Causes for the High Mortality of European Green Toad Tadpoles in Road Stormwater Ponds: Pollution or Arrival of a New Predator?
Abstract
:1. Introduction
Research Objectives
2. Materials and Methods
2.1. Egg Collection and Housing
2.2. Leech Collection (Helobdella stagnalis)
2.3. Sediment Samples (SWPs)
2.4. Experimental Design
2.5. Sediment Pollution Analysis
2.6. Survival and Growth Assessment
2.7. Swim Tests
2.8. Respirometry Trials
2.9. Statistical Analysis
3. Results
3.1. Pollution Analysis
3.2. Survival and Growth
3.3. Swim Tests
3.4. Respirometry Trials
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stelder, D. Regional accessibility trends in Europe: Road infrastructure, 1957–2012. Reg. Stud. 2016, 50, 983–995. [Google Scholar] [CrossRef]
- Gaston, K.J.; Holt, L.A. Nature, extent and ecological implications of night-time light from road vehicles. J. Appl. Ecol. 2018, 55, 2296–2307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forman, R.T.T.; Alexander, L.E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 1998, 29, 207–238. [Google Scholar] [CrossRef] [Green Version]
- Neff, J.M.; Stout, S.A.; Gunster, D.G. Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons in Sediments: Identifying Sources and Ecological Hazard. Integr. Environ. Assess. Manag. 2005, 1, 22–33. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Ni, S. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere 2001, 44, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- EPA. Stormwater wet pond and wetland management guidebook; EPA 833-B-09-001; United States Environmental Protection Agency: Washington, DC, USA, 2009.
- Le Viol, I.; Mocq, J.; Julliard, R.; Kerbiriou, C. The contribution of motorway stormwater retention ponds to the biodiversity of aquatic macroinvertebrates. Biol. Conserv. 2009, 142, 3163–3171. [Google Scholar] [CrossRef]
- Brand, A.B.; Snodgrass, J.W. Value of Artificial Habitats for Amphibian Reproduction in Altered Landscapes. Conserv. Biol. 2010, 24, 295–301. [Google Scholar] [CrossRef]
- Hassall, C.; Anderson, S. Stormwater ponds can contain comparable biodiversity to unmanaged wetlands in urban areas. Hydrobiologia 2015, 745, 137–149. [Google Scholar] [CrossRef]
- Jumeau, J.; Lopez, J.; Morand, A.; Petrod, L.; Burel, F.; Handrich, Y. Factors driving the distribution of an amphibian community in stormwater ponds: A study case in the agricultural plain of Bas-Rhin, France. Eur. J. Wildl. Res. 2020, 66, 33. [Google Scholar] [CrossRef]
- Conan, A.; Jumeau, J.; Dehaut, N.; Enstipp, M.; Georges, J.-Y.; Handrich, Y. Can road stormwater ponds be successfully exploited by the European green frog (Pelophylax sp.)? Urban Ecosyst. 2021, 25, 35–47. [Google Scholar] [CrossRef]
- Brand, A.B.; Snodgrass, J.W.; Gallagher, M.T.; Casey, R.E.; Van Meter, R. Lethal and sublethal effects of embryonic and larval exposure of Hyla versicolor to stormwater pond sediments. Arch. Environ. Contam. Toxicol. 2010, 58, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, M.T.; Snodgrass, J.W.; Brand, A.B.; Casey, R.E.; Lev, S.M.; Van Meter, R.J. The role of pollutant accumulation in determining the use of stormwater ponds by amphibians. Wetl. Ecol. Manag. 2014, 22, 551–564. [Google Scholar] [CrossRef]
- Sievers, M.; Parris, K.M.; Swearer, S.E.; Hale, R. Stormwater wetlands can function as ecological traps for urban frogs. Ecol. Appl. 2018, 28, 1106–1115. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.A.; Struger, J.; Shirose, L.J.; Dunn, L.; Campbell, G.D. Contamination and Wildlife Communities in Stormwater Detention Ponds in Guelph and the Greater Toronto Area, Ontario, 1997 and 1998 Part II—Contamination and Biological Effects of Contamination. Water Qual. Res. J. 2000, 35, 437–474. [Google Scholar] [CrossRef]
