Farmers’ Preferences and Agronomic Evaluation of Dynamic Mixtures of Rice and Bean in Nepal
Abstract
:1. Introduction
2. Materials and Methods
- Plant height (PH in cm);
- Number of tillers (NT);
- Panicle length (PL in cm);
- Number of panicles per plant (NP);
- Days to 50% flowering (DF in days);
- Days to 80% maturity (DM in days);
- Thousand grain weight (TGW in g);
- Grain yield (GY in kg ha−1).
- Plant height (PH in cm);
- Number of pods per plant (PodP);
- Pod length (PodL in cm);
- Days to 50% flowering (DF in days);
- Days to 80% maturity (DM in days);
- Thousand grain weight (TGW in g);
- Grain yield (GY in kg ha−1).
3. Results
3.1. Rice in Jumla
3.2. Rice in Lumjung
3.3. Bean in Jumla
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meyer, S.; Wesche, K.; Krause, B.; Leuschner, C. Dramatic losses of specialist arable plants in Central Germany since the 1950s/60s-a cross-regional analysis. Divers. Distrib. 2013, 19, 1175–1187. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Biodiversity for Food and Agriculture; Bélanger, J., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2019; p. 572. [Google Scholar]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Döring, T.F.; Knapp, S.; Kovacs, G.; Murphy, K.; Wolfe, M.S. Evolutionary Plant Breeding in Cereals—Into a New Era. Sustainability 2011, 3, 1944–1971. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S. From Participatory to Evolutionary Plant breeding. In Farmers and Plant Breeding: Current Approaches and Perspectives; Tveitereid Westengen, O., Winge, T., Eds.; Routledge: London, UK, 2019; p. 231. [Google Scholar] [CrossRef]
- Phillips, S.L.; Wolfe, M.S. Evolutionary plant breeding for low input systems. J. Agric. Sci. 2005, 143, 245–254. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S. Evolutionary Plant Breeding as a Response to the Complexity of Climate Change. iScience 2020, 23, 101815. [Google Scholar] [CrossRef]
- Wolfe, M.S.; Ceccarelli, S. The need to use more diversity in cereal cropping requires more descriptive precision. J. Sci. Food Agric. 2020, 100, 4119–4123. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S. Evolutionary Plant Breeding with An Introduction to Participatory Plant Breeding; Milano-Udine: Mimesis Edizioni; The Alliance of Bioversity International and CIAT: Rome, Italy, 2022; pp. 1–170. [Google Scholar]
- Casañas, F.; Simó, J.; Casals, J.; Prohens, J. Toward an Evolved Concept of Landrace. Front. Plant Sci. 2017, 8, 145. [Google Scholar] [CrossRef]
- Marone, D.; Russo, M.A.; Mores, A.; Ficco, D.B.M.; Laidò, G.; Mastrangelo, A.M.; Borrelli, G.M. Importance of Landraces in Cereal Breeding for Stress Tolerance. Plants 2021, 10, 1267. [Google Scholar] [CrossRef]
