Factors Influencing the Distribution of Freshwater Mollusks in the Lakes of the Pyrenees: Implications in a Shifting Climate Scenario
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Mollusk Sorting and Determination
2.3. Numerical Analysis
3. Results
3.1. Mollusks Distribution
3.2. The Multivariate Environment
3.3. Specific Univariate Responses
4. Discussion
4.1. Environmental Constraints Related to Altitude
4.2. The Influence of Acid-Neutralizing Capacity
4.3. Implications in a Shifting Climate Scenario
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Taxon | Altitude | Latitude N | Longitude E |
---|---|---|---|
All mollusks | 0.1582 (0.2724) | −0.1751 (0.2240) | 0.1980 (0.1681) |
Pisidium s.l. | 0.2178 (0.1713) | * −0.3484 (0.0256) | 0.1966 (0.2180) |
Ampullaceana | −0.2591 (0.2568) | * 0.4482 (0.0416) | * −0.4822 (0.0269) |
Ancylus | 0.0647 (0.8188) | 0.3609 (0.1864) | −0.2136 (0.4445) |
Variable | Extra Fit | p-Value |
---|---|---|
LOI | 0.09 | *** 0.0001 |
ANC | 0.04 | * 0.0198 |
Temperature | 0.01 | 0.2771 |
Fine substrate | 0.01 | 0.3039 |
Salmonidae | 0.01 | 0.3028 |
Macrophytes | 0.01 | 0.3753 |
Stones and gravel | 0.01 | 0.4244 |
Rocks | 0.01 | 0.7003 |
Total phosphorus | 0.00 | 0.9487 |
First RDA axis | 0.11 | *** 0.0001 |
Second RDA axis | 0.02 | - |
Both RDA axes | 0.13 | *** 0.0001 |
Expected Incidence | Observed Incidence | Relative Frequency Ratio | Odds Ratio | p-Value | |
---|---|---|---|---|---|
Macrophytes present (31 lakes) | |||||
All mollusks | 18.9 | 29 | 2.27 | 19.98 | *** < 0.001 |
Pisidium s.l. | 15.5 | 24 | 2.32 | 6.68 | *** < 0.001 |
Ampullaceana | 7.9 | 16 | 5.26 | 9.48 | *** < 0.001 |
Ancylus | 5.7 | 10 | 3.29 | 4.29 | * 0.0172 |
Salmonidae present (56 lakes) | |||||
All mollusks | 34.1 | 42 | 2.44 | 6.57 | *** < 0.001 |
Pisidium s.l. | 28.0 | 33 | 1.92 | 3.18 | * 0.0317 |
Ampullaceana | 14.3 | 20 | 9.29 | 13.57 | ** 0.0021 |
Ancylus | 10.2 | 13 | 3.02 | 3.58 | 0.1273 |
Pisidium s.l. | Ampullaceana | Ancylus | |
---|---|---|---|
Altitude | 4.17% (0.0295) * | 9.74%(0.0026) ** | 1.69% (0.2505) |
Slope | −2.091 (0.0365) * | −2.777 (0.0055) ** | −1.136 (0.2560) |
Intercept | 2.077 (0.0378) * | 2.361 (0.0182) * | 0.506 (0.6126) |
Temperature | 14.61% (<0.001) *** | 12.48% (<0.001) *** | 10.45% (0.0043) ** |
Slope | 3.525 (<0.001) *** | 2.970 (0.0030) ** | 2.521 (0.0117) * |
Intercept | −3.413 (<0.001) *** | −3.488 (<0.001) *** | −3.222 (0.0013) ** |
LOI | 14.90% (<0.001) *** | 5.32% (0.0258) * | 8.61% (0.0095) ** |
Slope | 3.560 (<0.001) *** | 2.128 (0.0334) * | 2.419 (0.0156) * |
Intercept | −3.259 (0.0011) ** | −3.506 (<0.001) *** | −3.946 (<0.001) *** |
TP | 2.41% (0.0977) | 1.71% (0.2059) | 1.68% (0.2526) |
Slope | 1.424 (0.1544) | 1.242 (0.2141) | 1.172 (0.2413) |
Intercept | −1.188 (0.2347) | −3.784 (<0.001) *** | −4.499 (<0.001) *** |
ANC | 0.00% (0.9956) | 7.53% (0.0080) ** | 1.91% (0.2224) |
Slope | −0.006 (0.9956) | 2.488 (0.0129) * | −1.082 (0.2794) |
Intercept | 0.003 (0.9972) | −4.553 (<0.001) *** | −3.254 (0.0011) ** |
Fine substrate | 12.10% (<0.001) *** | 4.10% (0.0504) | 2.29% (0.1811) |
Slope | 3.295 (<0.001) *** | 1.930 (0.0537) | 1.346 (0.1782) |
