Thermal Response of Circulating Estrogens in an Emydid Turtle, Chrysemys picta, and the Challenges of Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Collection
2.2. Sample Preparation
2.3. QQQ-MS Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowden, R.M.; Ewert, M.A.; Nelson, C.E. Environmental sex determination in a reptile varies seasonally and with yolk hormones. Proc. Biol. Sci. 2000, 267, 1745–1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bista, B.; Valenzuela, N. Turtle insights into the evolution of the reptilian karyotype and the genomic architecture of sex determination. Genes 2020, 11, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewert, M.A.; Etchberger, C.R.; Nelson, C.E. Turtle sex-determining modes and TSD patterns, and some TSD pattern correlates. In Temperature-Dependent Sex Determination in Vertebrates; Valenzuela, N., Lance, V.A., Eds.; Smithsonian Book: Washington, DC, USA, 2004; pp. 21–32. [Google Scholar]
- Bowden, R.M.; Ewert, M.A.; Freedberg, S.; Nelson, C.E. Maternally derived yolk hormones vary in follicles of the painted turtle, Chrysemys picta. J. Exp. Zool. 2002, 293, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Radder, R.S. Maternally derived egg yolk steroid hormones and sex determination: Review of a paradox in reptiles. J. Biosci. 2007, 32, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Bowden, R.M.; Paitz, R.T. Temperature fluctuations and maternal estrogens as critical factors for understanding temperature-dependent sex determination in nature. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2018, 329, 177–184. [Google Scholar] [CrossRef]
- Raynaud, A.; Pieau, C. Embryonic development of the genital system. In Biology of the Reptilia; Gans, C., Billet, F., Eds.; John Wiley & Sons: New York, NY, USA, 1985; pp. 151–300. [Google Scholar]
- Wibbels, T.; Crews, D. Steroid-induced sex determination at incubation temperatures producing mixed sex ratios in a turtle with TSD. Gen. Comp. Endocrinol. 1995, 100, 53–60. [Google Scholar] [CrossRef]
- Freedberg, S.; Nelson, C.E.; Ewert, M.A. Estradiol-17 beta induces lasting sex reversal at male-producing temperatures in kinosternid turtles. J. Herpetol. 2006, 40, 95–98. [Google Scholar] [CrossRef]
- Freedberg, S.; Bowden, R.M.; Ewert, M.A.; Sengelaub, D.R.; Nelson, C.E. Long-term sex reversal by oestradiol in amniotes with heteromorphic sex chromosomes. Biol. Lett. 2006, 2, 378–381. [Google Scholar] [CrossRef]
- Janzen, F.J.; Wilson, M.E.; Tucker, J.K.; Ford, S.P. Experimental manipulation of steroid concentrations in circulation and in egg yolks of turtles. J. Exp. Zool. 2002, 293, 58–66. [Google Scholar] [CrossRef]
- Bowden, R.M.; Ewert, M.A.; Lipar, J.L.; Nelson, C.E. Concentrations of steroid hormones in layers and biopsies of chelonian egg yolks. Gen. Comp. Endocrinol. 2001, 121, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Callard, I.P.; Lance, V.; Salhanick, A.R.; Barad, D. The annual ovarian cycle of Chrysemys picta: Correlated changes in plasma steroids and parameters of vitellogenesis. Gen. Comp. Endocrinol. 1978, 35, 245–257. [Google Scholar] [CrossRef]
- Crawford, K.M. The winter environment of painted turtles, Chrysemys picta—temperature, dissolved-oxygen, and potential cues for emergence. Can. J. Zool.—Rev. Can. De Zool. 1991, 69, 2493–2498. [Google Scholar] [CrossRef]
