrossRef]
- Samma, M.K.; Zhou, H.; Cui, W.; Zhu, K.; Zhang, J.; Shen, W. Methane alleviates copper-induced seed germination inhibition and oxidative stress in Medicago sativa. Biometals 2017, 30, 97–111. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Shan, X.; Zhu, Y.-G. Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere 2005, 61, 293–301. [Google Scholar] [CrossRef]
- Kalinhoff, C.; Calderón, N.-T. Mercury Phytotoxicity and Tolerance in Three Wild Plants during Germination and Seedling Development. Plants 2022, 11, 2046. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Espinosa, L.; Briones-Gallardo, R.; Flores, J.; del Castillo, E. Effect of heavy metals on seed germination and seedling development of Nama aff. stenophylla collected on the slope of a mine tailing dump. Int. J. Phytoremediat。 2020, 22, 1448–1461. [Google Scholar] [CrossRef]
- Nedjimi, B. Germination characteristics of Peganum harmala L. (Nitrariaceae) subjected to heavy metals: Implications for the use in polluted dryland restoration. Int. J. Environ. Sci. Technol. 2020, 17, 2113–2122. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Roig, F.A.; Carretero, E.M. La vegetación puneña en la provincia de Mendoza, Argentina. Phytocoenologia 1998, 28, 565–608. [Google Scholar] [CrossRef]
- Arreghini, S.; de Cabo, L.; Serafini, R.; de Iorio, A.F. Effect of the combined addition of Zn and Pb on partitioning in sediments and their accumulation by the emergent macrophyte Schoenoplectus californicus. Environ. Sci. Pollut. Res. 2017, 24, 8098–8107. [Google Scholar] [CrossRef]
- Olson, P.E.; Castro, A.; Joern, M.; DuTeau, N.M.; Pilon-Smits, E.A.H.; Reardon, K.F. Comparison of Plant Families in a Greenhouse Phytoremediation Study on an Aged Polycyclic Aromatic Hydrocarbon-Contaminated Soil. J. Environ. Qual. 2007, 36, 1461–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaidi, A.; Wani, P.A.; Khan, M.S. Bioremediation: A Natural Method for the Management of Polluted Environment. In Toxicity of Heavy Metals to Legumes and Bioremediation; Zaidi, A., Wani, P., Khan, M., Eds.; Springer: Vienna, Austria, 2012; pp. 101–114. [Google Scholar] [CrossRef]
- Hao, X.; Taghavi, S.; Xie, P.; Orbach, M.J.; Alwathnani, H.A.; Rensing, C.; Wei, G. Phytoremediation of Heavy and Transition Metals Aided by Legume-Rhizobia Symbiosis. Int. J. Phytoremediat. 2014, 16, 179–202. [Google Scholar] [CrossRef] [PubMed]
- Cazón, J.P.; Benítez, L.; Murray, J.; Kirschbaum, A.; Kirschbaum, P.; Donati, E. Environmental Impact on Soil, Water and Plants from the Abandoned Pan de Azúcar Mine. Adv. Mater. Res. 2013, 825, 88–91. [Google Scholar] [CrossRef]
- Lam, E.J.; Keith, B.F.; Montofré, L.; E Gálvez, M. Copper Uptake by Adesmia atacamensis in a Mine Tailing in an Arid Environment. Air, Soil Water Res. 2018, 11, 1178622118812462. [Google Scholar] [CrossRef] [Green Version]
- Kiesling, R. Flora de San Juan, República Argentina: Vol.1, Pteridófitas Gimnospermas, Dicotiledóneas, Dialipétalas (Salicáceas a leguminosas); Vazquez Mazzini: Buenos Aires, Argentina, 1994; pp. 291–301. [Google Scholar]
- Ulibarri, E.A.; Burkart, A. Sinopsis de las especies de Adesmia (Leguminosae-Papilionoideae) de la Argentina. Darwiniana 2000, 38, 59–126. [Google Scholar]
- Bae, J.; Benoit, D.L.; Watson, A.K. Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes. Environ. Pollut. 2016, 213, 112–118. [Google Scholar] [CrossRef]
- Parera, C.A.; Ruiz, M. Adesmia subterranea Clos Germination Physiology and Presowing Treatments. J. Range Manag. 2003, 56, 273. [Google Scholar] [CrossRef]
- Brenchley, J.L.; Probert, R.J. Seed germination responses to some environmental factors in the seagrass Zostera capricorni from eastern Australia. Aquat. Bot. 1998, 62, 177–188. [Google Scholar] [CrossRef]
- Wilkins, D.A. The measurement of tolerance to edaphic factors by means of root growth. New Phytol. New Phytol. 1978, 80, 623–633. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat version. InfoStat Transfer Center, FCA, National University of Córdoba, Argentina. 2020. Available online: http://www.infostat.com.ar (accessed on 8 October 2022).
