A Shift in Communities of Conspicuous Macrocrustaceans Associated with Caribbean Coral Reefs following A Series of Environmental Stressors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Macrocrustacean Surveys
2.3. Benthic Community Structure
2.4. Data Analysis
3. Results
3.1. Benthic Community Structure
3.2. Macrocrustacean Assemblages
3.3. Microhabitat use by Macrocrustaceans
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Limones | Bonanza | |||
---|---|---|---|---|
Species | 2015 | 2022 | 2015 | 2022 |
ORDER DECAPODA | ||||
Superfamily Penaeoidea | ||||
Metapenaeopsis goodei (Smith, 1885) | 1 | 1 | 1 | 1 |
Infraorder Achelata | ||||
Panulirus argus (Latreille, 1804) | 4 | 5 | 18 | 6 |
Panulirus guttatus (Laterille, 1804) | 3 | 0 | 1 | 0 |
Parribacus antarcticus (Lund, 1793) | 0 | 0 | 1 | 0 |
Phyllamphion gundlachi (von Martens, 1878) | 1 | 0 | 0 | 0 |
Scyllarides aequinoctialis (Lund, 1793) | 6 | 0 | 0 | 6 |
Infraorder Anomura | ||||
Anomuran A | 0 | 0 | 1 | 0 |
Calcinus tibicen (Herbst, 1791) | 1143 | 1462 | 1002 | 869 |
Clibanarius tricolor (Gibbes, 1850) | 0 | 47 | 0 | 5094 |
Pachycheles pilosus (H. Milne Edwards, 1837) | 3 | 4 | 0 | 0 |
Paguristes anomalus (Bouvier, 1918) | 15 | 126 | 66 | 205 |
Paguristes cadenati (Forest, 1954) | 18 | 59 | 0 | 0 |
Paguristes erythrops (Holthuis, 1959) | 18 | 59 | 0 | 0 |
Paguristes puncticeps (Benedict, 1901) | 4 | 57 | 19 | 53 |
Paguristes tortugae (Schmitt, 1933) | 0 | 74 | 84 | 40 |
Pagurus brevidactylus (Stimpson, 1859) | 48 | 348 | 97 | 381 |
Pagurus marshi (Benedict, 1901) | 0 | 0 | 0 | 42 |
Pagurus provenzanoi (Forest and de Saint Laurent, 1968) | 0 | 11 | 0 | 7 |
Petrolisthes caribensis (Werding, 1983) | 0 | 0 | 0 | 1 |
Petrolisthes galathinus (Bosc, 1801) | 38 | 11 | 5 | 10 |
Phimochirus holthuisi (Provenzano, 1961) | 5 | 1 | 0 | 0 |
Porcellanid A | 0 | 3 | 0 | 0 |
Porcellanid B | 0 | 6 | 0 | 0 |
Pylopaguridium markhami (McLaughlin anf Lemaitre, 2001) | 0 | 15 | 0 | 0 |
Infraorder Axiidae | ||||
Axiopsis serratifrons (A. Milne-Edwards, 1873) | 4 | 44 | 12 | 17 |
Corallianassa longiventris (A. Milne-Edwards, 1870) | 1 | 10 | 19 | 28 |
Infraorder Brachyura | ||||
Achelous sebae (H. Milne-Edwards, 1834) | 1 | 1 | 0 | 1 |
Actaea acantha (H. Milne-Edwards, 1834) | 0 | 0 | 2 | 1 |
Amphithrax aculeatus (Herbst, 1790) | 11 | 23 | 45 | 7 |
Calappa gallus (Herbst, 1803) | 0 | 1 | 0 | 1 |
Carpilius corallinus (Herbst, 1783) | 0 | 0 | 1 | 0 |
Domecia acanthophora (Desbonne in Desbonne and Schramm, 1867) | 377 | 75 | 45 | 0 |
Epialtus bituberculatus (H. Milne Edwards, 1834) | 0 | 0 | 0 | 5 |
Epialtus longirostris (Stimpson, 1860) | 0 | 2 | 0 | 0 |
Grapsoid A | 0 | 0 | 0 | 1 |
Macrocoeloma diplacanthum (Stimpson, 1860) | 0 | 1 | 5 | 28 |
Macrocoeloma subparellelum (Stimpson, 1860) | 0 | 2 | 14 | 12 |
Macrocoeloma trispinosum (Latreille, 1825) | 0 | 1 | 2 | 0 |
Majoid A | 2 | 0 | 0 | 0 |
Majoid B | 0 | 0 | 1 | 0 |
Majoid C | 0 | 0 | 1 | 0 |
Majoid D | 0 | 0 | 1 | 0 |
Maguimithrax spinosissimus (Lamarck, 1818) | 1 | 0 | 0 | 0 |
Mithraculus cinctimanus (Stimpson, 1860) | 3 | 0 | 3 | 1 |
Mithraculus coryphe (Herbst, 1801) | 290 | 1064 | 1071 | 1021 |
Mithraculus forceps (A. Milne-Edwards, 1875) | 0 | 8 | 2 | 9 |
Mithraculus sculptus (Lamarck, 1818) | 17 | 53 | 70 | 168 |
Mithrax hispidus (Herbst, 1790) | 1 | 9 | 0 | 0 |
Mithrax pleuracanthus (Stimpson, 1871) | 0 | 3 | 0 | 0 |
Nemausa acuticornis (Stimpson, 1871) | 2 | 7 | 0 | 1 |
Nonala holderi (Stimpson, 1871) | 0 | 0 | 7 | 0 |
Omalacantha bicornuta (Latreille, 1825) | 1 | 9 | 43 | 25 |
Percnon gibbesi (H. Milne-Edwards, 1853) | 7 | 11 | 8 | 2 |
Pitho lherminieri (Desbonne in Desbonne and Schramm, 1867) | 0 | 11 | 1 | 25 |
