Application of the Vegetation Condition Index in the Diagnosis of Spatiotemporal Distribution of Agricultural Droughts: A Case Study Concerning the State of Espírito Santo, Southeastern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Acquisition and Processing of Satellite Images from the Selected Vegetation Index
2.3. Acquisition and Processing of the Land Surface Temperature Images
2.4. Composition, Classification, and Spatialization of the Vegetation Condition Index
2.5. Calculation and Spatialization of Anomalies of the Land Surface Temperature
2.6. Statistical Analysis of the Vegetation Condition Index and Land Surface Temperature Data
3. Results and Discussion
3.1. Analysis and Spatialization of Drought Occurrences for the State of Espírito Santo and Its Macroregions
3.2. Interrelationships between Land Surface Temperature and Vegetation Condition Index
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, A. Erratum: Drought under Global Warming: A Review. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 617. [Google Scholar] [CrossRef] [Green Version]
- Riebsame, W.E.; Changnon, S.A.; Karl, T.R. Drought and Natural Resources Management in the United States: Impacts and Implications of the 1987-89 Drought; Westview Press: Boulder, CO, USA, 2019; ISBN 9780429694547. [Google Scholar]
- Santos, R.B.d.; Menezes, J.A.; Confalonieri, U.; Madureira, A.P.; Duval, I.d.B.; Garcia, P.P.; Margonari, C. Construção e Aplicação de um Índice de Vulnerabilidade Humana à Mudança do Clima para o Contexto Brasileiro: A Experiência do Estado do Espírito Santo. Saúde e Soc. 2019, 28, 299–321. [Google Scholar] [CrossRef]
- Xu, H.; Wang, X.; Zhao, C.; Yang, X. Assessing the Response of Vegetation Photosynthesis to Meteorological Drought across Northern China. L. Degrad. Dev. 2021, 32, 20–34. [Google Scholar] [CrossRef]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of Extreme Weather Disasters on Global Crop Production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [Green Version]
- FAO. Disasters Causing Billions in Agricultural Losses, with Drought Leading the Way. FAO in Geneva. Organización de Las Naciones Unidas Para La Alimentación y La Agricultura. 2018. Available online: https://www.fao.org/geneva/news/detail/es/c/1109572/ (accessed on 30 December 2022).
- Faria, S.M. O Fenômeno Seca e a Produtividade Agrícola do Estado de Goiás; Universidade Federal de Goiás: Goiás, Brazil, 2011. [Google Scholar]
- Lawal, S.; Hewitson, B.; Egbebiyi, T.S.; Adesuyi, A. On the Suitability of Using Vegetation Indices to Monitor the Response of Africa’s Terrestrial Ecoregions to Drought. Sci. Total Environ. 2021, 792, 148282. [Google Scholar] [CrossRef]
- Vivas, E.B.d.F. Avaliação e Gestão de Situações de Seca e Escassez: Aplicação ao Caso do Guadiana; Universidade do Porto: Porto, Portugal, 2011. [Google Scholar]
- Van Quang, N.; Long, D.T.; Anh, N.D.; Hai, T.N. Administrative Capacity of Local Government in Responding to Natural Disasters in Developing Countries. J. Hum. Earth Futur. 2021, 2, 114–124. [Google Scholar] [CrossRef]
- Pereira, A.R.; Angelocci, L.R.; Sentelhas, P.C. Agrometeorologia: Fundamentos e Aplicações Práticas; Agropecuária: Guaíba, Brazil, 2002. [Google Scholar]
- Sandeep, P.; Obi Reddy, G.P.; Jegankumar, R.; Arun Kumar, K.C. Monitoring of Agricultural Drought in Semi-Arid Ecosystem of Peninsular India through Indices Derived from Time-Series CHIRPS and MODIS Datasets. Ecol. Indic. 2021, 121, 107033. [Google Scholar] [CrossRef]