- Reiss, E.R.; Drinkwater, L. Cultivar mixtures: A meta-analysis of the effect of intraspecific diversity on crop yield. Ecol. Appl. 2017, 28, 62–77. [Google Scholar] [CrossRef]
- Barot, S.; Allard, V.; Cantarel, A.; Enjalbert, J.; Gauffreteau, A.; Goldringer, I.; Lata, J.-C.; Le Roux, X.; Niboyet, A.; Porcher, E. Designing mixtures of varieties for multi-functional agriculture with the help of ecology: A review. Agron. Sustain. Dev. 2017, 37, 13. [Google Scholar] [CrossRef]
- da Silva Dias, J.C. Biodiversity and Plant Breeding as Tools for Harmony Between Modern Agriculture Pro-duction and the Environment. In Molecular Approaches to Genetic Diversity; Caliskan, M., Cevahir, O.G., Halil Kavakli, I., Ozcan, B., Eds.; IntechOpen: London, UK, 2015; Chapter 1; pp. 1–44. [Google Scholar]
- Trenbath, B. Biomass Productivity of Mixtures. Adv. Agron. 1974, 26, 177–210. [Google Scholar] [CrossRef]
- Wolfe, M.S. The Current Status and Prospects of Multiline Cultivars and Variety Mixtures for Disease Resistance. Annu. Rev. Phytopathol. 1985, 23, 251–273. [Google Scholar] [CrossRef]
- Knott, E.A.; Mundt, C.C. Mixing ability analysis of wheat cultivar mixtures under diseased and nondiseased conditions. Theor. Appl. Genet. 1990, 80, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, S. Evolution, plant breeding and biodiversity. J. Agric. Environ. Int. Dev. 2009, 103, 131–145. [Google Scholar]
- Raggi, L.; Ciancaleoni, S.; Torricelli, R.; Terzi, V.; Ceccarelli, S.; Negri, V. Evolutionary breeding for sustainable agriculture: Selection and multi-environment evaluation of barley populations and lines. Field Crops Res. 2017, 204, 76–88. [Google Scholar] [CrossRef]
- Merrick, L.F.; Lyon, S.R.; Balow, K.A.; Murphy, K.M.; Jones, S.S.; Carter, A.H. Utilization of Evolutionary Plant Breeding Increases Stability and Adaptation of Winter Wheat Across Diverse Precipitation Zones. Sustainability 2020, 12, 9728. [Google Scholar] [CrossRef]
- Joshi, B.K.; Ayer, D.K.; Gauchan, D.; Jarvis, D. Concept and rationale of evolutionary plant breeding and its status in Nepal. J. Agric. For. Univ. 2020, 4, 1–11. [Google Scholar] [CrossRef]
- McAlvay, A.C.; DiPaola, A.; D’Andrea, A.C.; Ruelle, M.L.; Mosulishvili, M.; Halstead, P.; Power, A.G. Cereal species mix-tures: An ancient practice with potential for climate resilience. A review. Agron. Sustain. Dev. 2022, 42, 1–17. [Google Scholar] [CrossRef]
- Bocci, R.; Bussi, B.; Petitti, M.; Franciolini, R.; Altavilla, V.; Galluzzi, G.; Di Luzio, P.; Migliorini, P.; Spagnolo, S.; Floriddia, R.; et al. Yield, yield stability and farmers’ preferences of evolutionary populations of bread wheat: A dynamic solution to climate change. Eur. J. Agron. 2020, 121, 126156. [Google Scholar] [CrossRef]