- Asati, A.; Pichhode, M.; Nikhil, K. Effect of heavy metals on plants: An overview. Int. J. Appl. Innov. Eng. Manag. 2016, 5, 56–66. [Google Scholar]
- Tiwari, S.; Sarangi, B.K. Comparative analysis of antioxidant response by Pteris vittata and Vetiveria zizanioides towards arsenic stress. Ecol. Eng. 2017, 100, 211–218. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, J.S. Effects of nickel chloride on germination and seedling growth of different wheat (Triticum aestivum L. em Thell.) cultivars. J. Pharm. Phytochem. 2018, 7, 2227–2234. [Google Scholar]
- Bhalerao, S.A.; Sharma, A.S.; Poojari, A.C. Toxicity of nickel in plants. Int. J. Pure Appl. Biosci. 2015, 3, 345–355. [Google Scholar]
- Da Cunha Neto, A.R.; Carvalho, M.; Morais, G.M.M.; Guaraldo, M.M.D.S.; dos Santos, H.O.; Pereira, W.V.S.; Barbosa, S. Changes in Chromosome Complement and Germination of Lettuce (Lactuca sativa L.) Exposed to Heavy Metal Stress. Water Air Soil Pollut. 2023, 234, 243. [Google Scholar] [CrossRef]
- Vyas, M.K. The toxic effects of nickel and cadmium on germination, seedling growth and biochemical contents of Rauwolfia serpentina Benth. ex Kruz. J. Physiol. Biochem. 2022, 18, 76–87. [Google Scholar]
- Ahmad, M.A.; Gaur, R.; Gupta, M. Comparative biochemical and RAPD analysis in two varieties of rice (Oryza sativa) under arsenic stress by using various biomarkers. J. Hazard. Mater. 2012, 217, 141–148. [Google Scholar] [CrossRef]
- Ashraf, M.Y.; Sadiq, R.; Hussain, M.; Ahmad, M.S.A. Toxic Effect of Nickel (Ni) on Growth and Metabolism in Germinating Seeds of Sunflower (Helianthus annuus L.). Biol. Trace Element Res. 2011, 143, 1695–1703. [Google Scholar] [CrossRef]
- Lešková, A.; Giehl, R.F.H.; Hartmann, A.; Fargašová, A.; von Wirén, N. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels. Plant Physiol. 2017, 174, 1648–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visioli, G.; Conti, F.D.; Gardi, C.; Menta, C. Germination and root elongation bioassays in six different plant species for testing Ni contamination in soil. Bull Environ. Contam Toxicol. 2014, 92, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Ertekin, E.N.; Ertekin, İ.; Bilgen, M. Effects of some heavy metals on germination and seedling growth of sorghum. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi 2020, 23, 1608–1615. [Google Scholar] [CrossRef]
- Sanjosé, I.; Muñoz-Rodríguez, A.F.; Ruiz, F.; Navarro, F.; Sánchez-Gullón, E.; Nieva, F.J.; Polo, A.; Infante, M.D.; Castillo, J.M. Metal effects on germination and seedling development in closely-related halophyte species inhabiting different elevations along the intertidal gradient. Mar. Pollut. Bull. 2022, 175, 113375. [Google Scholar] [CrossRef] [PubMed]
- Abbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.K.; Khan, M.I.; Amjad, M.; Hussain, M.; Natasha. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. Int. J. Environ. Res. Public Health 2018, 15, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moulick, D.; Ghosh, D.; Santra, S.C. Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol. Biochem. 2016, 109, 571–578. [Google Scholar] [CrossRef]
- Chintey, R.; Prakash, P.; Kumar, K. Evaluation of Germination Attributes, Metal Tolerance Index and Phytotoxicity Index in Green Gram Cultivars [Vigna radiata (L) Wilczek] under Arsenic Toxicity. Res. Jr. Agril. Sci. 2022, 13, 1289–1292. [Google Scholar]
- Zia, Z.; Bakhat, H.F.; Saqib, Z.A.; Shah, G.M.; Fahad, S.; Ashraf, M.R.; Hammad, H.M.; Naseem, W.; Shahid, M. Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice. Ecotoxicol. Environ. Saf. 2017, 144, 11–18. [Google Scholar] [CrossRef]
- Ibrahim, M.; Nawaz, S.; Iqbal, K.; Rehman, S.; Ullah, R.; Nawaz, G.; Almeer, R.; Sayed, A.A.; Peluso, I. Plant-Derived Smoke Solution Alleviates Cellular Oxidative Stress Caused by Arsenic and Mercury by Modulating the Cellular Antioxidative Defense System in Wheat. Plants 2022, 11, 1379. [Google Scholar] [CrossRef]
- Boi, M.E.; Porceddu, M.; Cappai, G.; De Giudici, G.; Bacchetta, G. Effects of zinc and lead on seed germination of Helichrysum microphyllum subsp. tyrrhenicum, a metal-tolerant plant. Int. J. Environ. Sci. Technol. 2020, 17, 1917–1928. [Google Scholar] [CrossRef]
- Carvalho, L.C.; Vieira, C.; Abreu, M.M.; Magalhães, M.C.F. Physiological response of Cistus salviifolius L. to high arsenic concentrations. Environ. Geochem. Health 2020, 42, 2305–2319. [Google Scholar] [CrossRef] [PubMed]
- Parvez, S.; Abbas, G.; Shahid, M.; Amjad, M.; Hussain, M.; Asad, S.A.; Imran, M.; Naeem, M.A. Effect of salinity on physiological, biochemical and photostabilizing attributes of two genotypes of quinoa (Chenopodium quinoa Willd.) exposed to arsenic stress. Ecotoxicol. Environ. Saf. 2020, 187, 109814. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, Z.M. Mercury toxicity, molecular response and tolerance in higher plants. Biometals 2012, 25, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Alonso, J.; Sierra, M.J.; Lominchar, M.; Millán, R. Effects of mercury on the germination and growth of Quercus ilex L. seedlings. Environ. Sci. Pollut. Res. 2019, 26, 30930–30940. [Google Scholar] [CrossRef]
- Ansari, M.K.A.; Ahmad, A.; Umar, S.; Iqbal, M.; Zia, M.H.; Husen, A.; Owens, G. Suitability of Indian mustard genotypes for phytoremediation of mercury-contaminated sites. South Afr. J. Bot. 2021, 142, 12–18. [Google Scholar] [CrossRef]
- Kranner, I.; Colville, L. Metals and seeds: Biochemical and molecular implications and their significance for seed germination. Environ. Exp. Bot. 2011, 72, 93–105. [Google Scholar] [CrossRef]