- Sousa Júnior, M.A.; Sausen, T.M.; Lacruz, M.S.P. Monitoramento de Estiagem na Região Sul do Brasil Utilizando Dados ENVI/MODIS no Período de Dezembro de 2000 a Junho de 2009; Instituto Nacional de Pesquisas Espaciais–INPE: São José dos Campos, Brazil, 2011. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of Vegetation Index and Brightness Temperature for Drought Detection. Adv. Sp. Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Wang, W.; Wang, W.J.; Li, J.S.; Wu, H.; Xu, C.; Liu, T. The Impact of Sustained Drought on Vegetation Ecosystem in Southwest China Based on Remote Sensing. Procedia Environ. Sci. 2010, 2, 1679–1691. [Google Scholar] [CrossRef] [Green Version]
- Ginciene, B.R.; Bitencourt, M.D. Utilização do EVI (Enhanced Vegetation Index) para Maior Sensibilidade na Detecção de Mudanças Temporais em Fragmentos de Floresta Estacional Semidecidual. In Proceedings of the Simpósio Brasileiro de Sensoriamento Remoto, Curitiba, Brazil, 28–31 November 2011. [Google Scholar]
- Marcuzzo, F.F.N.; Goularte, E.R.P. Índice de Anomalia de Chuvas do Estado do Tocantins. Geoambiente Jataí–GO 2012, 19, 55–71. [Google Scholar]
- Wu, J.; Zhou, L.; Liu, M.; Zhang, J.; Leng, S.; Diao, C. Establishing and Assessing the Integrated Surface Drought Index (ISDI) for Agricultural Drought Monitoring in Mideastern China. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 397–410. [Google Scholar] [CrossRef]
- Yoshida, Y.; Joiner, J.; Tucker, C.; Berry, J.; Lee, J.E.; Walker, G.; Reichle, R.; Koster, R.; Lyapustin, A.; Wang, Y. The 2010 Russian Drought Impact on Satellite Measurements of Solar-Induced Chlorophyll Fluorescence: Insights from Modeling and Comparisons with Parameters Derived from Satellite Reflectances. Remote Sens. Environ. 2015, 166, 163–177. [Google Scholar] [CrossRef]
- Wang, S.; Huang, C.; Zhang, L.; Lin, Y.; Cen, Y.; Wu, T. Monitoring and Assessing the 2012 Drought in the Great Plains: Analyzing Satellite-Retrieved Solar-Induced Chlorophyll Fluorescence, Drought Indices, and Gross Primary Production. Remote Sens. 2016, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Huang, Q.; Huang, S.; Leng, G.; Bai, Q.; Liang, H.; Wang, L.; Zhao, J.; Fang, W. Spatial-Temporal Dynamics of Agricultural Drought in the Loess Plateau under a Changing Environment: Characteristics and Potential Influencing Factors. Agric. Water Manag. 2021, 244, 106540. [Google Scholar] [CrossRef]
- Liu, L.; Yang, X.; Zhou, H.; Liu, S.; Zhou, L.; Li, X.; Yang, J.; Han, X.; Wu, J. Evaluating the Utility of Solar-Induced Chlorophyll Fluorescence for Drought Monitoring by Comparison with NDVI Derived from Wheat Canopy. Sci. Total Environ. 2018, 625, 1208–1217. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, S.; Zhang, H.; Bai, Y.; Zhang, J. Monitoring Drought Using Composite Drought Indices Based on Remote Sensing. Sci. Total Environ. 2020, 711, 134585. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, P.; Tansey, K.; Zhang, S.; Li, H.; Wang, L. Developing a Fused Vegetation Temperature Condition Index for Drought Monitoring at Field Scales Using Sentinel-2 and MODIS Imagery. Comput. Electron. Agric. 2020, 168, 105144. [Google Scholar] [CrossRef]
- Gao, X.; Huete, A.R.; Ni, W.; Miura, T. Optical-Biophysical Relationships of Vegetation Spectra without Background Contamination. Remote Sens. Environ. 2000, 74, 609–620. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An Overview of MODIS Land Data Processing and Product Status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Aulia, M.R.; Liyantono; Setiawan, Y.; Fatikhunnada, A. Drought Detection of West Java’s Paddy Field Using MODIS EVI Satellite Images (Case Study: Rancaekek and Rancaekek Wetan). Procedia Environ. Sci. 2016, 33, 646–653. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, N.B.; Lopes, A.P.; Dalagnol, R.; Wu, J.; Pinho, D.M.; Nelson, B.W. Both Near-Surface and Satellite Remote Sensing Confirm Drought Legacy Effect on Tropical Forest Leaf Phenology after 2015/2016 ENSO Drought. Remote Sens. Environ. 2020, 237, 111489. [Google Scholar] [CrossRef]