- Coombes, N.E. DiGGer Design Search Tool in R. Available online: http://nswdpibiom.org/austatgen/software (accessed on 23 March 2021).
- R Core Team. A Language and Environment for Statistical Computing. 2020. Available online: https://www.r-project.org/ (accessed on 15 January 2023).
- Cullis, B.R.; Smith, A.B.; Coombes, N.E. On the design of early generation variety trials with correlated data. J. Agric. Biol. Environ. Stat. 2006, 11, 381–393. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Fakorede, M.; Menkir, A.; Sanogo, D. Conduct and Management of Maize Field Trials; International Institute of Tropical Agriculture: Ibadan, Nigeria; IITA: Ibadan, Nigeria, 2012; pp. 1–59. [Google Scholar]
- Bioversity International; IRRI; WARDA. Descriptors for Wild and Cultivated Rice (Oryza spp.); Bioversity International: Rome, Italy, 2007; pp. 1–120. [Google Scholar]
- IBPGR. Phaseolus Vulgaris Descriptors; International Plant Genetic Resources Institute: Rome, Italy, 1982; pp. 1–32. [Google Scholar]
- VSN International. Genstat for Windows, 22nd ed.; VSN International: Hemel Hempstead, UK, 2022. [Google Scholar]
- Yan, W. GGEbiplot—A Windows Application for Graphical Analysis of Multi Environment Trial Data and Other Types of Two-Way Data. Agron. J. 2001, 93, 1111–1118. [Google Scholar] [CrossRef]
- Upreti, C.; Kuwar, B.; Panday, S. Use of Rice Straw and Black Gram Straw in Fodder Based Goat’s Diets in the Hills of Nepal. Nepal Agric. Res. J. 2007, 8, 82–87. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S. Participatory plant breeding: Who did it, who does it and where? Exp. Agric. 2019, 56, 1–11. [Google Scholar] [CrossRef]
- De Santis, G.; Ponzini, D.; Stentella, R.; Gaifami, T.; Bussi, B.; Caimo-Duc, R.; Stocchi, U.; Cuneo, M.; Paravicini, M.; Bocci, R.; et al. Participatory Evaluation of Rice Varieties for Specific Adaptation to Organic Conditions in Italy. Sustainability 2022, 14, 10604. [Google Scholar] [CrossRef]
- Casals, J.; Rull, A.; Segarra, J.; Schober, P.; Simó, J. Participatory Plant Breeding and the Evolution of Landraces: A Case Study in the Organic Farms of the Collserola Natural Park. Agronomy 2019, 9, 486. [Google Scholar] [CrossRef]
- Mancini, C.; Kidane, Y.G.; Mengistu, D.K.; Amit, N.; Letegabriel, N.; Tsedal, N.; Tinasu, B.; Letekiros, N.; Hadash, N.; Letemedhin, N.; et al. Joining smallholder farmers’ traditional knowledge with metric traits to select better varieties of Ethiopian wheat. Sci. Rep. 2017, 7, 9120. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S. Environment of selection and type of germplasm in barley breeding for low-yielding conditions. Euphytica 1991, 57, 207–219. [Google Scholar] [CrossRef]