Pitho mirabilis (Herbst, 1794) | 0 | 0 | 1 | 0 |
Podochela macrodera (Stimpson, 1860) | 0 | 2 | 1 | 0 |
Ratha longimana (H. Milne-Edwards, 1834) | 0 | 17 | 2 | 0 |
Stenorhynchus seticornis (Herbst, 1788) | 0 | 0 | 1 | 2 |
Teleophrys ruber (Stimpson, 1871) | 40 | 21 | 95 | 5 |
Thoe puella (Stimpson, 1860) | 0 | 0 | 0 | 2 |
Williamstimpsonia denticulatus (White, 1848) | 0 | 8 | 0 | 11 |
Xanthoid A | 1 | 1 | 0 | 0 |
Xanthoid B | 1 | 1 | 0 | 0 |
Xanthoid C | 0 | 0 | 1 | 0 |
Xanthoid D | 0 | 0 | 1 | 0 |
Xanthoid E | 0 | 0 | 1 | 0 |
Infraorder Caridea | ||||
Alpheus armatus (Rathbun, 1901) | 4 | 4 | 19 | 6 |
Ancylomenes pedersoni (Chace, 1958) | 0 | 0 | 2 | 6 |
Brachycarpus biunguiculatus (Lucas, 1846) | 0 | 0 | 1 | 0 |
Caridean A | 3 | 2 | 0 | 0 |
Caridean B | 0 | 1 | 0 | 0 |
Cinetorhynchus manningi (Okuno, 1996) | 2 | 1 | 0 | 0 |
Cinetorhynchus rigens (Gordon, 1936) | 1 | 0 | 1 | 0 |
Lysmata wurdemanni (Gibbes, 1850) | 1 | 0 | 1 | 0 |
Periclimenes rathbunae Schmitt, 1924 | 0 | 5 | 0 | 3 |
Periclimenes yucatanicus (Ives, 1891) | 0 | 0 | 0 | 2 |
Synalpheus sp. | 1 | 0 | 0 | 0 |
Thor dicaprio (Anker and Baeza, 2021) | 0 | 4 | 19 | 89 |
Trachycaris rugosa (Spence Bate, 1888) | 0 | 0 | 0 | 1 |
Infraorder Gebiidea | ||||
Thalassina sp. | 0 | 0 | 0 | 2 |
Infraorder Stenopodidea | ||||
Stenopus hispidus (Olivier, 1811) | 0 | 2 | 3 | 2 |
ORDER STOMATOPODA | ||||
Neogonodactylus bredini (Manning, 1969) | 0 | 0 | 0 | 1 |
Neogonodactylus oerstedii (Hansen, 1895) | 15 | 24 | 57 | 38 |
Neogonodactylus torus (Manning, 1969) | 0 | 2 | 1 | 8 |
Pseudosquilla ciliata (Fabricius, 1787) | 0 | 0 | 0 | 1 |
Total individuals | 2071 | 3660 | 2805 | 8244 |
Total species | 37 | 50 | 49 | 49 |
Appendix B
(A) Limones 2015 | ||||||
Average similarity: 48.33 | ||||||
Species | Av.Abund | Av.Sim | Sim/SD | Contrib% | Cum% | |
Calcinus tibicen | 5.71 | 27.34 | 2.74 | 56.57 | 56.57 | |
Mithraculus coryphe | 2.66 | 10.75 | 1.66 | 22.25 | 78.82 | |
Domecia acanthophora | 2.22 | 4.00 | 0.50 | 8.27 | 87.09 | |
Petrolisthes galathinus | 0.73 | 1.48 | 0.48 | 3.07 | 90.16 | |
(B) Limones 2022 | ||||||
Average similarity: 50.06 | ||||||
Species | Av.Abund | Av.Sim | Sim/SD | Contrib% | Cum% | |
Mithraculus coryphe | 5.43 | 15.37 | 2.7 | 30.71 | 30.71 | |
Calcinus tibicen | 6.07 | 15.13 | 1.55 | 30.22 | 60.93 | |
Pagurus brevidactylus | 3.08 | 8.61 | 1.69 | 17.2 | 78.12 | |
Paguristes puncticeps | 1.09 | 2.33 | 0.85 | 4.66 | 82.78 | |
Paguristes anomalus | 1.43 | 2.28 | 0.57 | 4.56 | 87.34 | |
Domecia acanthophora | 0.9 | 1.05 | 0.4 | 2.09 | 89.43 | |
Axiopsis serratifrons | 0.76 | 0.98 | 0.53 | 1.95 | 91.38 | |
(C) Bonanza 2015 | ||||||
Average similarity: 46.01 | ||||||
Species | Av.Abund | Av.Sim | Sim/SD | Contrib% | Cum% | |
Mithraculus coryphe | 5.21 | 17.79 | 3.02 | 38.66 | 38.66 | |
Calcinus tibicen | 5.13 | 15.53 | 1.88 | 33.75 | 72.41 | |
Neogonodactylus oerstedii | 1.08 | 2.81 | 0.85 | 6.10 | 78.52 | |
Pagurus brevidactylus | 1.32 | 2.50 | 0.74 | 5.43 | 83.95 | |
Mithraculus sculptus | 1.07 | 2.16 | 0.60 | 4.70 | 88.64 | |
Paguristes tortugae | 0.93 | 0.83 | 0.35 | 1.81 | 90.45 | |
(D) Bonanza 2022 | ||||||
Average similarity: 46.23 | ||||||
Species | Av.Abund | Av.Sim | Sim/SD | Contrib% | Cum% | |
Mithraculus coryphe | 5.56 | 16.88 | 2.65 | 36.51 | 36.51 | |
Calcinus tibicen | 4.26 | 8.16 | 1.16 | 17.65 | 54.17 | |
Pagurus brevidactylus | 2.99 | 6.83 | 1.22 | 14.77 | 68.93 | |
Paguristes anomalus | 1.96 | 3.34 | 0.74 | 7.23 | 76.16 | |
Mithraculus sculptus | 1.71 | 3.13 | 0.79 | 6.78 | 82.94 | |
Thor dicaprio | 1.09 | 1.37 | 0.51 | 2.95 | 85.89 | |
Paguristes puncticeps | 0.86 | 1.12 | 0.47 | 2.42 | 88.32 | |