- Du, L.; Tian, Q.; Yu, T.; Meng, Q.; Jancso, T.; Udvardy, P.; Huang, Y. A Comprehensive Drought Monitoring Method Integrating MODIS and TRMM Data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 245–253. [Google Scholar] [CrossRef]
- Zhuo, Z.Y.; Long, Q.B.; Bai, P. Scale of Meteorological Drought Index Suitable for Characterizing Agricultural Drought: A Case Study of Hunan Province. J. South-to-North Water Transf. Water Sci. Technol. 2021, 19, 119–128. [Google Scholar]
- Patel, N.R.; Yadav, K. Monitoring Spatio-Temporal Pattern of Drought Stress Using Integrated Drought Index over Bundelkhand Region, India. Nat. Hazards 2015, 77, 663–677. [Google Scholar] [CrossRef]
- Shamsipour, A.A.; Zawar-Reza, P.; Alavi Panah, S.K.; Azizi, G. Analysis of Drought Events for the Semi-Arid Central Plains of Iran with Satellite and Meteorological Based Indicators. Int. J. Remote Sens. 2011, 32, 9559–9569. [Google Scholar] [CrossRef]
- Sha, S.; Guo, N.; Li, Y.H.; Ren, Y.L.; Li, Y.P. Comparison of the Vegetation Condition Index with Meteorological Drought Indices: A Case Study in Henan Province. J. Glaciol. Geocryol. 2013, 35, 990–998. [Google Scholar]
- Li, X.-Y.; Yang, L.-A.; Nie, H.-M.; Ren, L.; Hu, S.; Yang, Y.-C. Assessment of Temporal and Spatial Dynamics of Agricultural Drought in Shaanxi Province Based on Vegetation Condition Index. Chin. J. Ecol. 2018, 37, 1172–1180. [Google Scholar] [CrossRef]
- Quiring, S.M.; Ganesh, S. Evaluating the Utility of the Vegetation Condition Index (VCI) for Monitoring Meteorological Drought in Texas. Agric. For. Meteorol. 2010, 150, 330–339. [Google Scholar] [CrossRef]
- Agutu, N.O.; Awange, J.L.; Ndehedehe, C.; Mwaniki, M. Consistency of Agricultural Drought Characterization over Upper Greater Horn of Africa (1982–2013): Topographical, Gauge Density, and Model Forcing Influence. Sci. Total Environ. 2020, 709, 135149. [Google Scholar] [CrossRef]
- Walz, Y.; Min, A.; Dall, K.; Duguru, M.; Villagran de Leon, J.-C.; Graw, V.; Dubovyk, O.; Sebesvari, Z.; Jordaan, A.; Post, J. Monitoring Progress of the Sendai Framework Using a Geospatial Model: The Example of People Affected by Agricultural Droughts in Eastern Cape, South Africa. Prog. Disaster Sci. 2020, 5, 100062. [Google Scholar] [CrossRef]
- Hu, T.; Renzullo, L.J.; van Dijk, A.I.J.M.; He, J.; Tian, S.; Xu, Z.; Zhou, J.; Liu, T.; Liu, Q. Monitoring Agricultural Drought in Australia Using MTSAT-2 Land Surface Temperature Retrievals. Remote Sens. Environ. 2020, 236, 111419. [Google Scholar] [CrossRef]
- Ji, M.; Zhang, C.; Zhao, J.W.; Yan, J.L.L. Temporal and Spatial Dynamics of Spring Drought in Qinghai-Tibet Region Based on VCI Index. Remote Sens. L. Resour. 2021, 33, 152–157. [Google Scholar] [CrossRef]
- Quiring, S.M.; Papakryiakou, T.N. An Evaluation of Agricultural Drought Indices for the Canadian Prairies. Agric. For. Meteorol. 2003, 118, 49–62. [Google Scholar] [CrossRef]
- Lv, X.; Yin, X.; Gong, A.; Wang, Q.; Li, J.; Zhang, H. Temporal and Spatial Analysis of Agricultural Drought in Yunnan Provincebased on Vegetation Condition Index. J. Geo-Inf. Sci. 2016, 18, 1634–1644. [Google Scholar]
- Sun, X.; Wang, M.; Li, G.; Wang, J.; Fan, Z. Divergent Sensitivities of Spaceborne Solar-Induced Chlorophyll Fluorescence to Drought among Different Seasons and Regions. ISPRS Int. J. Geo-Inf. 2020, 9, 542. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Q.; Singh, V.P.; Sun, P.; Song, C.; Yu, H. Agricultural Drought Monitoring across Inner Mongolia, China: Model Development, Spatiotemporal Patterns and Impacts. J. Hydrol. 2019, 571, 793–804. [Google Scholar] [CrossRef]