Traits | Germplasm Type |
---|---|
Canopy area utilization (below and above ground surface area) | Short, medium and long root length Tall, medium and dwarf plant Different shape, size and color (stem and leaf) |
Insect and disease tolerance | Different reaction to insect pests and diseases Smooth and rough (uneven) stem and leaves Short and medium awn (for rice) |
Drought tolerance | Deep rooted Erect leaves Tall, medium and dwarf plant height Large leaf but few in number (for rice) |
Commonalities among traits within varieties | Similar maturity period Easiness in threshing and threshing method Similar cooking time and method Similar milling quality |
Location | Crop | Entry Nr. | Composition | Abbreviations a |
---|---|---|---|---|
Jumla | Rice | 1 | 4 local landraces | Ri_J_Mix1 |
2 | 37 landraces from similar agro-ecological domains | Ri_J_Mix2 | ||
3 | 6 improved cultivars | Ri_J_Mix3 | ||
4 | 41 landraces, 6 improved cultivars and 19 advanced breeding lines | Ri_J_Mix4 | ||
5 | Jumli Marshi (Local Check) | Jumli Marshi | ||
6 | Chandannath-3 (Improved Check) | Chandannath-3 | ||
7 | Selected from selection plot by male farmers | Ri_J_M_sel | ||
8 | Selected from selection plot by female farmers | Ri_J_F_sel | ||
9 | Selected from selection plot by technicians | Ri_J_T_sel | ||
Jumla | Bean | 1 | 21 local landraces | Be_J_Mix1 |
2 | 21 landraces from similar agro-ecological domains | Be_J_Mix2 | ||
3 | 6 breeding lines from Jumla | Be_J_Mix3 | ||
4 | 42 landraces and 6 breeding lines | Be_J_Mix4 | ||
5 | Kalo Male (Local Check) | Kalo Male | ||
6 | Trishuli (Improved Check) | Trishuli | ||
7 | Selected from selection plot by male farmers | Be_J_M_sel | ||
8 | Selected from selection plot by female farmers | Be_J_F_sel | ||
9 | Selected from selection plot by technicians | Be_J_T_sel | ||
Lamjung | Rice | 1 | 21 local landraces | Ri_La_Mix1 |
2 | 25 landraces from similar agro-ecological domains | Ri_La_Mix2 | ||
3 | 5 improved cultivars | Ri_La_Mix3 | ||
4 | 46 landraces, 5 improved cultivars and 5 advanced breeding lines | Ri_La_Mix4 | ||
5 | Gaure (Local check) | Gaure | ||
6 | Khumal 4 (Improved check) | Khumal 4 | ||
7 | Selected early from selection plot by male farmers | Ri_La_EM_sel | ||
8 | Selected early from selection plot by female farmers | Ri_La_EF_sel | ||
9 | Selected early from selection plot by technicians | Ri_La_ET_sel | ||
10 | Selected late from selection plot by male farmers | Ri_La_LM_sel | ||
11 | Selected late from selection plot by female farmers | Ri_La_LF_sel | ||
12 | Selected late from selection plot by technicians | Ri_La_LT_sel |
Source of Variation | DF | DM | PH | NT | NP | PL | TGW | GY a |