- Agathokleous, E. Environmental hormesis, a fundamental non-monotonic biological phenomenon with implications in ecotoxicology and environmental safety. Ecotoxicol. Environ. Saf. 2018, 148, 1042–1053. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Shiyab, S.; Han, F.X.; Monts, D.L.; Waggoner, C.A.; Yang, Z.; Su, Y. Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology 2009, 18, 110–121. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.; Lv, Y.; Xu, K.; Lu, S.; Liu, X.; Yang, Y. Effect of soil mercury pollution on ginger (Zingiber officinale Roscoe): Growth, product quality, health risks and silicon mitigation. Ecotoxicol. Environ. Saf. 2020, 195, 110472. [Google Scholar] [CrossRef]
- Xun, Y.; Feng, L.; Li, Y.; Dong, H. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites. Chemosphere 2017, 189, 161–170. [Google Scholar] [CrossRef]
- Muszyńska, E.; Hanus-Fajerska, E.; Ciarkowska, K. Studies on lead and cadmium toxicity in Dianthus carthusianorum calamine ecotype cultivated in vitro. Plant Biol. 2018, 20, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Zhi, Y.; Deng, Z.; Luo, M.; Ding, W.; Hu, Y.; Deng, J.; Li, Y.; Zhao, Y.; Zhang, X.; Wu, W.; et al. Influence of Heavy Metals on Seed Germination and Early Seedling Growth in Eruca sativa Mill. Am. J. Plant Sci. 2015, 6, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Moreira, I.N.; Martins, L.L.; Mourato, M.P. Effect of Cd, Cr, Cu, Mn, Ni, Pb and Zn on seed germination and seedling growth of two lettuce cultivars (Lactuca sativa L.). Plant Physiol. Rep. 2020, 25, 347–358. [Google Scholar] [CrossRef]
- Di Toppi, L.S.; Gabbrielli, R. Response to cadmium in higher plants. Environ. Exp. Bot. 1999, 41, 105–130. [Google Scholar] [CrossRef]
- Chowardhara, B.; Borgohain, P.; Saha, B.; Awasthi, J.P.; Moulick, D.; Panda, S.K. Phytotoxicity of Cd and Zn on three popular Indian mustard varieties during germination and early seedling growth. Biocatal. Agric. Biotechnol. 2019, 21, 101349. [Google Scholar] [CrossRef]
- Lee, Y.; Jang, J.; Jeon, Y.; Kim, H.; Jang, G.; Yoon, Y. Assessing the effects of accumulated Cd(II) on seed germination and root development of Arabidopsis thaliana. Appl. Biol. Chem. 2021, 64, 1–9. [Google Scholar] [CrossRef]
- Farooqi, Z.R.; Iqbal, M.Z.; Kabir, M.; Shafiq, M. Toxic effects of lead and cadmium on germination and seedling growth of Albizia lebbeck (L.) Benth. Pak. J. Bot. 2009, 41, 27–33. [Google Scholar]
Treatment (ppm) | Radicle Length (cm) | MTI (%) | ||
---|---|---|---|---|
A. pinifolia | A. subterranea | A. pinifolia | A. subterranea | |
Control | 9.30 ± 1.84 c | 5.96 ± 1.58 c | 100 ± 0.00 c | 100 ± 0.00 c |
Cd 3 | 2.38 ± 0.51 d | 1.20 ± 0.38 e | 25.63 ± 5.44 d | 20.20 ± 6.36 d |
Cd 4.5 | 2.38 ± 0.51 d | 1.20 ± 0.38 e | 25.63 ± 5.44 d | 20.20 ± 6.36 d |
Cd 6 | 0.73 ± 0.15 e | 0.98 ± 0.24 e | 7.89 ± 1.64 e | 16.49 ± 4.08 d |
Ni 150 | 0.32 ± 0.07 f | 0.57 ± 0.11 f | 3.41 ± 0.75 f | 9.57 ± 1.87 e |
Ni 225 | 0.30 ± 0.07 f | 0.37 ± 0.08 f | 3.23 ± 0.71 f | 6.20 ± 1.37 e |