- Marengo, J.A. Caracterização do Clima no Século XX e Cenários Climáticos no Brasil e na América do Sul para o Século XXI Derivados dos Modelos Globais de Clima do IPCC; Revista Multiciência: Campinas, Brazil, 2007. [Google Scholar]
- ANA. Conjuntura dos Recursos Hídricos no Brasil 2017: Relatório Pleno; Agência Nacional de Águas: Brasília, Brazil, 2017. [Google Scholar]
- Souza, F.A.O.d; Oliveira, M.M. Panorama dos Danos Humanos Provocados por Secas e Cheias no Brasil e uma Proposta de Regionalização de Investimentos na Gestão de Riscos. Desenvolv. e Meio Ambient. 2019, 51, 282–310. [Google Scholar] [CrossRef] [Green Version]
- Ceped UFSC. Atlas Brasileiro de Desastres Naturais: 1991 a 2012, 2nd ed.; Volume Espírito Santo; Ceped UFSC: Florianópolis, Brazil, 2013. [Google Scholar]
- Governo do Estado do Espírito Santo. Panorama Econômico do Espírito Santo: 3o Trimestre de. 2017. Available online: http://www.ijsn.es.gov.br/artigos/4970-panorama-economico-do-espirito-santo-3-trimestre-de-2017 (accessed on 4 February 2020).
- Silva, A.C.; Pimenta, A.A.G.; Silva Neto, F.B. Histórico de Desastres do Estado do Espírito Santo 2000–2009. Available online: https://defesacivil.es.gov.br/Media/defesacivil/Publicacoes/Livro-Histórico de Desastres do Estado do Espírito Santo-2000 a 2009.pdf (accessed on 4 February 2020).
- INCAPER. Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão; INCAPER: Vitória, Brazil, 2016.
- INPE-Instituto Nacional de Pesquisas Espaciais. El Niño e La Niña-CPTEC/INPE. Available online: http://enos.cptec.inpe.br/elnino/pt (accessed on 12 December 2019).
- NOAA El Nino Related Global Temperature e Precipitation Patterns. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensocycle/elninosfc.shtml (accessed on 18 December 2019).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol Zeitschrift 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User ’s Guide; The University of Arizona Press: Tucson, AZ, USA, 2015. [Google Scholar]
- dos Santos, A.R.; Eugenio, F.C.; Ribeiro, C.A.A.S.; Soares, V.P.; Moreira, M.A.; dos Santos, G.M.A.D.A. ArcGIS 10.2.2 Passo a Passo: Elaborando Meu Primeiro Mapeamento–Volume 1; CAUFES: Alegre, Brazil, 2014. [Google Scholar]
- ESRI. ArcGIS Desktop: Release 10.1; Environmental Systems Research Institute: Redlands, CA, USA, 2015. [Google Scholar]
- AbdelRahman, M.A.E.; Tahoun, S. GIS Model-Builder Based on Comprehensive Geostatistical Approach to Assess Soil Quality. Remote Sens. Appl. Soc. Environ. 2019, 13, 204–214. [Google Scholar] [CrossRef]
- Moraes, R.A. Monitoramento e Estimativa da Produção da Cultura de Cana-de-Açúcar no Estado de São Paulo por Meio de Dados Espectrais e Agrometeorológicos; Universidade Estadual de Campinas: Campinas, Brazil, 2012. [Google Scholar]
- Moraes, R.A.; Rocha, J.V. Imagens de Coeficiente de Qualidade (Quality) e de Confiabilidade (Reliability) para Seleção de Pixels em Imagens de NDVI do Sensor MODIS para Monitoramento da Cana-de-Açúcar no Estado de São Paulo. In Proceedings of the XV Simpósio Brasileiro de Sensoriamento Remoto-SBSR, Curitiba, Brazil, 30 April–5 May 2011; pp. 547–552. [Google Scholar]
- Yu, F.; Price, K.P.; Ellis, J.; Shi, P. Response of Seasonal Vegetation Development to Climatic Variations in Eastern Central Asia. Remote Sens. Environ. 2003, 87, 42–54. [Google Scholar] [CrossRef]
- Watson, D.F.; Philip, G.M. A Refinement of Inverse Distance Weighted Interpolation. Geoprocessing 1985, 2, 315–327. [Google Scholar]
- Geobases Sistema Integrado de Bases Geoespaciais do Estado do Espírito Santo. Available online: https://geobases.es.gov.br/downloads (accessed on 12 March 2019).
