Thermal Response of Circulating Estrogens in an Emydid Turtle, Chrysemys picta, and the Challenges of Climate Change
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Collection
2.2. Sample Preparation
2.3. QQQ-MS Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowden, R.M.; Ewert, M.A.; Nelson, C.E. Environmental sex determination in a reptile varies seasonally and with yolk hormones. Proc. Biol. Sci. 2000, 267, 1745–1749. [Google Scholar] [CrossRef] [PubMed]
- Bista, B.; Valenzuela, N. Turtle insights into the evolution of the reptilian karyotype and the genomic architecture of sex determination. Genes 2020, 11, 416. [Google Scholar] [CrossRef] [PubMed]
- Ewert, M.A.; Etchberger, C.R.; Nelson, C.E. Turtle sex-determining modes and TSD patterns, and some TSD pattern correlates. In Temperature-Dependent Sex Determination in Vertebrates; Valenzuela, N., Lance, V.A., Eds.; Smithsonian Book: Washington, DC, USA, 2004; pp. 21–32. [Google Scholar]
- Bowden, R.M.; Ewert, M.A.; Freedberg, S.; Nelson, C.E. Maternally derived yolk hormones vary in follicles of the painted turtle, Chrysemys picta. J. Exp. Zool. 2002, 293, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Radder, R.S. Maternally derived egg yolk steroid hormones and sex determination: Review of a paradox in reptiles. J. Biosci. 2007, 32, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Bowden, R.M.; Paitz, R.T. Temperature fluctuations and maternal estrogens as critical factors for understanding temperature-dependent sex determination in nature. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2018, 329, 177–184. [Google Scholar] [CrossRef]
- Raynaud, A.; Pieau, C. Embryonic development of the genital system. In Biology of the Reptilia; Gans, C., Billet, F., Eds.; John Wiley & Sons: New York, NY, USA, 1985; pp. 151–300. [Google Scholar]
- Wibbels, T.; Crews, D. Steroid-induced sex determination at incubation temperatures producing mixed sex ratios in a turtle with TSD. Gen. Comp. Endocrinol. 1995, 100, 53–60. [Google Scholar] [CrossRef]
- Freedberg, S.; Nelson, C.E.; Ewert, M.A. Estradiol-17 beta induces lasting sex reversal at male-producing temperatures in kinosternid turtles. J. Herpetol. 2006, 40, 95–98. [Google Scholar] [CrossRef]
- Freedberg, S.; Bowden, R.M.; Ewert, M.A.; Sengelaub, D.R.; Nelson, C.E. Long-term sex reversal by oestradiol in amniotes with heteromorphic sex chromosomes. Biol. Lett. 2006, 2, 378–381. [Google Scholar] [CrossRef]
- Janzen, F.J.; Wilson, M.E.; Tucker, J.K.; Ford, S.P. Experimental manipulation of steroid concentrations in circulation and in egg yolks of turtles. J. Exp. Zool. 2002, 293, 58–66. [Google Scholar] [CrossRef]
- Bowden, R.M.; Ewert, M.A.; Lipar, J.L.; Nelson, C.E. Concentrations of steroid hormones in layers and biopsies of chelonian egg yolks. Gen. Comp. Endocrinol. 2001, 121, 95–103. [Google Scholar] [CrossRef]
- Callard, I.P.; Lance, V.; Salhanick, A.R.; Barad, D. The annual ovarian cycle of Chrysemys picta: Correlated changes in plasma steroids and parameters of vitellogenesis. Gen. Comp. Endocrinol. 1978, 35, 245–257. [Google Scholar] [CrossRef]
- Crawford, K.M. The winter environment of painted turtles, Chrysemys picta—temperature, dissolved-oxygen, and potential cues for emergence. Can. J. Zool.—Rev. Can. De Zool. 1991, 69, 2493–2498. [Google Scholar] [CrossRef]