- Topping, N.E.; Valenzuela, N. Turtle nest-site choice, anthropogenic challenges, and evolutionary potential for adaptation. Front. Ecol. Evol. 2021, 9, 808621. [Google Scholar] [CrossRef]
- Obbard, M.E.; Brooks, R.J. Prediction of the onset of the annual nesting season of the common snapping turtle, Chelydra serpentina. Herpetologica 1987, 43, 324–328. [Google Scholar]
- Rowe, J.W.; Coval, K.A.; Campbell, K.C. Reproductive characteristics of female midland painted turtles (Chrysemys picta marginata) from a population on Beaver Island, Michigan. Copeia 2003, 2003, 326–336. [Google Scholar] [CrossRef]
- Grayson, K.L.; Dorcas, M.E. Seasonal temperature variation in the painted turtle (Chrysemys picta). Herpetologica 2004, 60, 325–336. [Google Scholar] [CrossRef]
- Schwantes, A.M.; Swenson, J.J.; González-Roglich, M.; Johnson, D.M.; Domec, J.C.; Jackson, R.B. Measuring canopy loss and climatic thresholds from an extreme drought along a fivefold precipitation gradient across Texas. Glob. Chang. Biol. 2017, 23, 5120–5135. [Google Scholar] [CrossRef] [PubMed]
- Desvages, G.; Pieau, C. Aromatase-activity in gonads of turtle embryos as a function of the incubation-temperature of eggs. J. Steroid Biochem. Mol. Biol. 1992, 41, 851–853. [Google Scholar] [CrossRef]
- Desvages, G.; Girondot, M.; Pieau, C. Sensitive Stages for the Effects of Temperature on gonadal aromatase-activity in embryos of the marine turtle Dermochelys coriacea. Gen. Comp. Endocrinol. 1993, 92, 54–61. [Google Scholar] [CrossRef]
- Jeyasuria, P.; Roosenburg, W.M.; Place, A.R. Role of P-450 Aromatase in sex determination of the diamondback terrapin, Malaclemys terrapin. J. Exp. Zool. 1994, 270, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Jeyasuria, P.; Place, A.R. Temperature-dependent aromatase expression in developing diamondback terrapin (Malaclemys terrapin) embryos. J. Steroid Biochem. Mol. Biol. 1997, 61, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Jeyasuria, P.; Place, A.R. Embryonic brain-gonadal axis in temperature-dependent sex determination of reptiles: A role for P450 aromatase (CYP19). J. Exp. Zool. 1998, 281, 428–449. [Google Scholar] [CrossRef]
- Rhen, T.; Metzger, K.; Schroeder, A.; Woodward, R. Expression of putative sex-determining genes during the thermosensitive period of gonad development in the snapping turtle, Chelydra Serpentina. Sex. Dev. 2007, 1, 255–270. [Google Scholar] [CrossRef]
- Ramsey, M.; Crews, D. Adrenal-kidney-gonad complex measurements may not predict gonad-specific changes in gene expression patterns during temperature-dependent sex determination in the red-eared slider turtle (Trachemys scripta elegans). J. Exp. Zool. A Ecol. Genet. Physiol. 2007, 307, 463–470. [Google Scholar] [CrossRef]
- Valenzuela, N.; Neuwald, J.L.; Literman, R. Transcriptional evolution underlying vertebrate sexual development. Dev. Dyn. 2013, 242, 307–319. [Google Scholar] [CrossRef]
- Lance, V.A. Is regulation of aromatase expression in reptiles the key to understanding temperature-dependent sex determination? J. Exp. Zool. A Ecol. Genet. Physiol. 2009, 311, 314–322. [Google Scholar] [CrossRef]
- Dorizzi, M.; Richard-Mercier, N.; Pieau, C. The ovary retains male potential after the thermosensitive period for sex determination in the turtle Emys orbicularis. Differentiation 1996, 60, 193–201. [Google Scholar] [CrossRef]