- Chen, B.; Xu, G.; Coops, N.C.; Ciais, P.; Innes, J.L.; Wang, G.; Myneni, R.B.; Wang, T.; Krzyzanowski, J.; Li, Q.; et al. Changes in Vegetation Photosynthetic Activity Trends across the Asia-Pacific Region over the Last Three Decades. Remote Sens. Environ. 2014, 144, 28–41. [Google Scholar] [CrossRef]
- Coleve, P.A. Aplicação de Índices das Condições de Vegetação no Monitoramento em Tempo Quase Real da Seca em Moçambique Usando NOAA_AVHRR-NDVI. GEOUSP–Espaço e Tempo. São Paulo, Brazil 2011, 29, 85–95. [Google Scholar]
- Scott, A.J.; Knott, M. A Cluster Analysis Method for Grouping Means in the Analysis of Variance. Biometrics 1974, 30, 507. [Google Scholar] [CrossRef] [Green Version]
- R Development Core Team. R: A Language and Environment for Statistical Computing. Available online: http://www.r-project.org (accessed on 12 March 2019).
- Borges, L.; Ferreira, D. Power and Type I Errors Rate of Scott–Knott, Tukey and Newman–Keuls Tests under Normal and No-Normal Distributions of the Residues. Rev. Matemática e Estatística 2003, 21, 67–83. [Google Scholar]
- Ramalho, M.A.P.; Ferreira, D.F.; Oliveira, A.C. Experimentação em Genética e Melhoramento de Plantas; UFLA: Lavras, Brazil, 2000. [Google Scholar]
- Fisher, W.D. On Grouping for Maximum Homogeneity. J. Am. Stat. Assoc. 1958, 53, 789–798. [Google Scholar] [CrossRef]
- Brandão, F.D.; Gonçalves, M.; Jabor, P.M. Diagnóstico e o Prognóstico das Condições de Uso da Água na Bacia Hidrográfica do Rio Itapemirim como Subsídio Fundamental ao Enquadramento e Plano de Recursos Hídricos; AGERH: Vitória, Brazil, 2018.
- ECOPLAN-LUME. Plano Integrado de Recursos Hídricos da Bacia Hidrográfica do Rio Doce e Planos de Ações para as Unidades de Planejamento e Gestão de Recursos Hídricos no Âmbito da Bacia do Rio Doce–Volume I; Consórcio Ecoplan-Lume. Contrato: Porto Alegre, Brazil, 2010. [Google Scholar]
- Arato, H.D.; Martins, S.V.; Ferrari, S.H.d.S. Produção e Decomposição de Serapilheira em um Sistema Agroflorestal Implantado para Recuperação de Área Degradada em Viçosa-MG. Rev. Árvore 2003, 27, 715–721. [Google Scholar] [CrossRef]
- IJSN-Governo do Estado do Espírito Santo. Atlas Histórico-Geográfico do Espírito Santo; SEDU/IJSN: Vitória, Brazil, 2011. [Google Scholar]
- Brandão, F.D.; Gonçalves, M.A.; Jabor, P.M. Diagnóstico e o Prognóstico das Condições de Uso da Água na Bacia Hidrográfica do Rio São Mateus como Subsídio Fundamental ao Enquadramento e Plano de Recursos Hídricos; AGERH: Vitória, Brazil, 2018.