- Topping, N.E.; Valenzuela, N. Turtle nest-site choice, anthropogenic challenges, and evolutionary potential for adaptation. Front. Ecol. Evol. 2021, 9, 808621. [Google Scholar] [CrossRef]
- Obbard, M.E.; Brooks, R.J. Prediction of the onset of the annual nesting season of the common snapping turtle, Chelydra serpentina. Herpetologica 1987, 43, 324–328. [Google Scholar]
- Rowe, J.W.; Coval, K.A.; Campbell, K.C. Reproductive characteristics of female midland painted turtles (Chrysemys picta marginata) from a population on Beaver Island, Michigan. Copeia 2003, 2003, 326–336. [Google Scholar] [CrossRef]
- Grayson, K.L.; Dorcas, M.E. Seasonal temperature variation in the painted turtle (Chrysemys picta). Herpetologica 2004, 60, 325–336. [Google Scholar] [CrossRef]
- Schwantes, A.M.; Swenson, J.J.; González-Roglich, M.; Johnson, D.M.; Domec, J.C.; Jackson, R.B. Measuring canopy loss and climatic thresholds from an extreme drought along a fivefold precipitation gradient across Texas. Glob. Chang. Biol. 2017, 23, 5120–5135. [Google Scholar] [CrossRef] [PubMed]
- Desvages, G.; Pieau, C. Aromatase-activity in gonads of turtle embryos as a function of the incubation-temperature of eggs. J. Steroid Biochem. Mol. Biol. 1992, 41, 851–853. [Google Scholar] [CrossRef]
- Desvages, G.; Girondot, M.; Pieau, C. Sensitive Stages for the Effects of Temperature on gonadal aromatase-activity in embryos of the marine turtle Dermochelys coriacea. Gen. Comp. Endocrinol. 1993, 92, 54–61. [Google Scholar] [CrossRef]
- Jeyasuria, P.; Roosenburg, W.M.; Place, A.R. Role of P-450 Aromatase in sex determination of the diamondback terrapin, Malaclemys terrapin. J. Exp. Zool. 1994, 270, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Jeyasuria, P.; Place, A.R. Temperature-dependent aromatase expression in developing diamondback terrapin (Malaclemys terrapin) embryos. J. Steroid Biochem. Mol. Biol. 1997, 61, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Jeyasuria, P.; Place, A.R. Embryonic brain-gonadal axis in temperature-dependent sex determination of reptiles: A role for P450 aromatase (CYP19). J. Exp. Zool. 1998, 281, 428–449. [Google Scholar] [CrossRef]
- Rhen, T.; Metzger, K.; Schroeder, A.; Woodward, R. Expression of putative sex-determining genes during the thermosensitive period of gonad development in the snapping turtle, Chelydra Serpentina. Sex. Dev. 2007, 1, 255–270. [Google Scholar] [CrossRef]
- Ramsey, M.; Crews, D. Adrenal-kidney-gonad complex measurements may not predict gonad-specific changes in gene expression patterns during temperature-dependent sex determination in the red-eared slider turtle (Trachemys scripta elegans). J. Exp. Zool. A Ecol. Genet. Physiol. 2007, 307, 463–470. [Google Scholar] [CrossRef]
- Valenzuela, N.; Neuwald, J.L.; Literman, R. Transcriptional evolution underlying vertebrate sexual development. Dev. Dyn. 2013, 242, 307–319. [Google Scholar] [CrossRef]
- Lance, V.A. Is regulation of aromatase expression in reptiles the key to understanding temperature-dependent sex determination? J. Exp. Zool. A Ecol. Genet. Physiol. 2009, 311, 314–322. [Google Scholar] [CrossRef]
- Dorizzi, M.; Richard-Mercier, N.; Pieau, C. The ovary retains male potential after the thermosensitive period for sex determination in the turtle Emys orbicularis. Differentiation 1996, 60, 193–201. [Google Scholar] [CrossRef]