---|---|---|---|---|---|---|---|---|
Entries (E) | 116.7 *** | 110.3 *** | 1041.7 *** | 78.0 *** | 65.9 *** | 87.3 *** | 16.1 *** | 39.9 ** |
Year (Y) | 31,822.7 *** | 44,043.8 *** | 2069.4 *** | 1013.1 *** | 784.9 *** | 460.4 *** | 356.3 *** | 136.6 *** |
E x Y | 9.2 ** | 11.6 *** | 131.4 | 8.6 | 9.3 | 11.4 * | 3.8 | 15.1 |
Plants w. E (PE) | - | 166.0 | 14.3 * | 14.0 ** | 6.5 | |||
Residual | 3.29 | 0.44 | 148.30 | 10.0 | 9.8 | 5.68 | 3.8 | 12.7 |
Entry Name a | DF | DM | PH | NT | NP | PL | TGW | GY |
---|---|---|---|---|---|---|---|---|
Ri_J_Mix1 | 100 cd | 148.4 f | 91.8 de | 6.5 b | 6.4 b | 18.9 de | 30.8 cd | 3518 a |
Ri_J_Mix2 | 103 b | 149.8 e | 92.0 cde | 6.7 b | 6.8 b | 20.2 bc | 31.6 abcd | 3394 ab |
Ri_J_Mix3 | 101.7 bc | 151.8 d | 89.5 e | 7.1 b | 7.1 b | 19.8 cd | 29.8 d | 3495 a |
Ri_J_Mix4 | 100.6 cd | 150.4 e | 94.8 bcd | 6.8 b | 6.6 b | 19.7 cd | 30.9 bcd | 3306 abc |
Jumli Marshi | 98.7 d | 148.1 f | 91.2 de | 6.6 b | 6.6 b | 18.1 e | 33.0 ab | 3082 bc |
Chandannath-3 | 103.3 b | 151.5 d | 98.6 ab | 6.8 b | 6.7 b | 20.8 ab | 30.7 d | 3140 abc |
Ri_J_M_sel | 106.1 a | 155.0 a | 99.4 a | 9.4 a | 9.1 a | 21.6 a | 31.6 abcd | 3230 abc |
Ri_J_F_sel | 106.4 a | 153.5 c | 96.1 abc | 8.6 a | 8.3 a | 20.8 ab | 32.8 abc | 2925 c |
Ri_J_T_sel | 105.9 a | 154.2 b | 96.6 ab | 8.5 a | 8.4 a | 20.6 bc | 33.6 a | 2949 c |
Entry Name a | FFL | MFL | TFL | FH | MH | TH | MeanFL | MeanH |
---|---|---|---|---|---|---|---|---|
Ri_J_Mix1 | 11.6 a | 9.5 a | 7.9 a | 5.3 | 4.1 | 6.1 a | 9.9 a | 3.8 |
Ri_J_Mix2 | 4.4 bc | 4.9 abc | 4.2 b | 2.6 | 3.7 | 2.9 ab | 4.7 bc | 2.5 |
Ri_J_Mix3 | 1.9 c | 3.7 bc | 0.8 b | 3.5 | 4.4 | 1.4 b | 2.2 c | 3.6 |
Ri_J_Mix4 | 5.2 bc | 5.6 abc | 2.1 b | 2.2 | 3.4 | 2.4 ab | 4.1 bc | 2.9 |
Jumli Marshi | 7.6 ab | 7.9 ab | 2.1 b | 3.5 | 2.0 | 6.9 a | 6.7 b | 3.1 |
Chandannath-3 | 3.0 c | 2.9 c | 0.8 b | 4.7 | 2.3 | 4.6 ab | 2.4 c | 3.4 |
Ri_J_M_sel | 4.0 bc | 4.3 bc | 0.0 c | 3.3 | 4.5 | 3.0 ab | 3.1 c | 4.1 |
Ri_J_F_sel | 1.5 c | 3.7 bc | 3.3 b | 3.7 | 6.5 | 4.0 ab | 2.3 c | 5.1 |
Ri_J_T_sel | 5.3 bc | 1.8 c | 7.0 a | 3.0 | 0.8 | 1.3 b | 3.7 bc | 1.8 |
PF(Entries) | 0.001 | 0.015 | 0.0006 | 0.42 | 0.198 | 0.032 | <0.0001 | 0.747 |
Source of Variation | DF | DM | PH | NT | NP | PL | TGW | GY a |
---|---|---|---|---|---|---|---|---|
Entries (E) | 679 *** | 715.8 *** | 17,559.1 *** | 2.2 ** | 2.5 *** | 71.9 | 8.9 | 145.3 *** |
Year (Y) | 33.3 | 38.5 * | 4095.4 * | 2.3 * | 3.2 * | 38.9 | 54.7 ** | 3.4 |
E x Y | 35.9 *** | 9.6 *** | 873.0 *** | 0.5 | 0.8 | 35.1 *** | 7.8 ** | 24.7 |
Plants w. E | - | - | 338.0 | - | - | 7.7 | - | - |
Residual | 2.00 | 0.43 | 241.7 | 0.70 | 0.65 | 7.7 | 2.6 | 34.6 |
Entry Name a | DF | DM | PH | NT | NP | PL | TGW | GY |