Intercept | −2.837 (0.0046) ** | −3.792 (<0.001) *** | −3.942 (<0.001) *** |
Stones and gravel | 6.55% (0.0064) ** | 3.16% (0.0858) | 0.35% (0.6017) |
Slope | −2.571 (0.0101) * | −1.673 (0.0943) | −0.520 (0.6028) |
Intercept | 2.317 (0.0205) * | −0.480 (0.6313) | −2.027 (0.0426) * |
Rocks | 3.64% (0.0419) * | 1.03% (0.3271) | 1.68% (0.2522) |
Slope | −1.974 (0.0484) * | −0.973 (0.3304) | −1.133 (0.2573) |
Intercept | 1.792 (0.0731) | −0.983 (0.3258) | −1.346 (0.1783) |
Macrophytes | 7.97% (0.0026) ** | 7.06% (0.0103) * | 0.99% (0.3798) |
Slope | 2.347 (0.0189) * | 2.330 (0.0198) * | 0.912 (0.3615) |
Intercept | −1.393 (0.1636) | −4.640 (<0.001) *** | −4.986 (<0.001) *** |
References
- Thomas, C.D. Climate, climate change and range boundaries. Divers. Distrib. 2010, 16, 488–495. [Google Scholar] [CrossRef]
- Sor, R.; Ngor, P.B.; Boets, P.; Goethals, P.L.; Lek, S.; Hogan, Z.S.; Park, Y.-S. Patterns of Mekong mollusc biodiversity: Identification of emerging threats and importance to management and livelihoods in a region of globally significant biodiversity and endemism. Water 2020, 12, 2619. [Google Scholar] [CrossRef]
- Koudenoukpo, Z.C.; Odountan, O.H.; Agboho, P.A.; Dalu, T.; Van Bocxlaer, B.; Janssens de Bistoven, L.; Chikou, A.; Backeljau, T. Using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a West Africa river–estuary system. Ecol. Indic. 2021, 126, 107706. [Google Scholar] [CrossRef]
- Clements, R.; Koh, L.P.; Lee, T.M.; Meier, R.; Li, D. Importance of reservoirs for the conservation of freshwater molluscs in a tropical urban landscape. Biol. Conserv. 2006, 128, 136–146. [Google Scholar] [CrossRef]
- Bae, M.-J.; Park, Y.-S. Key determinants of freshwater gastropod diversity and distribution: The Implications for conservation and management. Water 2020, 12, 1908. [Google Scholar] [CrossRef]
- Shah, A.A.; Dillon, M.E.; Hotaling, S.; Woods, H.A. High elevation insect communities face shifting ecological and evolutionary landscapes. Curr. Opin. Insect Sci. 2020, 41, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Vitasse, Y.; Ursenbacher, S.; Klein, G.; Bohnenstengel, T.; Chittaro, Y.; Delestrade, A.; Monnerat, C.; Rebetez, M.; Rixen, C.; Strebel, N.; et al. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biol. Rev. Camb. Philos. Soc. 2021, 96, 1816–1835. [Google Scholar] [CrossRef]
- Brown, K.M. Mollusca: Gastropoda. In Ecology and Classification of North American Freshwater Invertebrates, 2nd ed.; Thorp, J.H., Covich, A.P., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 297–330. [Google Scholar]
- McMahon, R.F.; Bogan, A.E. Mollusca: Bivalvia. In Ecology and Classification of North American Freshwater Invertebrates, 2nd ed.; Thorp, J.H., Covich, A.P., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 331–430. [Google Scholar]
- Marin, F.; Luquet, G. Molluscan shell proteins. C. R. Palevol 2004, 3, 469–492. [Google Scholar] [CrossRef]
- Mouthon, J. Analyse de la distribution des malacocénoses de 23 lacs français. Ann. Limnol.-Int. J. Lim. 1989, 25, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Mouthon, J. Importance des conditions climatiques dans la différenciation des peuplements malacologiques de lacs européens. Arch. Hydrobiol. 1990, 3, 353–370. [Google Scholar] [CrossRef]