- Britt, K.L.; Findlay, J.K. Estrogen actions in the ovary revisited. J. Endocrinol. 2002, 175, 269–276. [Google Scholar] [CrossRef]
- Meinhardt, U.; Mullis, P.E. The aromatase cytochrome P-450 and its clinical impact. Horm. Res. 2002, 57, 145–152. [Google Scholar] [CrossRef]
- Veitia, R.A. Le facteur de transcription FOXL2: Un acteur clé de la différenciation de l’ovaire, de son maintien et de la fertilité. Bull. De L’académie Natl. De Méd. 2016, 200, 1115–1127. [Google Scholar] [CrossRef]
- Callard, G.V.; Petro, Z.; Ryan, K.J. Identification of aromatase in the reptilian brain. Endocrinology 1977, 100, 1214–1218. [Google Scholar] [CrossRef] [PubMed]
- Wade, J. Androgen metabolism in the brain of the green anole lizard (Anolis carolinensis). Gen. Comp. Endocrinol. 1997, 106, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Pielke, R., Jr.; Burgess, M.G.; Ritchie, J. Most plausible 2005-2040 emissions scenarios project less than 2.5 degrees C of warming by 2100. SocArXiv 2021. [Google Scholar] [CrossRef]
- Fuentes, M.; Limpus, C.J.; Hamann, M.; Dawson, J. Potential impacts of projected sea-level rise on sea turtle rookeries. Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 132–139. [Google Scholar] [CrossRef]
- Stanford, C.B.; Iverson, J.B.; Rhodin, A.G.; van Dijk, P.P.; Mittermeier, R.A.; Kuchling, G.; Berry, K.H.; Bertolero, A.; Bjorndal, K.A.; Blanck, T.E.G.; et al. Turtles and tortoises are in trouble. Curr. Biol. 2020, 30, R721–R735. [Google Scholar] [CrossRef]
- Neuwald, J.L.; Valenzuela, N. The lesser known challenge of climate change: Thermal variance and sex-reversal in vertebrates with temperature-dependent sex determination. PLoS ONE 2011, 6, e18117. [Google Scholar] [CrossRef]
- Valenzuela, N.; Literman, R.; Neuwald, J.L.; Mizoguchi, B.; Iverson, J.B.; Riley, J.L.; Litzgus, J.D. Extreme thermal fluctuations from climate change unexpectedly accelerate demographic collapse of vertebrates with temperature-dependent sex determination. Sci. Rep. 2019, 9, 4254. [Google Scholar] [CrossRef]
- Bowden, R.M.; Paitz, R.T. Is thermal responsiveness affected by maternal estrogens in species with temperature-dependent sex determination? Sex. Dev. 2021, 15, 69–79. [Google Scholar] [CrossRef]
- Hernandez-Divers, S.M.; Hernandez-Divers, S.J.; Wyneken, J. Angiographic, anatomic and clinical technique descriptions of a subcarapacial venipuncture site for chelonians. J. Herpetol. Med. Surg. 2002, 12, 32–37. [Google Scholar] [CrossRef]
- Mans, C. Venipuncture techniques in chelonian species. Lab Anim. 2008, 37, 303–304. [Google Scholar] [CrossRef]
- Boggs, A.S.; Bowden, J.A.; Galligan, T.M.; Guillette, L.J.; Kucklick, J.R. Development of a multi-class steroid hormone screening method using Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS). Anal. Bioanal. Chem. 2016, 408, 4179–4190. [Google Scholar] [CrossRef]
- Bussy, U.; Chung-Davidson, Y.-W.; Buchinger, T.J.; Li, K.; Li, W. High-sensitivity determination of estrogens in fish plasma using chemical derivatization upstream UHPLC–MSMS. Steroids 2017, 123, 13–19. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing, version 4.0.3; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 25 February 2023).