---|---|---|---|---|---|---|---|---|
Ri_La_Mix1 | 116.4 e | 167.7 cd | 136.0 d | 8.0 a | 7.5 a | 22.8 | 26.7 | 4214 ab |
Ri_La_Mix2 | 126.6 c | 167.2 d | 141.7 c | 7.4 ab | 7.1 ab | 23.2 | 28.7 | 4039 abc |
Ri_La_Mix3 | 108.3 g | 149.3 ef | 107.9 g | 6.6 bc | 5.5 d | 21.7 | 26.1 | 3424 cde |
Ri_La_Mix4 | 116.9 e | 167.7 cd | 133.4 d | 7.4 ab | 7.0 abc | 22.2 | 27.6 | 4053 abc |
Gaure | 134.7 a | 172.7 a | 143.7 c | 6.6 bc | 6.3 bcd | 24.0 | 26.8 | 4065 abc |
Khumal 4 | 108.0 g | 148.3 g | 114.8 f | 7.9 a | 7.6 a | 21.9 | 24.4 | 3630 bcd |
Ri_La_EM_sel | 105.6 h | 148.2 g | 120.6 e | 6.6 bc | 5.8 d | 21.4 | 27.4 | 3208 de |
Ri_La_EF_sel | 104.1 h | 149.8 e | 119.9 ef | 6.7 bc | 6.3 bcd | 21.4 | 25.9 | 2908 e |
Ri_La_ET_sel | 111.1 f | 148.8 fg | 123.2 e | 7.2 abc | 6.4 bcd | 22.1 | 26.7 | 3114 de |
Ri_La_LM_sel | 128.8 b | 168.6 b | 152.0 a | 6.4 bc | 6.2 bcd | 24.6 | 28.4 | 4478 a |
Ri_La_LF_sel | 129.4 b | 168.2 bc | 149.2 ab | 6.3 c | 6.0 cd | 24.1 | 27.9 | 4348 a |
Ri_La_LT_sel | 121.1 d | 168.0 bc | 144.3 bc | 6.0 c | 5.8 d | 23.8 | 27.7 | 4260 ab |
PF(Entries) | 0.001 | 0.001 | 0.001 | 0.003 | 0.001 | 0.093 | .397 | 0.005 |
Entry Name a | FFL | MFL | TFL | FH | MH | TH | MeanFL | MeanH |
---|---|---|---|---|---|---|---|---|
Ri_La_Mix1 | 5.64 a | 4.75 | 6.21 a | 4.11 abc | 3.95 abc | 6.03 a | 5.53 a | 4.70 ab |
Ri_La_Mix2 | 1.90 b | 3.28 | 0.68 f | 1.57 cde | 1.31 de | 0.90 de | 1.95 b | 1.26 ef |
Ri_La_Mix3 | 0.86 b | 1.53 | 1.96 cdef | 1.02 e | 0.84 de | 1.31 de | 1.45 b | 1.05 ef |
Ri_La_Mix4 | 5.73 a | 3.33 | 5.50 a | 4.82 ab | 4.91 ab | 5.34 a | 4.86 a | 5.02 a |
Gaure | 2.39 b | 1.92 | 2.84 c | 5.66 a | 5.08 ab | 4.96 a | 2.38 b | 5.24 a |
Khumal 4 | 5.20 a | 4.35 | 4.62 b | 2.78 bcde | 2.28 cde | 2.97 bc | 4.72 a | 2.67 cde |
Ri_La_EM_sel | 1.52 b | 3.74 | 1.16 def | 1.36 de | 1.95 cde | 1.14 de | 2.14 b | 1.48 def |
Ri_La_EF_sel | 1.76 b | 1.97 | 1.35 cdef | 1.13 de | 0.54 e | 0.94 de | 1.69 b | 0.87 f |
Ri_La_ET_sel | 1.56 b | 2.14 | 2.57 cd | 0.55 e | 0.75 de | 2.37 bcd | 2.09 b | 1.22 ef |
Ri_La_LM_sel | 1.74 b | 1.54 | 1.96 cdef | 2.56 bcde | 3.18 bcd | 3.36 bc | 1.75 b | 3.03 bcd |
Ri_La_LF_sel | 2.36 b | 3.18 | 2.37 cde | 3.77 abc | 5.74 a | 2.16 cde | 2.64 b | 3.89 abc |
Ri_La_LT_sel | 1.52 b | 1.15 | 0.95 ef | 3.33 abcd | 2.54 cde | 0.77 e | 1.21 b | 2.21 cdef |
PF(Entries) | 0.0003 | 0.174 | <0.00001 | 0.0002 | 0.00006 | <0.00001 | <0.00001 | <0.00001 |
Source of Variation | DF | DM | PH | PodP | PodL | TGW | GY a |
---|---|---|---|---|---|---|---|
Entries (E) | 76.8 | 10.9 | 22,630.9 * | 299.9 | 406.9 *** | 4810.4 * | 770.8 |
Year (Y) | 446.4 *** | 145.8 ** | 39,859.8 * | 2965.9 ** | 179.3 *** | 11,056.2 ** | 13,217.8 *** |