Neogonodactylus oerstedii | 0.75 | 1.05 | 0.52 | 2.27 | 90.59 | |
(E) Limones 2015 vs. Limones 2022 | ||||||
Average dissimilarity = 59.69 | ||||||
Lim2015 | Lim2022 | |||||
Species | Av.Abund. | Av.Abund. | Av.Dissim. | Dis/SD | Contrib% | Cum% |
Calcinus tibicen | 5.71 | 6.07 | 8.07 | 1.37 | 13.52 | 13.52 |
Mithraculus coryphe | 2.66 | 5.43 | 7.79 | 1.31 | 13.05 | 26.57 |
Pagurus brevidactylus | 0.70 | 3.08 | 6.37 | 1.61 | 10.68 | 37.25 |
Domecia acanthophora | 2.22 | 0.90 | 5.44 | 0.94 | 9.11 | 46.36 |
Paguristes anomalus | 0.20 | 1.43 | 3.50 | 0.96 | 5.86 | 52.22 |
(F) Bonanza 2015 vs. Bonanza 2022 | ||||||
Average dissimilarity = 57.64 | ||||||
Bon2015 | Bon2022 | |||||
Species | Av.Abund. | Av.Abund. | Av.Dissim. | Dis/SD | Contrib% | Cum% |
Calcinus tibicen | 5.13 | 4.26 | 7.39 | 1.30 | 12.82 | 12.82 |
Mithraculus coryphe | 5.21 | 5.56 | 5.19 | 1.15 | 9.01 | 21.83 |
Pagurus brevidactylus | 1.32 | 2.99 | 4.82 | 1.31 | 8.37 | 30.20 |
Paguristes anomalus | 0.70 | 1.96 | 3.98 | 1.12 | 6.90 | 37.09 |
Mithraculus sculptus | 1.07 | 1.71 | 3.35 | 1.04 | 5.82 | 42.91 |
Clibanarius tricolor | 0.00 | 2.85 | 2.90 | 0.26 | 5.03 | 47.94 |
Thor dicaprio | 0.31 | 1.09 | 2.39 | 0.88 | 4.15 | 52.09 |
(G) Limones 2015 vs. Bonanza 2015 | ||||||
Average dissimilarity = 58.97 | ||||||
Lim2015 | Bon2015 | |||||
Species | Av.Abund. | Av.Abund. | Av.Dissim. | Dis/SD | Contrib% | Cum% |
Calcinus tibicen | 5.71 | 5.13 | 8.61 | 1.21 | 14.61 | 14.61 |
Mithraculus coryphe | 2.66 | 5.21 | 8.13 | 1.34 | 13.79 | 28.39 |
Domecia acanthophora | 2.22 | 0.46 | 6.05 | 0.80 | 10.26 | 38.65 |
Mithraculus sculptus | 0.70 | 1.32 | 3.48 | 1.15 | 5.90 | 44.55 |
Pagurus brevidactylus | 0.40 | 1.07 | 3.00 | 0.96 | 5.09 | 49.64 |
Teleophrys ruber | 0.71 | 0.88 | 2.91 | 0.92 | 4.93 | 54.57 |
(H) Limones 2022 vs. Bonanza 2022 | ||||||
Average dissimilarity = 54.85 | ||||||
Lim2022 | Bon2022 | |||||
Species | Av.Abund. | Av.Abund. | Av.Dissim. | Dis/SD | Contrib% | Cum% |
Calcinus tibicen | 6.07 | 4.26 | 7.8 | 1.37 | 14.23 | 14.23 |
Mithraculus coryphe | 5.43 | 5.56 | 4.56 | 1.28 | 8.31 | 22.54 |
Pagurus brevidactylus | 3.08 | 2.99 | 3.58 | 1.19 | 6.53 | 29.07 |
Paguristes anomalus | 1.43 | 1.96 | 3.43 | 1.21 | 6.26 | 35.32 |
Clibanarius tricolor | 0.32 | 2.85 | 3.15 | 0.29 | 5.74 | 41.06 |
Mithraculus sculptus | 0.83 | 1.71 | 3.05 | 1.03 | 5.56 | 46.63 |
Paguristes tortugae | 0.87 | 0.6 | 2.07 | 0.9 | 3.78 | 50.41 |
References
- Hoegh-Guldberg, O.; Mumby, P.J.; Hooten, A.J.; Steneck, R.S.; Greenfield, P.; Gomez, E.; Harvell, C.D.; Sale, P.F.; Edwards, A.J.; Caldeira, K.; et al. Coral reefs under rapid climate change and ocean acidification. Science 2007, 318, 1737–1742. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.P.; Barnes, M.L.; Bellwood, D.R.; Cinner, J.E.; Cumming, G.S.; Jackson, J.B.C.; Kleypas, J.; van de Leemput, I.A.; Lough, J.M.; Morrison, T.H.; et al. Coral reefs in the Anthropocene. Nature 2017, 546, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Álvarez Filip, L.; Dulvy, N.C.; Gill, J.A.; Côté, I.M.; Watkinson, A.R. Flattening of Caribbean coral reefs: Region-wide declines in architectural complexity. Proc. R. Soc. B 2009, 276, 3019–3025. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.B.C.; Donovan, M.; Cramer, K.; Lam, V. Status and Trends of Caribbean Coral Reefs: 1970–2012; Global Coral Reef Monitoring Network, IUCN: Gland, Switzeland, 2014. [Google Scholar]
- Díaz-Pérez, L.; Rodríguez-Zaragoza, F.A.; Ortiz, M.; Cupul-Magaña, A.L.; Carriquiry, J.D.; Ríos-Jara, E.; Rodríguez-Troncoso, A.P.; García-Rivas, M.C. Coral reef health indices versus the biological, ecological and functional diversity of fish and coral assemblages in the Caribbean Sea. PLoS ONE 2016, 11, e0161812. [Google Scholar]