- McPherson, R.; Boots, L.; MacGregor, R., III; Marion, K. Plasma steroids associated with seasonal reproductive changes in a multiclutched freshwater turtle, Sternotherus odoratus. Gen. Comp. Endocrinol. 1982, 48, 440–451. [Google Scholar] [CrossRef]
- Rostal, D.C.; Owens, D.W.; Grumbles, J.S.; MacKenzie, D.S.; Amoss, M.S., Jr. Seasonal reproductive cycle of the Kemp’s ridley sea turtle (Lepidochelys kempi). Gen. Comp. Endocrinol. 1998, 109, 232–243. [Google Scholar] [CrossRef]
- Allman, P.; Bowden, R.M.; Donini, J.; Serra, I. Year-round plasma steroid hormone profiles and the reproductive ecology of gopher tortoises (Gopherus polyphemus) at the southernmost edge of their range. Gen. Comp. Endocrinol. 2019, 282, 113213. [Google Scholar] [CrossRef]
- Hulin, V.; Delmas, V.; Girondot, M.; Godfrey, M.H.; Guillon, J.-M. Temperature-dependent sex determination and global change: Are some species at greater risk? Oecologia 2009, 160, 493–506. [Google Scholar] [CrossRef]
- Morjan, C.L. How rapidly can maternal behavior affecting primary sex ratio evolve in a reptile with environmental sex determination? Am. Nat. 2003, 162, 205–219. [Google Scholar] [CrossRef]
- Laloë, J.-O.; Hays, G.C. Can a present-day thermal niche be preserved in a warming climate by a shift in phenology? A case study with sea turtles. R. Soc. Open Sci. 2023, 10, 221002. [Google Scholar] [CrossRef]
- Blanvillain, G.; Owens, D.W.; Kuchling, G. Hormones and reproductive cycles in turtles. In Hormones and Reproduction of Vertebrates; Norris, D.O., Lopez, K.H., Eds.; Academic Press: Cambridge, MA, USA, 2011; pp. 277–303. [Google Scholar]
- Marquez, E.C.; Traylor-Knowles, N.; Novillo-Villajos, A.; Callard, I.P. Cloning of estrogen receptor alpha and aromatase cDNAs and gene expression in turtles (Chrysemys picta and Pseudemys scripta) exposed to different environments. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2011, 154, 213–225. [Google Scholar] [CrossRef]
- Mizoguchi, B.A.; Valenzuela, N. Ecotoxicological perspectives of sex determination. Sex. Dev. 2016, 10, 45–57. [Google Scholar] [CrossRef]
Temp | Day | N | Estradiol (E2) | Estrone (E1) | Testosterone (T) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | |||
C | 0 | 15 | 0.199 | 0.038 | 1.529 | 0.140 | 0.089 | 0.171 | 0.004 | 0.001 | 0.014 |
W | 0 | 15 | 0.167 | 0.054 | 0.470 | 0.177 | 0.108 | 0.464 | 0.007 | 0.001 | 0.018 |
C | 2 | 15 | 0.149 | 0.081 | 0.315 | 0.410 | 0.621 | 1.057 | 0.023 | 0.005 | 0.104 |
W | 2 | 15 | 0.163 | 0.070 | 0.350 | 0.810 | 0.549 | 1.108 | 0.011 | 0.006 | 0.044 |
C | 8 | 15 | 0.379 | 0.068 | 1.738 | 0.838 | 0.732 | 0.967 | 0.009 | 0.002 | 0.026 |
W | 8 | 15 | 0.312 | 0.138 | 0.852 | 0.825 | 0.694 | 0.956 | 0.010 | 0.002 | 0.047 |
C | 15 | 15 | 0.224 | 0.069 | 0.465 | 0.108 | 0.043 | 0.298 | 0.011 | 0.001 | 0.025 |
W | 15 | 15 | 0.228 | 0.106 | 0.406 | 0.083 | 0.046 | 0.126 | 0.015 | 0.001 | 0.042 |
C | 28 | 15 | 0.052 | 0.017 | 0.112 | 0.087 | 0.061 | 0.145 | 0.003 | 0.001 | 0.007 |
W | 28 | 15 | 0.149 | 0.022 | 1.008 | 0.739 | 0.063 | 9.753 | 0.046 | 0.001 | 0.638 |