- Britt, K.L.; Findlay, J.K. Estrogen actions in the ovary revisited. J. Endocrinol. 2002, 175, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Meinhardt, U.; Mullis, P.E. The aromatase cytochrome P-450 and its clinical impact. Horm. Res. 2002, 57, 145–152. [Google Scholar] [CrossRef]
- Veitia, R.A. Le facteur de transcription FOXL2: Un acteur clé de la différenciation de l’ovaire, de son maintien et de la fertilité. Bull. De L’académie Natl. De Méd. 2016, 200, 1115–1127. [Google Scholar] [CrossRef]
- Callard, G.V.; Petro, Z.; Ryan, K.J. Identification of aromatase in the reptilian brain. Endocrinology 1977, 100, 1214–1218. [Google Scholar] [CrossRef] [PubMed]
- Wade, J. Androgen metabolism in the brain of the green anole lizard (Anolis carolinensis). Gen. Comp. Endocrinol. 1997, 106, 127–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pielke, R., Jr.; Burgess, M.G.; Ritchie, J. Most plausible 2005-2040 emissions scenarios project less than 2.5 degrees C of warming by 2100. SocArXiv 2021. [Google Scholar] [CrossRef]
- Fuentes, M.; Limpus, C.J.; Hamann, M.; Dawson, J. Potential impacts of projected sea-level rise on sea turtle rookeries. Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 132–139. [Google Scholar] [CrossRef]
- Stanford, C.B.; Iverson, J.B.; Rhodin, A.G.; van Dijk, P.P.; Mittermeier, R.A.; Kuchling, G.; Berry, K.H.; Bertolero, A.; Bjorndal, K.A.; Blanck, T.E.G.; et al. Turtles and tortoises are in trouble. Curr. Biol. 2020, 30, R721–R735. [Google Scholar] [CrossRef]
- Neuwald, J.L.; Valenzuela, N. The lesser known challenge of climate change: Thermal variance and sex-reversal in vertebrates with temperature-dependent sex determination. PLoS ONE 2011, 6, e18117. [Google Scholar] [CrossRef]
- Valenzuela, N.; Literman, R.; Neuwald, J.L.; Mizoguchi, B.; Iverson, J.B.; Riley, J.L.; Litzgus, J.D. Extreme thermal fluctuations from climate change unexpectedly accelerate demographic collapse of vertebrates with temperature-dependent sex determination. Sci. Rep. 2019, 9, 4254. [Google Scholar] [CrossRef] [Green Version]
- Bowden, R.M.; Paitz, R.T. Is thermal responsiveness affected by maternal estrogens in species with temperature-dependent sex determination? Sex. Dev. 2021, 15, 69–79. [Google Scholar] [CrossRef]
- Hernandez-Divers, S.M.; Hernandez-Divers, S.J.; Wyneken, J. Angiographic, anatomic and clinical technique descriptions of a subcarapacial venipuncture site for chelonians. J. Herpetol. Med. Surg. 2002, 12, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Mans, C. Venipuncture techniques in chelonian species. Lab Anim. 2008, 37, 303–304. [Google Scholar] [CrossRef]
- Boggs, A.S.; Bowden, J.A.; Galligan, T.M.; Guillette, L.J.; Kucklick, J.R. Development of a multi-class steroid hormone screening method using Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS). Anal. Bioanal. Chem. 2016, 408, 4179–4190. [Google Scholar] [CrossRef] [Green Version]
- Bussy, U.; Chung-Davidson, Y.-W.; Buchinger, T.J.; Li, K.; Li, W. High-sensitivity determination of estrogens in fish plasma using chemical derivatization upstream UHPLC–MSMS. Steroids 2017, 123, 13–19. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing, version 4.0.3; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 25 February 2023).