Ni 300 | 0.24 ± 0.05 f | 0.28 ± 0.07 f | 2.60 ± 0.54 f | 4.61 ± 1.11 e |
As 20 | 0.88 ± 0.15 e | 1.20 ± 0.35 e | 9.41 ± 1.59 e | 20.14 ± 5.94 d |
As 30 | 0.90 ± 0.10 e | 1.16 ± 0.25 e | 9.72 ± 1.03 e | 19.44 ± 4.14 d |
As 40 | 0.80 ± 0.10 e | 0.48 ± 0.19 f | 8.65 ± 1.03 e | 7.96 ± 3.13 e |
Hg 0.8 | 10.02 ± 1.89 b | 8.41 ± 1.27 b | 107.75 ± 20.3 b | 141.2 ± 21.3 b |
Hg 1.2 | 10.67 ± 1.13 a | 9.38 ± 1.13 a | 114.68 ± 12.2 a | 157.4 ± 19.0 a |
Hg 1.6 | 10.14 ± 1.57 b | 9.09 ± 1.35 a | 109 ± 16.85 b | 152.5 ± 22.7 a |
Species | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Heavy metal | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Species × Heavy metal | p < 0.0001 | p < 0.0001 |
Treatment (ppm) | Fresh Weight (mg) | Dry Weight (mg) | ||
---|---|---|---|---|
A. pinifolia | A. subterranea | A. pinifolia | A. subterranea | |
Control | 961.78 ± 36 a | 685.72 ± 151.1 a | 100.88 ± 6.2 a | 87.4 ± 10.1 a |
Cd 3 | 659.88 ± 123.2 c | 507.75 ± 98.8 b | 89.05 ± 7.6 b | 71.0 ± 15.4 b |
Cd 4.5 | 579.25 ± 39 c | 508.82 ± 113.9 b | 85.38 ± 9.9 b | 73.25 ± 11.7 b |
Cd 6 | 561.95 ± 42.8 c | 501.02 ± 9.6 b | 84.00 ± 9.6 b | 78.82 ± 6.5 b |
Ni 150 | 269.20 ± 20.8 e | 209.57 ± 4.6 c | 83.9 ± 4.7 b | 73.83 ± 16.8 b |
Ni 225 | 242.70 ± 7 e | 194.87 ± 2.2 c | 77.73 ± 2.2 b | 65.57 ± 4.1 b |
Ni 300 | 245.28 ± 33 e | 160.37 ± 15.5 c | 72.03 ± 3.2 b | 53.2 ± 10.6 b |
As 20 | 455.83 ± 35 d | 353.35 ± 51 c | 78.5 ± 3.2 b | 54 ± 3.9 b |
As 30 | 399.65 ± 54.7 d | 341.62 ± 30.8 c | 64.4 ± 12.7 c | 58.9 ± 5.6 b |
As 40 | 279.35 ± 104.8 e | 284.5 ± 56.7 c | 48.24 ± 12.7 d | 59.3 ± 15.5 b |
Hg 0.8 | 794.73 ± 151.2 b | 818.6 ± 110.3 a | 87.78 ± 5.3 b | 87.85 ± 7.6 a |
Hg 1.2 | 948.83 ± 185.7 a | 807.62 ± 171.1 a | 104.95 ± 10.1 a | 90.43 ± 13.1 a |
Hg 1.6 | 759.55 ± 7.6 b | 841.77 ± 103.6 a | 87.53 ± 3.2 b | 91.85 ± 14.1 a |
Species | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Heavy metal | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Species × Heavy metal | p = 0.0397 | p = 0.0345 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parera, V.; Parera, C.A.; Feresin, G.E. Germination and Early Seedling Growth of High Andean Native Plants under Heavy Metal Stress. Diversity 2023, 15, 824. https://doi.org/10.3390/d15070824
Parera V, Parera CA, Feresin GE. Germination and Early Seedling Growth of High Andean Native Plants under Heavy Metal Stress. Diversity. 2023; 15(7):824. https://doi.org/10.3390/d15070824
Chicago/Turabian StyleParera, Victoria, Carlos Alberto Parera, and Gabriela Egly Feresin. 2023. "Germination and Early Seedling Growth of High Andean Native Plants under Heavy Metal Stress" Diversity 15, no. 7: 824. https://doi.org/10.3390/d15070824
APA StyleParera, V., Parera, C. A., & Feresin, G. E. (2023). Germination and Early Seedling Growth of High Andean Native Plants under Heavy Metal Stress. Diversity, 15(7), 824. https://doi.org/10.3390/d15070824