- Brandão, F.D.; Gonçalves, M.A.; Jabor, P.M. Diagnóstico e o Prognóstico das Condições de Uso da Água na Bacia Hidrográfica do Rio Itaúnas como Subsídio Fundamental ao Enquadramento e Plano de Recursos Hídricos; AGERH: Vitória, Brazil, 2018.
- Brasil. Coordenadoria Técnica de Combate à Desertificação Programa de Ação Nacional de Combate à Desertificação e Mitigação dos Efeitos da Seca–PAN Brasil; Ministério do Meio Ambiente: Brasília, Brazil, 2005. [Google Scholar]
- IEMA. Elaboração de Projeto Executivo para Enquadramento dos Corpos de Água em Classes e Plano de Bacia para os Rios Santa Maria da Vitória e Jucu. Relatorio II, Volume II; Secretaria do Meio Ambiente: Vitória, Brazil, 2015. [Google Scholar]
- Thornthwaite, C.W.; Mather, J. The Water Balance; Drexel Institute of Technology, Laboratory of Climatology: Centerton, NJ, USA, 1955. [Google Scholar]
- MH COSTA. Balanço Hídrico Segundo Thornthwaite e Mather, 1955; Universidade Federal de Viçosa, Departamento de Engenharia Agrícola. Engenharia na Agricultura, C. Didático 19: Viçosa, Brazil, 1994. [Google Scholar]
- Rolim, G.; Sentelhas, P.; Barbiere, V. Planilhas no Ambiente EXCEL para os Cálculos de Balanços Hídricos: Normal, Sequencial, de Cultura e de Produtividade Real e Potencial. Rev. Bras. Agrometeorol. 1998, 6, 133–137. [Google Scholar]
- Oliveira, L.M.M.d.; Montenegro, S.M.G.L.; Antonino, A.C.D.; da Silva, B.B.; Machado, C.C.C.; Galvíncio, E.J.D. Análise Quantitativa de Parâmetros Biofísicos de Bacia Hidrográfica Obtidos por Sensoriamento Remoto. Pesqui. Agropecu. Bras. 2012, 47, 1209–1217. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.D.; Gan, T.Y.; Lau, N.C. Elevated Increases in Human-Perceived Temperature under Climate Warming. Nat. Clim. Chang. 2018, 8, 43–47. [Google Scholar] [CrossRef]
- Tesfaye, S.; Taye, G.; Birhane, E.; van der Zee, S.E. Observed and Model Simulated Twenty-First Century Hydro-Climatic Change of Northern Ethiopia. J. Hydrol. Reg. Stud. 2019, 22, 100595. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J. Changes in Drought Characteristics over China Using the Standardized Precipitation Evapotranspiration Index. J. Clim. 2015, 28, 5430–5447. [Google Scholar] [CrossRef]
- Yue, W.; Xu, J.; Tan, W.; Xu, L. The Relationship between Land Surface Temperature and NDVI with Remote Sensing: Application to Shanghai Landsat and ETM+ Data. Int. J. Remote Sens. 2007, 15, 3205–3226. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A. The Yearly Land Cover Dynamics (YLCD) Method: An Analysis of Global Vegetation from NDVI and LST Parameters. Remote Sens. Environ. 2009, 113, 329–334. [Google Scholar] [CrossRef]
- Lambers, H.; Chapin, F.S.; Pons, T.L. Plant Physiological Ecology; Springer: New York, NY, USA, 2008. [Google Scholar]
- Shao, H.; Chu, L.; Jaleel, C.A.; Manivannan, P.; Penneerselvam, R.; Shao, M.A. Understanding Water Deficit Stress-Induced Changes in the Basic Metabolism of Higher Plants–Biotechnologically and Sustainably Improving Agriculture and the Ecoenvironment in Arid Regions of the Globe. Crit. Rev. Biotechnol. 2009, 29, 131–151. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Chen, Y.D. Assessment of Regional Drought Trend and Risk over China: A Drought Climate Division Perspective. J. Clim. 2015, 28, 7025–7037. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J.; Carbone, G.J. Monitoring Agricultural Drought for Arid and Humid Regions Using Multi-Sensor Remote Sensing Data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