- Álvarez-Filip, L.; Gill, J.A.; Dulvy, N.K. Complex reef architecture supports more small-bodied fishes and longer food chains on Caribbean reefs. Ecosphere 2011, 2, 118. [Google Scholar] [CrossRef]
- Morillo-Velarde, P.S.; Briones-Fourzán, P.; Álvarez-Filip, L.; Aguíñiga-García, S.; Sánchez-González, A.; Lozano-Álvarez, E. Habitat degradation alters trophic pathways but not food chain length on shallow Caribbean coral reefs. Sci. Rep. 2018, 8, 4109. [Google Scholar] [CrossRef]
- Gómez, I.; Silva, R.; Lithgow, D.; Rodríguez, J.; Banaszak, A.T.; van Tussenbroek, B. A review of disturbances to the ecosystems of the Mexican Caribbean, their causes and consequences. J. Mar. Sci. Eng. 2022, 10, 644. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, R.E.; Ruiz-Rentería, F.; van Tussenbroek, B.; Barba-Santos, G.; Escalante-Mancera, E.; Jordán-Garza, G.; Jordán-Dahlgren, E. Environmental state and tendencies of the Puerto Morelos CARICOMP site, Mexico. Rev. Biol. Trop. 2010, 58, 23–43. [Google Scholar]
- Suchley, A.; Álvarez-Filip, L. Local human activities limit marine protection efficacy on Caribbean coral reefs. Conserv. Lett. 2018, 11, e12571. [Google Scholar] [CrossRef]
- Velázquez-Ochoa, R.; Enríquez, S. Environmental degradation of the Mexican Caribbean reef lagoons. Mar. Poll. Bull. 2023, 191, 114947. [Google Scholar] [CrossRef]
- van Tussenbroek, B.I.; Hernández-Arana, H.A.; Rodríguez-Martínez, R.E.; Espinoza-Avalos, J.; Canizales-Flores, H.M.; González-Godoy, C.E.; Barba-Santos, M.G.; Vega-Zepeda, A.; Collado-Vides, L. Severe impacts of brown tides caused by Sargassum spp. on near-shore Caribbean seagrass communities. Mar. Poll. Bull. 2017, 122, 272–281. [Google Scholar] [CrossRef]
- Chávez, V.; Uribe-Martínez, A.; Cuevas, E.; Rodríguez-Martínez, R.E.; van Tussenbroek, B.I.; Francisco, V.; Estévez, M.; Celis, L.B.; Monroy-Velázquez, L.V.; Leal-Bautista, R.; et al. Massive influx of pelagic Sargassum spp. on the coasts of the Mexican Caribbean 2014–2020: Challenges and opportunities. Water 2020, 12, 2908. [Google Scholar] [CrossRef]
- Álvarez-Filip, L.; Estrada-Saldívar, N.; Pérez-Cervantes, E.; Molina-Hernández, A.; González-Barrios, F.J. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 2019, 7, e8069. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hu, C.; Barnes, B.B.; Mitchum, G.; Lapointe, B.; Montoya, J.P. The great Atlantic Sargassum belt. Science 2019, 365, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas-Terán, N.; Hernández-Arana, H.A.; Ruiz-Zárate, M.A.; Vega-Zepeda, A.; Sánchez-González, A. Sargassum blooms in the Caribbean alter the trophic structure of the sea urchin Diadema antillarum. PeerJ 2019, 7, e7589. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, R.E.; Medina-Valmaseda, A.E.; Blanchon, P.; Monroy-Velázquez, L.V.; Almazán-Becerril, A.; Delgado-Pech, B.; Vásquez-Yeomans, L.; Francisco, V.; García-Rivas, M.C. Faunal mortality associated with massive beaching and decomposition of pelagic Sargassum. Mar. Poll. Bull. 2019, 146, 201–205. [Google Scholar] [CrossRef]
- Rodríguez-Muñoz, R.; Muñiz-Castillo, A.I.; Euán-Ávila, J.I.; Hernández-Núñez, H.; Valdéz-Lozano, D.S.; Collí-Dulá, R.C.; Arias-González, J.E. Assessing temporal dynamics on pelagic Sargassum influx and its relationship with water quality parameters in the Mexican Caribbean. Reg. Stud. Mar. Sci. 2021, 48, 102005. [Google Scholar] [CrossRef]