- Bendell, B.E.; McNicol, D.K. Gastropods from small northeastern Ontario lakes: Their value as indicators of acidification. Can. Field-Nat. 1993, 107, 267–272. [Google Scholar]
- Baur, B.; Ringeis, B. Changes in gastropod assemblages in freshwater habitats in the vicinity of Basel (Switzerland) over 87 years. Hydrobiologia 2002, 479, 1–10. [Google Scholar] [CrossRef]
- Lewin, I.; Smoliński, A. Rare and vulnerable species in the mollusc communities in the mining subsidence reservoirs of an industrial area (The Katowicka Upland, Upper Silesia, Southern Poland). Limnologica 2006, 36, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Økland, J.; Økland, K. The effects of acid deposition on benthic animals in lakes and streams. Experientia 1986, 42, 471–486. [Google Scholar] [CrossRef]
- Dillon, R.T. The Ecology of Freshwater Molluscs; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar] [CrossRef]
- Sturm, R. Freshwater molluscs in mountain lakes of the Eastern Alps (Austria): Relationship between environmental variables and lake colonization. J. Limnol. 2007, 66, 160. [Google Scholar] [CrossRef]
- Müller, J.; Bässler, C.; Strätz, C.; Klöcking, B.; Brandl, R. Molluscs and climate warming in a low mountain range national park. Malacologia 2009, 51, 89–109. [Google Scholar] [CrossRef]
- Schell, V.A.; Kerekes, J.J. Distribution, abundance and biomass of benthic macroinvertebrates relative to pH and nutrients in eight lakes of Nova Scotia, Canada. Water Air Soil Pollut. 1989, 46, 359–374. [Google Scholar] [CrossRef]
- Raddum, G.G.; Fjellheim, A. Species composition of freshwater invertebrates in relation to chemical and physical factors in high mountains in Soutwestern Norway. Water Air Soil Pollut. Focus 2002, 2, 311–328. [Google Scholar] [CrossRef]
- de Mendoza, G.; Catalan, J. Lake macroinvertebrates and the altitudinal environmental gradient in the Pyrenees. Hydrobiologia 2010, 648, 51–72. [Google Scholar] [CrossRef]
- Catalan, J.; Ballesteros, E.; Gacia, E.; Palau, A.; Camarero, L. Chemical composition of disturbed and undisturbed high-mountain lakes in the Pyrenees—A reference for acidified sites. Water Res. 1993, 27, 133–141. [Google Scholar] [CrossRef]
- Camarero, L.; Rogora, M.; Mosello, R.; Anderson, N.J.; Barbieri, A.; Botev, I.; Kernan, M.; Kopacek, J.; Korhola, A.; Lotter, A.F.; et al. Regionalisation of chemical variability in European mountain lakes. Freshw. Biol. 2009, 54, 2452–2469. [Google Scholar] [CrossRef]
- Skriver, J. Biological Monitoring in Nordic Rivers and Lakes; Nordic Council of Ministers: Copenhagen, Denmark, 2001; p. 109. [Google Scholar]
- Catalan, J.; Curtis, C.J.; Kernan, M. Remote European mountain lake ecosystems: Regionalisation and ecological status. Freshw. Biol. 2009, 54, 2419–2432. [Google Scholar] [CrossRef]
- Casals-Carrasco, P.; Catalán, J.; Gond, V.; Madhavan, B.; Petrus, J.; Ventura, M. A spectral approach to satellite land cover classification of remote European mountain lake districts. In Patterns and Factors of Biota Distribution in Remote European Mountain Lakes; Catalan, J., Curtis, C.K., Kernan, M., Eds.; E. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 2009; pp. 353–365. [Google Scholar]