- Egea-Serrano, A.; Relyea, R.A.; Tejedo, M.; Torralva, M. Understanding of the impact of chemicals on amphibians: A meta-analytic review. Ecol. Evol. 2012, 2, 1382–1397. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.M.; Brady, S.P.; Mattheus, N.M.; Earley, R.L.; Diamond, M.; Crespi, E.J. Physiological consequences of exposure to salinized roadside ponds on wood frog larvae and adults. Biol. Conserv. 2017, 209, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.-H.; Gross, J.A.; Karasov, W.H. Adverse effects of chronic copper exposure in larval northern leopard frogs (Rana pipiens). Environ. Toxicol. Chem. 2007, 26, 1470–1475. [Google Scholar] [CrossRef]
- Reeves, M.K.; Jensen, P.; Dolph, C.L.; Holyoak, M.; Trust, K.A. Multiple stressors and the cause of amphibian abnormalities. Ecol. Monogr. 2010, 80, 423–440. [Google Scholar] [CrossRef]
- Leduc, J.; Echaubard, P.; Trudeau, V.; Lesbarrères, D. Copper and nickel effects on survival and growth of northern leopard frog (Lithobates pipiens) tadpoles in field-collected smelting effluent water. Environ. Toxicol. Chem. 2016, 35, 687–694. [Google Scholar] [CrossRef]
- Sievers, M.; Hale, R.; Swearer, S.E.; Parris, K.M. Contaminant mixtures interact to impair predator-avoidance behaviours and survival in a larval amphibian. Ecotoxicol. Environ. Saf. 2018, 161, 482–488. [Google Scholar] [CrossRef]
- Zhang, W.; Zhi, H.; Sun, H. Effects of Heavy Metal Pollution on Fitness and Swimming Performance of Bufo raddei Tadpole. Bull. Environ. Contam. Toxicol. 2020, 105, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Clevenot, L.; Carré, C.; Pech, P. A Review of the Factors That Determine Whether Stormwater Ponds Are Ecological Traps And/or High-Quality Breeding Sites for Amphibians. Front. Ecol. Evol. 2018, 6, 40. [Google Scholar] [CrossRef] [Green Version]
- Temple, H.J.; Cox, N. European Red List of Amphibians; Office for Official Publications of the European Communities: Luxembourg, 2009. [Google Scholar]
- Stuart, S.N.; Chanson, J.S.; Cox, N.A.; Young, B.E.; Rodrigues, A.S.L.; Fischman, D.L.; Waller, R.W. Status and trends of amphibian declines and extinctions worldwide. Science 2004, 306, 1783–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maxwell, S.L.; Fuller, R.A.; Brooks, T.M.; Watson, J.E.M. Biodiversity: The ravages of guns, nets and bulldozers. Nature 2016, 536, 143–145. [Google Scholar] [CrossRef] [Green Version]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.P.; Sabatino, M.C.; Jaimes, F.R.; Saura, S. Landscape connectivity and the role of small habitat patches as stepping stones: An assessment of the grassland biome in South America. Biodivers. Conserv. 2017, 26, 3465–3479. [Google Scholar] [CrossRef]
- Berna, A.; Fizesan, A.; Gosselin, F.; Thiriet, J. Plan Régional d’Actions Crapaud vert; Action n°3: Suivre les indicateurs d’évolution des populations des habitats et de leur état de conservation, Report 2020. 2021. [Google Scholar]
- Conan, A.; Dehaut, N.; Enstipp, M.; Handrich, Y.; Jumeau, J. Stormwater ponds as an amphibian breeding site: A case study with European green toad tadpoles. Environ. Sci. Pollut. Res. 2022, 30, 12114–12124. [Google Scholar] [CrossRef] [PubMed]
- Snodgrass, J.W.; Casey, R.E.; Joseph, D.; Simon, J.A. Microcosm investigations of stormwater pond sediment toxicity to embryonic and larval amphibians: Variation in sensitivity among species. Environ. Pollut. 2008, 154, 291–297. [Google Scholar] [CrossRef]
- Ravansari, R.; Wilson, S.C.; Tighe, M. Portable X-ray fluorescence for environmental assessment of soils: Not just a point and shoot method. Environ. Int. 2020, 134, 105250. [Google Scholar] [CrossRef]
- Gosner, K.L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 1960, 16, 183–190. [Google Scholar]
- Lighton, J.R.B. A Manual for Measuring Metabolic Rates; Oxford University Press: Oxford, NY, USA, 2008. [Google Scholar]
- Mantel, N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 1966, 50, 163–170. [Google Scholar] [PubMed]
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2017; pp. 1–476. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, J.C.; Bates, D.M. Linear Mixed-Effects Models: Basic Concepts and Examples. In Mixed-Effects Models in S and S-PLUS; Springer: New York, NY, USA, 2000; pp. 3–56. [Google Scholar]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Learner, M.A.; Potter, D.W.B. Life-history and Production of the Leech Helobdella stagnalis (L.) (Hirudinea) in a Shallow Eutrophic Reservoir in South Wales. J. Anim. Ecol. 1974, 43, 199–208. [Google Scholar] [CrossRef]