- Monroy-Velázquez, L.V.; Rodríguez-Martínez, R.E.; van Tussenbroek, B.I.; Aguiar, T.; Solís-Weiss, V.; Briones-Fourzán, P. Motile macrofauna associated with pelagic Sargassum in a Mexican reef lagoon. J. Environ. Manag. 2019, 252, 109650. [Google Scholar] [CrossRef]
- Estrada-Saldívar, N.; Jordán-Dahlgren, E.; Rodríguez-Martínez, R.E.; Perry, C.; Álvarez-Filip, L. Functional consequences of the long-term decline of reef-building corals in the Caribbean: Evidence of across-reef functional convergence. R. Soc. Open Sci. 2019, 6, 190298. [Google Scholar] [CrossRef]
- Precht, W.F.; Gintert, B.E.; Robbart, M.L.; Fura, R.; van Woesik, R. Unprecedented disease-related coral mortality in southeastern Florida. Sci. Rep. 2016, 6, 31374. [Google Scholar] [CrossRef]
- Álvarez-Filip, L.; González-Barrios, F.J.; Pérez-Cervantes, E.; Molina-Hernández, A.; Estrada-Saldívar, N. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Commun. Biol. 2022, 5, 440. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Saldívar, N.; Molina-Hernández, A.; Pérez-Cervantes, E.; Medellín-Maldonado, F.; González-Barrios, F.J.; Álvarez-Filip, L. Reef-scale impacts of the stony coral tissue loss disease outbreak. Coral Reefs 2020, 39, 861–866. [Google Scholar] [CrossRef]
- Glynn, P.W.; Enochs, I.C. Invertebrates and their roles in coral reef ecosystems. In Coral Reefs: An Ecosystem in Transition; Dubinsky, Z., Stambler, N., Eds.; Springer: Berlin, Germany, 2011; pp. 273–325. [Google Scholar]
- Stella, J.S.; Pratchett, M.S.; Hutchings, P.A.; Jones, G.P. Coral-associated invertebrates: Diversity, ecological importance, and vulnerability to disturbance. Oceanogr. Mar. Biol. Annu. Rev. 2011, 49, 43–104. [Google Scholar]
- Stella, J.S.; Wolfe, K.; Roff, G.; Rogers, A.; Priest, M.; Golbuu, Y.; Mumby, P.J. Functional and phylogenetic responses of motile cryptofauna to habitat degradation. J. Anim. Ecol. 2022, 91, 2203–2219. [Google Scholar] [CrossRef]
- Nelson, H.R.; Kuempel, C.D.; Altieri, A.H. The resilience of reef invertebrate biodiversity to coral mortality. Ecosphere 2016, 7, e1399. [Google Scholar] [CrossRef]
- Plaisance, L.; Knowlton, A.N.; Paulay, A.G.; Meyer, A.C. Reef associated crustacean fauna: Biodiversity estimates using semiquantitative sampling and DNA barcoding. Coral Reefs 2009, 28, 977–986. [Google Scholar] [CrossRef]
- Kramer, M.J.; Bellwood, D.R.; Bellwood, O. Benthic Crustacea on coral reefs: A quantitative survey. Mar. Ecol. Prog. Ser. 2014, 511, 105–116. [Google Scholar] [CrossRef]
- Head, C.E.I.; Bonsall, M.B.; Koldewey, H.; Pratchett, M.S.; Speight, M.; Rogers, A.D. High prevalence of obligate coral-dwelling decapods on dead corals in the Chagos Archipielago, central Indian Ocean. Coral Reefs 2015, 34, 905–915. [Google Scholar] [CrossRef]
- Fabricius, K.E.; De’ath, G.; Noonan, S.; Uthicke, S. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities. Proc. R. Soc. B 2014, 281, 20132497. [Google Scholar] [CrossRef]
- Idjadi, J.A.; Edmunds, P.J. Scleractinian corals as facilitators for other invertebrates on a Caribbean reef. Mar. Ecol. Prog. Ser. 2006, 319, 117–127. [Google Scholar] [CrossRef]
- Enochs, I.C. Motile cryptofauna associated with live and dead coral substrates: Implications for coral mortality and framework erosion. Mar. Biol. 2012, 159, 709–722. [Google Scholar] [CrossRef]
- Enochs, I.C.; Manzello, D.H. Responses of cryptofaunal species richness and trophic potential to coral reef habitat degradation. Diversity 2012, 4, 94–104. [Google Scholar] [CrossRef]
- González-Gómez, R.; Briones-Fourzán, P.; Álvarez-Filip, L.; Lozano-Álvarez, E. Diversity and abundance of conspicuous macrocrustaceans on coral reefs differing in level of degradation. PeerJ 2018, 6, e4922. [Google Scholar] [CrossRef] [PubMed]