- Tachet, H.; Richoux, P.; Bournaud, M.; Usseglio-Polatera, P. Invertébrés d’eau Douce: Systématique, Biologie, Écologie; CNRS Éditions: Paris, France, 2000; p. 588. [Google Scholar]
- Mouthon, J. Les mollusques dulcicoles—Données biologiques et écologiques—Clés de détermination des principaux genres de bivalves et de gastéropodes de France. Bull. Fr. Piscic. 1982, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Meier-Brook, C. Taxonomic studies on Gyraulus (Gastropoda: Planorbidae). Malacologia 1983, 24, 1–113. [Google Scholar]
- Araujo, R. Contribución a la Taxonomía y Biogeografía de la Familia Sphaeriidae (Mollusca: Bivalvia) en la Península Ibérica e Islas Baleares con Especial Referencia a la Biología de Pisidium amnicum; Universidad Complutense de Madrid: Madrid, Spain, 1995. [Google Scholar]
- Vinarski, M.V.; Aksenova, O.V.; Bolotov, I.N. Taxonomic assessment of genetically-delineated species of radicine snails (Mollusca, Gastropoda, Lymnaeidae). Zoosyst. Evol. 2020, 96, 577–608. [Google Scholar] [CrossRef]
- Zar, J. Biostatistical Analysis, 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1984. [Google Scholar]
- Legendre, P.; Gallagher, E.D. Ecologically meaningful transformations for ordination of species data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Legendre, P.; Legendre, L. Numerical Ecology; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Ter Braak, C.J.F.; Šmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination; Microcomputer Power: Ithaca, NY, USA, 2002; p. 500. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Batalla, M.; Ninyerola, M.; Catalan, J. Digital long-term topoclimate surfaces of the Pyrenees mountain range for the period 1950–2012. Geosci. Data J. 2018, 5, 50–62. [Google Scholar] [CrossRef]
- Horsák, M.; Cernohorsky, N. Mollusc diversity patterns in Central European fens: Hotspots and conservation priorities. J. Biogeogr. 2008, 35, 1215–1225. [Google Scholar] [CrossRef]
- Knapp, R.A.; Matthews, K.R.; Sarnelle, O. Resistance and resilience of alpine lake fauna to fish introductions. Ecol. Monogr. 2001, 71, 305–339. [Google Scholar] [CrossRef]
- Hershey, A.E. Snail populations in arctic lakes: Competition mediated by predation? Oecologia 1990, 82, 26–32. [Google Scholar] [CrossRef]
- Jeppesen, E.; Søndergaard, M.; Søndergaard, M.; Christoffersen, K. The Structuring Role of Submerged Macrophytes in Lakes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 131, p. 281. [Google Scholar]
- Istin, M.; Girard, J. Carbonic anhydrase and mobilisation of calcium reserves in the mantle of lamellibranchs. Calcif. Tissue Res. 1970, 5, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Machado, J.; Lopes-Lima, M. Calcification mechanism in freshwater mussels: Potential targets for cadmium. Toxicol Environ. Chem. 2011, 93, 1778–1787. [Google Scholar] [CrossRef]
- Fjellheim, A.; Raddum, G. Benthic animal response after liming of three south Norwegian rivers. Water Air Soil Pollut. 1995, 85, 931–936. [Google Scholar] [CrossRef]
- Lacoul, P.; Freedman, B.; Clair, T. Effects of acidification on aquatic biota in Atlantic Canada. Environ. Rev. 2011, 19, 429–460. [Google Scholar] [CrossRef]