- McPherson, R.; Boots, L.; MacGregor, R., III; Marion, K. Plasma steroids associated with seasonal reproductive changes in a multiclutched freshwater turtle, Sternotherus odoratus. Gen. Comp. Endocrinol. 1982, 48, 440–451. [Google Scholar] [CrossRef]
- Rostal, D.C.; Owens, D.W.; Grumbles, J.S.; MacKenzie, D.S.; Amoss, M.S., Jr. Seasonal reproductive cycle of the Kemp’s ridley sea turtle (Lepidochelys kempi). Gen. Comp. Endocrinol. 1998, 109, 232–243. [Google Scholar] [CrossRef]
- Allman, P.; Bowden, R.M.; Donini, J.; Serra, I. Year-round plasma steroid hormone profiles and the reproductive ecology of gopher tortoises (Gopherus polyphemus) at the southernmost edge of their range. Gen. Comp. Endocrinol. 2019, 282, 113213. [Google Scholar] [CrossRef]
- Hulin, V.; Delmas, V.; Girondot, M.; Godfrey, M.H.; Guillon, J.-M. Temperature-dependent sex determination and global change: Are some species at greater risk? Oecologia 2009, 160, 493–506. [Google Scholar] [CrossRef]
- Morjan, C.L. How rapidly can maternal behavior affecting primary sex ratio evolve in a reptile with environmental sex determination? Am. Nat. 2003, 162, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Laloë, J.-O.; Hays, G.C. Can a present-day thermal niche be preserved in a warming climate by a shift in phenology? A case study with sea turtles. R. Soc. Open Sci. 2023, 10, 221002. [Google Scholar] [CrossRef]
- Blanvillain, G.; Owens, D.W.; Kuchling, G. Hormones and reproductive cycles in turtles. In Hormones and Reproduction of Vertebrates; Norris, D.O., Lopez, K.H., Eds.; Academic Press: Cambridge, MA, USA, 2011; pp. 277–303. [Google Scholar]
- Marquez, E.C.; Traylor-Knowles, N.; Novillo-Villajos, A.; Callard, I.P. Cloning of estrogen receptor alpha and aromatase cDNAs and gene expression in turtles (Chrysemys picta and Pseudemys scripta) exposed to different environments. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2011, 154, 213–225. [Google Scholar] [CrossRef]
- Mizoguchi, B.A.; Valenzuela, N. Ecotoxicological perspectives of sex determination. Sex. Dev. 2016, 10, 45–57. [Google Scholar] [CrossRef]
Temp | Day | N | Estradiol (E2) | Estrone (E1) | Testosterone (T) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | |||
C | 0 | 15 | 0.199 | 0.038 | 1.529 | 0.140 | 0.089 | 0.171 | 0.004 | 0.001 | 0.014 |
W | 0 | 15 | 0.167 | 0.054 | 0.470 | 0.177 | 0.108 | 0.464 | 0.007 | 0.001 | 0.018 |
C | 2 | 15 | 0.149 | 0.081 | 0.315 | 0.410 | 0.621 | 1.057 | 0.023 | 0.005 | 0.104 |
W | 2 | 15 | 0.163 | 0.070 | 0.350 | 0.810 | 0.549 | 1.108 | 0.011 | 0.006 | 0.044 |
C | 8 | 15 | 0.379 | 0.068 | 1.738 | 0.838 | 0.732 | 0.967 | 0.009 | 0.002 | 0.026 |
W | 8 | 15 | 0.312 | 0.138 | 0.852 | 0.825 | 0.694 | 0.956 | 0.010 | 0.002 | 0.047 |
C | 15 | 15 | 0.224 | 0.069 | 0.465 | 0.108 | 0.043 | 0.298 | 0.011 | 0.001 | 0.025 |
W | 15 | 15 | 0.228 | 0.106 | 0.406 | 0.083 | 0.046 | 0.126 | 0.015 | 0.001 | 0.042 |
C | 28 | 15 | 0.052 | 0.017 | 0.112 | 0.087 | 0.061 | 0.145 | 0.003 | 0.001 | 0.007 |
W | 28 | 15 | 0.149 | 0.022 | 1.008 | 0.739 | 0.063 | 9.753 | 0.046 | 0.001 | 0.638 |