- Salas-Moya, C.; Fabregat-Malé, S.; Vargas-Castillo, R.; Valverde, J.M.; Vásquez-Fallas, F.; Sibaja-Cordero, J.; Alvarado, J.J. Pocillopora cryptofauna and their response to host coral mortality. Symbiosis 2021, 84, 91–103. [Google Scholar] [CrossRef]
- Gardner, T.A.; Côté, I.M.; Gill, J.A.; Grant, A.; Watkinson, A.R. Hurricanes and Caribbean coral reefs: Impacts, recovery trajectories, and role in long-term decline. Ecology 2005, 86, 174–184. [Google Scholar] [CrossRef]
- Madin, J.S.; Connolly, S.R. Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 2006, 444, 477–480. [Google Scholar] [CrossRef]
- Bozec, Y.-M.; Alvarez-Filip, L.; Mumby, P.J. The dynamics of architectural complexity on coral reefs under climate change. Glob. Chang. Biol. 2015, 21, 223–235. [Google Scholar] [CrossRef]
- Lozano-Álvarez, E.; Luviano-Aparicio, N.; Negrete-Soto, F.; Barradas-Ortiz, C.; Aguíñiga-García, S.; Morillo-Velarde, P.S.; Álvarez-Filip, L.; Briones-Fourzán, P. Does reef architectural complexity influence resource availability for a large reef-dwelling invertebrate? J. Sea Res. 2017, 128, 84–91. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, R.E.; Banaszak, A.T.; McField, M.D.; Beltrán-Torres, A.U.; Álvarez-Filip, L. Assessment of Acropora palmata in the Mesoamerican reef system. PLoS ONE 2014, 9, e96140. [Google Scholar] [CrossRef]
- Stewart-Oaten, A.; Murdoch, W.W. Environmental impact assessment: Pseudoreplication in time? Ecology 1986, 67, 929–940. [Google Scholar] [CrossRef]
- Lessios, H.A. Methods for quantifying abundance of marine organisms. In Methods and Techniques of Underwater Research; Lang, M.A., Baldwin, C.C., Eds.; American Academy of Underwater Sciences: Nahant, MA, USA, 1996; pp. 149–157. [Google Scholar]
- Davies, C.E.; Briones-Fourzán, P.; Lozano-Álvarez, E. Untangling the effects of size, habitat and invertebrate biodiversity on parasite prevalence in the Caribbean spiny lobster. Mar. Biol. 2019, 166, 113. [Google Scholar] [CrossRef]
- Hill, J.; Wilkinson, C. Methods for Ecological Monitoring of Coral Reefs; Australian Institute of Marine Science: Townsville, Australia, 2004. [Google Scholar]
- Estrada-Saldívar, N.; Pérez-Cervantes, E.; Navarro-Espinoza, E.; Secaira-Fajardo, F.; Alvarez-Filip, L. Efectos del Huracán Delta en los Arrecifes del Norte de Quintana Roo; UNAM-The Nature Conservancy: Mérida, México, 2022. [Google Scholar]
- Warton, D.I.; Hui, F.K.C. The arcsine is asinine: The analysis of proportions in ecology. Ecology 2011, 92, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Nimon, K.F. Statistical assumptions of substantive analyses across the general linear model: A mini-review. Front. Psychol. 2012, 3, 322. [Google Scholar] [CrossRef] [PubMed]
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Müller, C.; Obermaier, E.; Prati, D.; et al. Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 2014, 4, 3514–3524. [Google Scholar] [CrossRef]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Clarke, K.R.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed.; PRIMER-E: Plymouth, UK, 2001. [Google Scholar]
- Knowlton, N.; Brainard, R.E.; Fisher, R.; Moews, M.; Plaisance, L.; Caley, M.J. Coral reef biodiversity. In Life in the World’s Oceans; McIntyre, A.D., Ed.; Wiley-Blackwell: Chichester, UK, 2010; pp. 65–77. [Google Scholar]
- Munro, C. Diving. In Methods for the Study of Marine Benthos, 4th ed.; Eleftheriou, A., Ed.; Wiley-Blackwell: Oxford, UK, 2013; pp. 125–174. [Google Scholar]
- Marks, K.W.; Lang, Y.J.C. AGRRA Summary Products, Version (2018-03). 2018. Available online: http:www.agrra.org/data-explorer/explore-summary-products (accessed on 3 February 2020).