- Schartau, A.K.; Moe, S.J.; Sandin, L.; McFarland, B.; Raddum, G.G. Macroinvertebrate indicators of lake acidification: Analysis of monitoring data from UK, Norway and Sweden. Aquat. Ecol. 2008, 42, 293–305. [Google Scholar] [CrossRef]
- Raddum, G.; Skjelkvåle, B. Critical limit of acidifying compounds to invertebrates in different regions of Europe. Water Air Soil Pollut. 2001, 130, 825–830. [Google Scholar] [CrossRef]
- Raddum, G.G.; Fjellheim, A.; Hesthagen, T. Monitoring of acidification by the use of aquatic organisms: With 3 figures and 1 table in the text. Int. Ver. Theor. Angew. Limnol. Verh. 1988, 23, 2291–2297. [Google Scholar] [CrossRef]
- Thomas, J.D.; Benjamin, M.; Lough, A.; Aram, R.H. The effects of calcium in the external environment on the growth and natality rates of Biomphalaria glabrata (Say). J. Anim. Ecol. 1974, 43, 839–860. [Google Scholar] [CrossRef]
- Brodersen, J.; Madsen, H. The effect of calcium concentration on the crushing resistance, weight and size of Biomphalaria sudanica (Gastropoda: Planorbidae). Hydrobiologia 2003, 490, 181–186. [Google Scholar] [CrossRef]
- Herbst, D.B.; Bogan, M.T.; Lusardi, R.A. Low specific conductivity limits growth and survival of the New Zealand mud snail from the Upper Owens River, California. West N. Am. Nat. 2008, 68, 324–333. [Google Scholar] [CrossRef]
- Briers, R.A. Range size and environmental calcium requirements of British freshwater gastropods. Glob. Ecol. Biogeogr. 2003, 12, 47–51. [Google Scholar] [CrossRef]
- GBIF.org. GBIF Home Page. Available online: https://www.gbif.org (accessed on 13 February 2023).
- Catalan, J.; Pla, S.; Garcia, J.; Camarero, L. Climate and CO2 saturation in an alpine lake throughout the Holocene. Limnol. Ocean. 2009, 54, 2542–2552. [Google Scholar] [CrossRef] [Green Version]
- Curtis, C.J.; Juggins, S.; Clarke, G.; Battarbee, R.W.; Kernan, M.; Catalan, J.; Thompson, R.; Posch, M. Regional influence of acid deposition and climate change in European mountain lakes assessed using diatom transfer functions. Freshw. Biol. 2009, 54, 2555–2572. [Google Scholar] [CrossRef]
Mollusk | Incidence | Abundance |
---|---|---|
All mollusks | 50 | 1279 |
All Pisidium sensu lato | 41 | 644 |
Pisidium s.l. spp. (indeterminable specimens) | 31 | 207 |
Euglesa parvula (Westerlund, 1873) | 8 | 60 |
Euglesa lilljeborgii (Clessin, 1886) | 6 | 326 |
Euglesa personata (Malm, 1855) | 3 | 9 |
Euglesa casertana (Poli, 1791) | 2 | 26 |
Euglesa nitida (Jenyns, 1832) | 2 | 15 |
Euglesa subtruncata (Malm, 1855) | 1 | 1 |
Ampullaceana balthica (Linnaeus, 1758) | 21 | 467 |
Ancylus fluviatilis O.F. Müller, 1774 | 15 | 130 |
Bythinella sp. | 1 | 35 |
Gyraulus cf. albus (O.F. Müller, 1774) | 1 | 3 |
Environmental Variable | Altitude | Latitude N | Longitude E |
---|---|---|---|
Temperature | −0.6134 (<0.001) *** | −0.2256 (0.0415) * | 0.3664 (<0.001) *** |
LOI | −0.5278 (<0.001) *** | −0.2501 (0.0234) * | 0.4494 (<0.001) *** |
TP | −0.2327 (0.0354) * | −0.1712 (0.1240) | 0.0011 (0.9926) |
ANC | −0.2077 (0.0611) | 0.2429 (0.0279) * | −0.4723 (<0.001) *** |
Fine substrate | −0.2639 (0.0166) * | −0.3316 (0.0023) ** | 0.2587 (0.0189) * |