C | 56 | 15 | 0.656 | 0.149 | 2.813 | 9.844 | 0.051 | 145.291 | 0.003 | 0.001 | 0.010 |
W | 56 | 15 | 0.893 | 0.137 | 6.510 | 0.629 | 0.055 | 2.979 | 0.002 | 0.001 | 0.004 |
Full Model | Reduced Model (Main Effects Only) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Relative Estradiol E2 | ||||||||||||
Factor | Df | Sum Sq | Mean Sq | F value | Pr(> F) | Sig | Df | Sum Sq | Mean Sq | F value | Pr(>F) | Sig |
temp | 1 | 0.4831 | 0.4831 | 0.2714 | 0.6031 | 1 | 0.4831 | 0.4831 | 0.2725 | 0.6024 | ||
day | 5 | 63.239 | 12.648 | 7.104 | 5 × 10−6 | *** | 5 | 63.239 | 12.648 | 7.1328 | 4 × 10−6 | *** |
temp-by-day | 5 | 7.6754 | 1.5351 | 0.8622 | 0.5079 | |||||||
Residuals | 166 | 295.54 | 1.7804 | 171 | 303.22 | 1.7732 | ||||||
Relative Estrone E1 | ||||||||||||
Factor | Df | Sum Sq | Mean Sq | F value | Pr(> F) | Sig | Df | Sum Sq | Mean Sq | F value | Pr(>F) | Sig |
temp | 1 | 0.0174 | 0.0174 | 0.0242 | 0.8764 | 1 | 0.0174 | 0.0174 | 0.0249 | 0.8748 | ||
day | 5 | 155.34 | 31.068 | 43.28 | 2 × 10−28 | *** | 5 | 155.34 | 31.068 | 44.475 | 2 × 10−29 | *** |
temp-by-day | 5 | 0.2518 | 0.0504 | 0.0702 | 0.9965 | |||||||
Residuals | 168 | 120.60 | 0.7178 | 173 | 120.85 | 0.6986 | ||||||
Relative Testosterone T | ||||||||||||
Factor | Df | Sum Sq | Mean Sq | F value | Pr(> F) | Sig | Df | Sum Sq | Mean Sq | F value | Pr(>F) | Sig |
temp | 1 | 0.0001 | 0.0001 | 0.0822 | 0.7747 | 1 | 0.0001 | 0.0001 | 0.0834 | 0.7731 | ||
day | 5 | 0.0735 | 0.0147 | 8.7853 | 2 × 10−7 | *** | 5 | 0.0735 | 0.0147 | 8.9161 | 2 × 10−7 | *** |
temp-by-day | 5 | 0.0041 | 0.0008 | 0.4951 | 0.7796 | |||||||
Residuals | 167 | 0.2795 | 0.0017 | 172 | 0.2837 | 0.0016 | ||||||
Relative T:E2 Ratio | ||||||||||||
Factor | Df | Sum Sq | Mean Sq | F value | Pr(> F) | Sig | Df | Sum Sq | Mean Sq | F value | Pr(>F) | Sig |
temp | 1 | 0.5556 | 0.5556 | 0.646 | 0.4227 | 1 | 0.5556 | 0.5556 | 0.6536 | 0.4199 | ||
day | 5 | 92.414 | 18.483 | 21.489 | 1 × 10−16 | *** | 5 | 92.414 | 18.483 | 21.743 | 7 × 10−17 | *** |
temp-by-day | 5 | 2.5664 | 0.5133 | 0.5968 | 0.7025 | |||||||
Residuals | 168 | 144.50 | 0.8601 | 173 | 147.06 | 0.8501 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topping, N.E.; Valenzuela, N. Thermal Response of Circulating Estrogens in an Emydid Turtle, Chrysemys picta, and the Challenges of Climate Change. Diversity 2023, 15, 428. https://doi.org/10.3390/d15030428
Topping NE, Valenzuela N. Thermal Response of Circulating Estrogens in an Emydid Turtle, Chrysemys picta, and the Challenges of Climate Change. Diversity. 2023; 15(3):428. https://doi.org/10.3390/d15030428
Chicago/Turabian StyleTopping, Nicholas E., and Nicole Valenzuela. 2023. "Thermal Response of Circulating Estrogens in an Emydid Turtle, Chrysemys picta, and the Challenges of Climate Change" Diversity 15, no. 3: 428. https://doi.org/10.3390/d15030428
APA StyleTopping, N. E., & Valenzuela, N. (2023). Thermal Response of Circulating Estrogens in an Emydid Turtle, Chrysemys picta, and the Challenges of Climate Change. Diversity, 15(3), 428. https://doi.org/10.3390/d15030428