- Berven, K.A.; Boltz, R.S. Interactive effects of leech (Desserobdella picta) infection on wood frog (Rana sylvatica) tadpole fitness traits. Copeia 2001, 2001, 907–915. [Google Scholar] [CrossRef]
- Ayres, C.; Comesana, J. Leech prevalence in Rana iberica populations from northwestern Spain. North. West. J. Zool. 2010, 6, 118–121. [Google Scholar]
- Rowe, C.L.; Kinney, O.M.; Nagle, R.D.; Congdon, J.D. Elevated Maintenance Costs in an Anuran (Rana catesbeiana) Exposed to a Mixture of Trace Elements during the Embryonic and Early Larval Periods. Physiol. Biochem. Zool. 2015, 71, 27–35. [Google Scholar] [CrossRef]
- Katz, U. Studies on the adaptation of the toad Bufo viridis to high salinities: Oxygen consumption, plasma concentration and water content of the tissues. J. Exp. Biol. 1973, 58, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Katz, U. NaCl adaptation in Rana ridibunda and a comparison with the euryhaline toad Bufo viridis. J. Exp. Biol. 1975, 63, 763–773. [Google Scholar] [CrossRef]
- Katz, U.; Degani, G.; Gabbay, S. Acclimation of the euryhaline toad Bufo viridis to hyperosmotic solution (NaCl, urea and mannitol). J. Exp. Biol. 1984, 108, 403–409. [Google Scholar] [CrossRef]
- Zhelev, Z.M.; Popgeorgiev, G.S.; Georgieva, Z.K. Fluctuating asymmetry in the populations of Pelophylax ridibundus and Pseudepidalea viridis (Amphibia: Anura) in the region of the lead and zinc plant ‘Kardzhali’ (South Bulgaria). Acta Zool. Bulg. 2014, 66, 83–87. [Google Scholar]
- Hopkins, W.A.; DuRant, S.E.; Staub, B.P.; Rowe, C.L.; Jackson, B.P. Reproduction, Embryonic Development, and Maternal Transfer of Contaminants in the Amphibian Gastrophryne carolinensis. Environ. Health Perspect. 2006, 114, 661–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergeron, C.M.; Bodinof, C.M.; Unrine, J.M.; Hopkins, W.A. Bioaccumulation and maternal transfer of mercury and selenium in amphibians. Environ. Toxicol. Chem. 2010, 29, 989–997. [Google Scholar] [CrossRef] [PubMed]
Pollutant | Concentration (mg/kg Dry Weight) | Threshold Effect Concentrations (mg/kg Dry Weight) |
---|---|---|
Pb | 43.0 ± 0.6 | 35.8 |
Zn | 337.0 ± 1.0 | 121 |
Ni | 63.3 ± 5.7 | 22.7 |
Cu | 108.0 ± 2.9 | 31.6 |
Cr | 128.0 ± 13.6 | 43.4 |
As | 13.3 ± 0.3 | 9.79 |
Pollutants | This Study | Brand et al. 2010 | Rowe et al. 2015 | Sievers et al. 2018a |
---|---|---|---|---|
Pb | 43.0 ± 0.6 | 26 | 10.94 ± 1.89 | 25 |
Zn | 337.0 ± 1.0 | 211 | ND | 70 |
Cu | 108.0 ± 2.9 | 74 | 55.12 ± 5.05 | 25 |
Cr | 128.0 ± 13.6 | 53 | 27.25 ± 6.22 | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conan, A.; Mata, A.; Lenormand, E.; Zahariev, A.; Enstipp, M.; Jumeau, J.; Handrich, Y. Causes for the High Mortality of European Green Toad Tadpoles in Road Stormwater Ponds: Pollution or Arrival of a New Predator? Diversity 2023, 15, 485. https://doi.org/10.3390/d15040485
Conan A, Mata A, Lenormand E, Zahariev A, Enstipp M, Jumeau J, Handrich Y. Causes for the High Mortality of European Green Toad Tadpoles in Road Stormwater Ponds: Pollution or Arrival of a New Predator? Diversity. 2023; 15(4):485. https://doi.org/10.3390/d15040485
Chicago/Turabian StyleConan, Antonin, Astolfo Mata, Eloïse Lenormand, Alexandre Zahariev, Manfred Enstipp, Jonathan Jumeau, and Yves Handrich. 2023. "Causes for the High Mortality of European Green Toad Tadpoles in Road Stormwater Ponds: Pollution or Arrival of a New Predator?" Diversity 15, no. 4: 485. https://doi.org/10.3390/d15040485
APA StyleConan, A., Mata, A., Lenormand, E., Zahariev, A., Enstipp, M., Jumeau, J., & Handrich, Y. (2023). Causes for the High Mortality of European Green Toad Tadpoles in Road Stormwater Ponds: Pollution or Arrival of a New Predator? Diversity, 15(4), 485. https://doi.org/10.3390/d15040485