E x Y | 34.0 *** | 15.2 *** | 7245.2 *** | 277.4 *** | 8.2 ** | 1703.3 *** | 466.4 * |
Plants w. E | - | - | 363.1 | 12.7 | 3.2 | ||
Residual | 0.3 | 1.4 | 466.6 | 12.6 | 3.7 | 248.6 | 201.2 |
Entry Name a | DF | DM | PH | PodP | PodL | TGW | GY |
---|---|---|---|---|---|---|---|
Be_J_Mix1 | 52.8 | 92.9 | 47.7 c | 7.56 | 10.4 b | 247.8 bc | 1972 |
Be_J_Mix2 | 52.6 | 92.7 | 45.6 c | 8.83 | 10.2 b | 226.5 d | 2037 |
Be_J_Mix3 | 50.3 | 92.9 | 58.0 b | 8.04 | 9.9 bc | 272.1 a | 1899 |
Be_J_Mix4 | 52.3 | 93.3 | 48.9 c | 8.18 | 10.0 bc | 245.8 bc | 1969 |
Kalo Male | 47.4 | 92.6 | 57.5 b | 8.32 | 9.1 d | 279.5 a | 1874 |
Trishuli | 56.8 | 95.1 | 84.0 a | 10.15 | 15.8 a | 197.1 e | 955 |
Be_J_M_sel | 49.5 | 93.7 | 49.9 c | 7.01 | 9.8 bc | 238.3 bcd | 1994 |
Be_J_F_sel | 47.8 | 93.9 | 45.6 c | 6.39 | 9.5 cd | 254.4 b | 1674 |
Be_J_T_sel | 48.0 | 93.5 | 46.6 c | 6.48 | 10.1 bc | 233.0 cd | 1929 |
Entry Name a | FFL | MFL | TFL | FH | MH | TH | MeanFL | MeanH |
---|---|---|---|---|---|---|---|---|
Be_J_Mix1 | 2.93 | 2.71 | 2.78 | 3.07 | 2.71 b | 2.67 | 2.76 | 2.99 cde |
Be_J_Mix2 | 2.64 | 3.21 | 4.90 | 3.90 | 4.00 b | 4.62 | 3.16 | 3.82 bcd |
Be_J_Mix3 | 2.99 | 4.36 | 2.41 | 5.47 | 6.26 b | 3.40 | 3.11 | 4.84 abc |
Be_J_Mix4 | 3.54 | 2.83 | 1.78 | 0.92 | 0.93 b | 1.40 | 2.79 | 0.97 e |
Kalo Male | 4.14 | 3.48 | 3.77 | 0.79 | 1.98 b | 2.51 | 3.78 | 1.54 de |
Trishuli | 0.55 | 0.64 | 1.27 | 1.35 | 0.36 b | 0.51 | 0.63 | 0.76 e |
Be_J_M_sel | 5.66 | 5.50 | 2.02 | 7.33 | 6.67 a | 3.33 | 5.11 | 6.81 a |
Be_J_F_sel | 5.00 | 3.67 | 1.02 | 3.50 | 2.67 b | 3.33 | 3.95 | 2.92 cde |
Be_J_T_sel | 4.33 | 5.67 | 3.68 | 6.00 | 6.67 a | 1.33 | 5.00 | 5.81 ab |
PF(Entries) | 0.373 | 0.106 | 0.547 | 0.262 | 0.0002 | 0.5050 | 0.110 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neupane, S.P.; Joshi, B.K.; Ayer, D.K.; Ghimire, K.H.; Gauchan, D.; Karkee, A.; Jarvis, D.I.; Mengistu, D.K.; Grando, S.; Ceccarelli, S. Farmers’ Preferences and Agronomic Evaluation of Dynamic Mixtures of Rice and Bean in Nepal. Diversity 2023, 15, 660. https://doi.org/10.3390/d15050660
Neupane SP, Joshi BK, Ayer DK, Ghimire KH, Gauchan D, Karkee A, Jarvis DI, Mengistu DK, Grando S, Ceccarelli S. Farmers’ Preferences and Agronomic Evaluation of Dynamic Mixtures of Rice and Bean in Nepal. Diversity. 2023; 15(5):660. https://doi.org/10.3390/d15050660
Chicago/Turabian StyleNeupane, Shree Prasad, Bal Krishna Joshi, Dipendra Kumar Ayer, Krishna Hari Ghimire, Devendra Gauchan, Ajaya Karkee, Devra I. Jarvis, Dejene K. Mengistu, Stefania Grando, and Salvatore Ceccarelli. 2023. "Farmers’ Preferences and Agronomic Evaluation of Dynamic Mixtures of Rice and Bean in Nepal" Diversity 15, no. 5: 660. https://doi.org/10.3390/d15050660