- Perera-Valderrama, S.; Cerdeira-Estrada, S.; Martell-Dubois, R.; Rosique-de la Cruz, L.O.; Caballero-Aragón, H.; Ressl, R. Protocolos de Monitoreo de la Biodiversidad Marina en Áreas Naturales Protegidas del Caribe Mexicano; Conabio: Ciudad de México, Mexico, 2020. [Google Scholar]
- Giraldes, B.W.; Coelho, A.P.; Macedo, P.T.; Freire, S.A. The ghost of the past anthropogenic impact: Reef-decapods as bioindicators of threatened marine ecosystems. Ecol. Indic. 2021, 133, 108465. [Google Scholar] [CrossRef]
- Roff, G.; Wabnitz, C.C.C.; Harborne, A.R.; Mumby, P.J. Macroalgal associations of motile epifaunal invertebrate communities on coral reefs. Mar. Ecol. 2013, 34, 409–419. [Google Scholar] [CrossRef]
- Wolfe, K.; Kenyon, T.M.; Mumby, P.J. The biology and ecology of coral rubble and implications for the future of coral reefs. Coral Reefs 2021, 40, 1769–1806. [Google Scholar] [CrossRef]
- Ford, A.K.; Bejarano, S.; Nugues, M.M.; Visser, P.M.; Albert, S.; Ferse, S.C.A. Reefs under siege—The rise, putative drivers, and consequences of benthic cyanobacterial mats. Front. Mar. Sci. 2018, 5, 18. [Google Scholar] [CrossRef]
- Newman, S.P.; Meesters, E.H.; Dryden, C.S.; Williams, S.M.; Sanchez, C.; Mumby, P.J.; Polunin, N.V.C. Reef flattening effects on total richness and species responses in the Caribbean. J. Anim. Ecol. 2015, 84, 1678–1689. [Google Scholar] [CrossRef]
- Pérez-Cervantes, E.; Pardo-Urrutia, F.; Álvarez-Filip, L.; Secaira-Fajardo, F.; Ruiz-Alvarado, C.; Álvarez-Rocha, M. Daños Causados por Huracanes a los Arrecifes de Coral en el Caribe y su Correlación con las Características de los Huracanes y los Arrecifes; Iniciativa Mesoamericana de Rescate de Arrecifes; MAR Fund, UNAM, and The Nature Conservancy: Ciudad de México, México, 2020. [Google Scholar]
- Highsmith, R.C. Reproduction by fragmentation in corals. Mar. Ecol. Prog. Ser. 1982, 7, 207–226. [Google Scholar] [CrossRef]
- Knowlton, N.; Lang, J.C.; Rooney, M.C.; Clifford, P. Evidence for delayed mortality in hurricane-damaged Jamaican staghorn corals. Nature 1981, 294, 251–252. [Google Scholar] [CrossRef]
- Edmunds, P.J. Three decades of degradation lead to diminished impacts of severe hurricanes on Caribbean reefs. Ecology 2019, 100, e02587. [Google Scholar] [CrossRef]
- López-Mendoza, P.G.; Ruiz-Fernández, A.C.; Sánchez-Cabeza, J.A.; van Tussenbroek, B.I.; Cuéllar-Martínez, T.; Pérez-Bernal, L.H. Temporal trends of organic carbon accumulation in seagrass meadows from the northern Mexican Caribbean. Catena 2020, 194, 104645. [Google Scholar] [CrossRef]
- Coen, L.D. Herbivory by crabs and the control of algal epibionts on Caribbean host corals. Oecologia 1988, 75, 198–203. [Google Scholar] [CrossRef]
- Coen, L.D. Herbivory by Caribbean majid crabs: Feeding ecology and plant susceptibility. J. Exp. Mar. Biol. Ecol. 1988, 122, 257–276. [Google Scholar] [CrossRef]
- Stachowicz, J.J.; Hay, M.E. Facultative mutualism between an herbivorous crab and a coralline alga: Advantages of eating noxious seaweeds. Oecologia 1996, 105, 377–387. [Google Scholar] [CrossRef]
- Stachowicz, J.J.; Hay, M.E. Mutualism and coral persistence: The role of herbivore resistance to algal chemical defense. Ecology 1999, 80, 2085–2101. [Google Scholar] [CrossRef]
- Hazlett, B.A. Social behavior of the Paguridae and Diogenidae of Curaçao. Stud. Fauna Curaçao Other Caribb. Isl. 1966, 23, 1–143. [Google Scholar]
- Hazlett, B.A. The behavioral ecology of hermit crabs. Annu. Rev. Ecol. Syst. 1981, 12, 1–22. [Google Scholar] [CrossRef]
- Brown, D.; Edmunds, P.J. The hermit crab Calcinus tibicen lives commensally on Millepora spp. in St. John, United States Virgin Islands. Coral Reefs 2013, 32, 127–135. [Google Scholar] [CrossRef]
- van der Meij, S.E.T.; Bravo, H.; Scholten, Y.J.H.; Dromard, G.R. Host use of the elkhorn coral crab Domecia acanthophora (Brachyura: Domeciidae), with a phylogeny of the genus. Cah. Biol. Mar. 2022, 63, 239–246. [Google Scholar]
- Patton, W.K. Studies on Domecia acanthophora, a commensal crab from Puerto Rico, with particular reference to modifications of the coral host and feeding habits. Biol. Bull. 1967, 132, 56–67. [Google Scholar] [CrossRef]
- Hoeksema, B.W.; García-Hernández, J.E. Host-related morphological variation of dwellings inhabited by the crab Domecia acanthophora in the corals Acropora palmata and Millepora complanata (Southern Caribbean). Diversity 2020, 12, 143. [Google Scholar] [CrossRef]
- Glynn, P.W.; Perez, M.; Gilchrist, S.L. Lipid decline in stressed corals and their crustacean symbionts. Biol. Bull. 1985, 168, 276–284. [Google Scholar] [CrossRef]
- Moran, D.P.; Reaka-Kudla, M.L. Effects of disturbance, disruption and enhancement of coral reef cryptofaunal populations by hurricanes. Coral Reefs 1991, 9, 215–224. [Google Scholar] [CrossRef]