C | 56 | 15 | 0.656 | 0.149 | 2.813 | 9.844 | 0.051 | 145.291 | 0.003 | 0.001 | 0.010 |
W | 56 | 15 | 0.893 | 0.137 | 6.510 | 0.629 | 0.055 | 2.979 | 0.002 | 0.001 | 0.004 |
Full Model | Reduced Model (Main Effects Only) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Relative Estradiol E2 | ||||||||||||
Factor | Df | Sum Sq | Mean Sq | F value | Pr(> F) | Sig | Df | Sum Sq | Mean Sq | F value | Pr(>F) | Sig |
temp | 1 | 0.4831 | 0.4831 | 0.2714 | 0.6031 | 1 | 0.4831 | 0.4831 | 0.2725 | 0.6024 | ||
day | 5 | 63.239 | 12.648 | 7.104 | 5 × 10−6 | *** | 5 | 63.239 | 12.648 | 7.1328 | 4 × 10−6 | *** |
temp-by-day | 5 | 7.6754 | 1.5351 | 0.8622 | 0.5079 | |||||||
Residuals | 166 | 295.54 | 1.7804 | 171 | 303.22 | 1.7732 | ||||||
Relative Estrone E1 | ||||||||||||
Factor | Df | Sum Sq | Mean Sq | F value | Pr(> F) | Sig | Df | Sum Sq | Mean Sq | F value | Pr(>F) | Sig |
temp | 1 | 0.0174 | 0.0174 | 0.0242 | 0.8764 | 1 | 0.0174 | 0.0174 | 0.0249 | 0.8748 | ||
day | 5 | 155.34 | 31.068 | 43.28 | 2 × 10−28 | *** | 5 | 155.34 | 31.068 | 44.475 | 2 × 10−29 | *** |
temp-by-day | 5 | 0.2518 | 0.0504 | 0.0702 | 0.9965 | |||||||
Residuals | 168 | 120.60 | 0.7178 | 173 | 120.85 | 0.6986 | ||||||
Relative Testosterone T | ||||||||||||
Factor | Df | Sum Sq | Mean Sq | F value | Pr(> F) | Sig | Df | Sum Sq | Mean Sq | F value | Pr(>F) | Sig |
temp | 1 | 0.0001 | 0.0001 | 0.0822 | 0.7747 | 1 | 0.0001 | 0.0001 | 0.0834 | 0.7731 | ||
day | 5 | 0.0735 | 0.0147 | 8.7853 | 2 × 10−7 | *** | 5 | 0.0735 | 0.0147 | 8.9161 | 2 × 10−7 | *** |
temp-by-day | 5 | 0.0041 | 0.0008 | 0.4951 | 0.7796 | |||||||
Residuals | 167 | 0.2795 | 0.0017 | 172 | 0.2837 | 0.0016 | ||||||
Relative T:E2 Ratio | ||||||||||||
Factor | Df | Sum Sq | Mean Sq | F value | Pr(> F) | Sig | Df | Sum Sq | Mean Sq | F value | Pr(>F) | Sig |
temp | 1 | 0.5556 | 0.5556 | 0.646 | 0.4227 | 1 | 0.5556 | 0.5556 | 0.6536 | 0.4199 | ||
day | 5 | 92.414 | 18.483 | 21.489 | 1 × 10−16 | *** | 5 | 92.414 | 18.483 | 21.743 | 7 × 10−17 | *** |
temp-by-day | 5 | 2.5664 | 0.5133 | 0.5968 | 0.7025 | |||||||
Residuals | 168 | 144.50 | 0.8601 | 173 | 147.06 | 0.8501 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topping, N.E.; Valenzuela, N. Thermal Response of Circulating Estrogens in an Emydid Turtle, Chrysemys picta, and the Challenges of Climate Change. Diversity 2023, 15, 428. https://doi.org/10.3390/d15030428
Topping NE, Valenzuela N. Thermal Response of Circulating Estrogens in an Emydid Turtle, Chrysemys picta, and the Challenges of Climate Change. Diversity. 2023; 15(3):428. https://doi.org/10.3390/d15030428
Chicago/Turabian StyleTopping, Nicholas E., and Nicole Valenzuela. 2023. "Thermal Response of Circulating Estrogens in an Emydid Turtle, Chrysemys picta, and the Challenges of Climate Change" Diversity 15, no. 3: 428. https://doi.org/10.3390/d15030428
APA StyleTopping, N. E., & Valenzuela, N. (2023). Thermal Response of Circulating Estrogens in an Emydid Turtle, Chrysemys picta, and the Challenges of Climate Change. Diversity, 15(3), 428. https://doi.org/10.3390/d15030428