Stones and gravel | 0.0005 (0.9967) | 0.3638 (<0.001) *** | −0.2843 (0.0096) ** |
Rocks | 0.3561 (0.0010) ** | 0.1032 (0.3562) | −0.1075 (0.3364) |
Macrophytes | −0.4328 (<0.001) *** | −0.1883 (0.0902) | 0.1708 (0.1249) |
Salmonidae | −4.00 (<0.001) *** | −1.37 (0.1738) | 1.94 (0.0526) |
Variable (Analysis) | All Mollusks | Pisidium s.l. | Ampullaceana | Ancylus |
---|---|---|---|---|
Temperature (incidence) | 4.54 (<0.001) *** | 3.87 (<0.001) *** | 3.36 (<0.001) *** | 2.85 (0.0045) ** |
Temperature (abundance) | 0.1961 (0.1723) | 0.0522 (0.7458) | 0.2467 (0.2809) | −0.6226 (0.0132) * |
LOI (incidence) | 4.80 (<0.001) *** | 3.80 (<0.001) *** | 1.93 (0.0545) | 2.84 (0.0046) ** |
LOI (abundance) | −0.1676 (0.2448) | −0.1182 (0.4616) | −0.4266 (0.0538) | −0.5350 (0.0399) * |
TP (incidence) | 2.59 (0.0099) ** | 2.13 (0.0332) * | 2.48 (0.0133) * | 1.70 (0.0908) |
TP (abundance) | 0.0569 (0.6949) | −0.0065 (0.9679) | 0.0314 (0.8925) | −0.7487 (0.0013) ** |
ANC (incidence) | 0.822 (0.4136) | −0.241 (0.8130) | 2.78 (0.0056) ** | −0.114 (0.9140) |
ANC (abundance) | −0.0956 (0.5088) | −0.2069 (0.1943) | 0.1237 (0.5933) | −0.7307 (0.0020) ** |
Fine substrate (incidence) | 3.17 (0.0015) ** | 3.45 (<0.001) *** | 2.05 (0.0408) * | 1.64 (0.1028) |
Fine substrate (abundance) | 0.2003 (0.1631) | 0.2273 (0.1529) | 0.0137 (0.9529) | −0.2956 (0.2848) |
Stones and gravel (incidence) | −2.45 (0.0145) * | −2.70 (0.0071) ** | −1.72 (0.0871) | −0.582 (0.5647) |
Stones and gravel (abundance) | −0.0830 (0.5665) | −0.0326 (0.8396) | −0.0851 (0.7138) | −0.0592 (0.8339) |
Rocks (incidence) | −2.05 (0.0405) * | −2.08 (0.0377) * | −1.05 (0.2953) | −1.30 (0.1951) |
Rocks (abundance) | −0.2240 (0.1179) | −0.2834 (0.0726) | −0.0422 (0.8558) | 0.1781 (0.5255) |
Macrophytes (incidence) | 4.52 (<0.001) *** | 3.77 (<0.001) *** | 4.19 (<0.001) *** | 2.35 (0.0193) * |
Macrophytes (abundance) | 0.1280 (0.3757) | 0.0229 (0.8870) | 0.0646 (0.7810) | −0.5636 (0.0287) * |
Salmonidae (incidence) | 6.57 (<0.001) *** | 3.18 (0.0317) * | 13.57 (0.0021) ** | 3.58 (0.1273) |
Salmonidae (abundance) | 3.42 (<0.001) *** | 2.18 (0.0296) * | 3.01 (0.0026) ** | 1.51 (0.1335) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Mendoza, G.; Araujo, R.; Catalan, J. Factors Influencing the Distribution of Freshwater Mollusks in the Lakes of the Pyrenees: Implications in a Shifting Climate Scenario. Diversity 2023, 15, 500. https://doi.org/10.3390/d15040500
de Mendoza G, Araujo R, Catalan J. Factors Influencing the Distribution of Freshwater Mollusks in the Lakes of the Pyrenees: Implications in a Shifting Climate Scenario. Diversity. 2023; 15(4):500. https://doi.org/10.3390/d15040500
Chicago/Turabian Stylede Mendoza, Guillermo, Rafael Araujo, and Jordi Catalan. 2023. "Factors Influencing the Distribution of Freshwater Mollusks in the Lakes of the Pyrenees: Implications in a Shifting Climate Scenario" Diversity 15, no. 4: 500. https://doi.org/10.3390/d15040500
APA Stylede Mendoza, G., Araujo, R., & Catalan, J. (2023). Factors Influencing the Distribution of Freshwater Mollusks in the Lakes of the Pyrenees: Implications in a Shifting Climate Scenario. Diversity, 15(4), 500. https://doi.org/10.3390/d15040500