- Netchy, C.; Hallock, P.; Lunz, K.S.; Daly, K.L. Epibenthic mobile invertebrate diversity organized by coral habitat in Florida. Mar. Biodiv. 2016, 46, 451–463. [Google Scholar] [CrossRef]
- Hobson, E.S. Feeding relationships of teleostean fishes on coral reefs in Kona, Hawaii. Fish. Bull. 1974, 72, 915–1031. [Google Scholar]
- Kramer, M.J.; Bellwood, O.; Fulton, C.J.; Bellwood, D.R. Refining the invertivore: Diversity and specialisation in fish predation on coral reef crustaceans. Mar. Biol. 2015, 162, 1779–1786. [Google Scholar] [CrossRef]
- Rogers, A.; Blanchard, J.L.; Mumby, P.J. Fisheries productivity under progressive coral reef degradation. J. Appl. Ecol. 2018, 55, 1041–1049. [Google Scholar] [CrossRef]
- Perry, C.T.; Edinger, E.N.; Kench, P.S.; Murphy, G.N.; Smithers, S.G.; Steneck, R.S.; Mumby, P.J. Estimating rates of biologically driven coral reef framework production and erosion: A new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 2012, 31, 853–868. [Google Scholar] [CrossRef]
- Kuffner, I.B.; Toth, L.T. A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conserv. Biol. 2016, 30, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Randall, J.E. Food habits of reef fishes of the West Indies. Stud. Trop. Oceanogr. 1967, 5, 655–847. [Google Scholar]
- Leray, M.; Boehm, J.T.; Mills, S.C.; Meyer, C.P. Moorea BIOCODE barcode library as a tool for understanding predator-prey interactions: Insights into the diet of common predatory coral reef fishes. Coral Reefs 2012, 31, 383–388. [Google Scholar] [CrossRef]
- Lee, C.L.; Wen, C.K.C.; Huang, Y.H.; Chung, C.Y.; Lin, H.J. Ontogenetic habitat usage of juvenile carnivorous fish among seagrass-coral mosaic habitats. Diversity 2019, 11, 25. [Google Scholar] [CrossRef]
- Bertness, M.K. Shell utilization, predation pressure, and thermal stress in Panamanian hermit crabs: An interoceanic comparison. J. Exp. Mar. Biol. Ecol. 1982, 64, 159–187. [Google Scholar] [CrossRef]
- Fraser, K.M.; Stuart-Smith, R.D.; Ling, S.D.; Edgar, G.J. High biomass and productivity of epifaunal invertebrates living amongst dead coral. Mar. Biol. 2021, 168, 102. [Google Scholar] [CrossRef]
- Clavel, J.; Julliard, R.; Devictor, V. Worldwide decline of specialist species: Toward a global functional homogenization? Front. Ecol. Environ. 2011, 9, 222–228. [Google Scholar] [CrossRef]
- Álvarez-Filip, L.; Paddack, M.J.; Collen, B.; Robertson, D.R.; Côté, I. Simplification of Caribbean reef-fish assemblages over decades of coral reef degradation. PLoS ONE 2015, 10, e0126004. [Google Scholar] [CrossRef]
- Safiq, A.D.; Lockwood, J.L.; Brown, J.A. Homogenization of fish assemblages off the coast of Florida. In From Biocultural Homogenization to Biocultural Conservation. Ecology and Ethics; Rossi, R., May, R.H., Jr., Chapin, F.S., III, Massardo, F., Gavin, M.C., Klaver, I.J., Pauchard, A., Nuñez, M.A., Simberloff, D., Eds.; Springer: Cham, Switzerland, 2018; Volume 3, pp. 289–300. [Google Scholar]
- Stuart-Smith, R.D.; Mellin, C.; Bates, A.E.; Edgar, G.J. Habitat loss and range shifts contribute to ecological generalization among reef fishes. Nat. Ecol. Evol. 2021, 5, 656–662. [Google Scholar] [CrossRef]
- Beger, M. Accepting the loss of habitat specialists in a changing world. Nat. Ecol. Evol. 2021, 5, 556–557. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubé, M.K.; Barradas-Ortiz, C.; Negrete-Soto, F.; Álvarez-Filip, L.; Lozano-Álvarez, E.; Briones-Fourzán, P. A Shift in Communities of Conspicuous Macrocrustaceans Associated with Caribbean Coral Reefs following A Series of Environmental Stressors. Diversity 2023, 15, 809. https://doi.org/10.3390/d15070809
Dubé MK, Barradas-Ortiz C, Negrete-Soto F, Álvarez-Filip L, Lozano-Álvarez E, Briones-Fourzán P. A Shift in Communities of Conspicuous Macrocrustaceans Associated with Caribbean Coral Reefs following A Series of Environmental Stressors. Diversity. 2023; 15(7):809. https://doi.org/10.3390/d15070809
Chicago/Turabian StyleDubé, Melissa K., Cecilia Barradas-Ortiz, Fernando Negrete-Soto, Lorenzo Álvarez-Filip, Enrique Lozano-Álvarez, and Patricia Briones-Fourzán. 2023. "A Shift in Communities of Conspicuous Macrocrustaceans Associated with Caribbean Coral Reefs following A Series of Environmental Stressors" Diversity 15, no. 7: 809. https://doi.org/10.3390/d15070809
APA StyleDubé, M. K., Barradas-Ortiz, C., Negrete-Soto, F., Álvarez-Filip, L., Lozano-Álvarez, E., & Briones-Fourzán, P. (2023). A Shift in Communities of Conspicuous Macrocrustaceans Associated with Caribbean Coral Reefs following A Series of Environmental Stressors. Diversity, 15(7), 809. https://doi.org/10.3390/d15070809