Image Years | Start Date (Julian Day) |
---|---|
From 2008 to 2017 | 01/01 (01), 01/17 (17), 02/02 (33), 02/18 (49), * 03/06 (65), 03/22 (81), 04/07 (97), 04/23 (113), 05/09 (129), 05/25 (145), 06/10 (161), 06/26 (177), 07/12 (193), 07/28 (209), 08/13 (225), 08/29 (241), 09/14 (257), 09/30 (273), 10/16 (289), 11/01 (305), 11/17 (321), 12/03 (337), 12/19 (353) |
Pixel Value | Quality | Description | Value after Reclassification |
---|---|---|---|
−1 | No data | Unprocessed data | No data |
0 | Good data | Can be used with confidence | 0 |
1 | Marginal data | * Can be used | 0 |
2 | Snow/ice | Target covered by snow or ice | No data |
3 | Cloud | Cloud covered target | No data |
Summer From December 19 to March 21 | Fall From March 22 to June 25 | Winter From June 26 to September 29 | Spring From September 14 to December 18 |
---|---|---|---|
12/19 (353) | 03/22 (81) | 06/26 (177) | 09/14 (257) |
01/01 (01) | 04/07 (97) | 07/12 (193) | 09/30 (273) |
01/17 (17) | 04/23 (113) | 07/28 (209) | 10/16 (289) |
02/02 (33) | 05/09 (129) | 08/13 (225) | 11/01 (305) |
02/18 (49) | 05/25 (145) | 08/29 (241) | 11/17 (321) |
* 03/06 (65) | 06/10(161) | 09/14 (257) | 12/03 (337) |
VCI Values (%) | Classification |
---|---|
0 < VCI < 20 | Extremely dry |
20 ≤ VCI < 40 | Dry |
40 ≤ VCI < 60 | Normal condition |
60 ≤ VCI < 80 | Good condition |
VCI ≥ 80 | Optimal condition |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senhorelo, A.P.; Sousa, E.F.d.; Santos, A.R.d.; Ferrari, J.L.; Peluzio, J.B.E.; Zanetti, S.S.; Carvalho, R.d.C.F.; Camargo Filho, C.B.; Souza, K.B.d.; Moreira, T.R.; et al. Application of the Vegetation Condition Index in the Diagnosis of Spatiotemporal Distribution of Agricultural Droughts: A Case Study Concerning the State of Espírito Santo, Southeastern Brazil. Diversity 2023, 15, 460. https://doi.org/10.3390/d15030460
Senhorelo AP, Sousa EFd, Santos ARd, Ferrari JL, Peluzio JBE, Zanetti SS, Carvalho RdCF, Camargo Filho CB, Souza KBd, Moreira TR, et al. Application of the Vegetation Condition Index in the Diagnosis of Spatiotemporal Distribution of Agricultural Droughts: A Case Study Concerning the State of Espírito Santo, Southeastern Brazil. Diversity. 2023; 15(3):460. https://doi.org/10.3390/d15030460
Chicago/Turabian StyleSenhorelo, Adriano Posse, Elias Fernandes de Sousa, Alexandre Rosa dos Santos, Jéferson Luiz Ferrari, João Batista Esteves Peluzio, Sidney Sara Zanetti, Rita de Cássia Freire Carvalho, Cláudio Barberini Camargo Filho, Kaíse Barbosa de Souza, Taís Rizzo Moreira, and et al. 2023. "Application of the Vegetation Condition Index in the Diagnosis of Spatiotemporal Distribution of Agricultural Droughts: A Case Study Concerning the State of Espírito Santo, Southeastern Brazil" Diversity 15, no. 3: 460. https://doi.org/10.3390/d15030460
APA StyleSenhorelo, A. P., Sousa, E. F. d., Santos, A. R. d., Ferrari, J. L., Peluzio, J. B. E., Zanetti, S. S., Carvalho, R. d. C. F., Camargo Filho, C. B., Souza, K. B. d., Moreira, T. R., Costa, G. A., Kunz, S. H., & Dias, H. M. (2023). Application of the Vegetation Condition Index in the Diagnosis of Spatiotemporal Distribution of Agricultural Droughts: A Case Study Concerning the State of Espírito Santo, Southeastern Brazil. Diversity, 15(3), 460. https://doi.org/10.3390/d15030460